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Why are you reading this abstract? In some sense, your answer will cast the exercise
as valuable—but what is value? In what follows, we suggest that value is evidence or,
more exactly, log Bayesian evidence. This implies that a sufficient explanation for valuable
behavior is the accumulation of evidence for internal models of our world. This contrasts
with normative models of optimal control and reinforcement learning, which assume the
existence of a value function that explains behavior, where (somewhat tautologically)
behavior maximizes value. In this paper, we consider an alternative formulation—active
inference—that replaces policies in normative models with prior beliefs about the (future)
states agents should occupy. This enables optimal behavior to be cast purely in terms
of inference: where agents sample their sensorium to maximize the evidence for their
generative model of hidden states in the world, and minimize their uncertainty about those
states. Crucially, this formulation resolves the tautology inherent in normative models and
allows one to consider how prior beliefs are themselves optimized in a hierarchical setting.
We illustrate these points by showing that any optimal policy can be specified with prior
beliefs in the context of Bayesian inference. We then show how these prior beliefs are
themselves prescribed by an imperative to minimize uncertainty. This formulation explains
the saccadic eye movements required to read this text and defines the value of the visual
sensations you are soliciting.
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INTRODUCTION
So, why are you reading this paper? According to what follows, the
answer is fairly simple: you are compelled to selectively sample
sensory input that conforms to your predictions and—a priori—
you believe that reading this text will reduce your uncertainty
about what we are going to say (you are going to see) next.
This may sound a rather trite explanation but it contains two
fundamental premises. Both of these premises can be motivated
from the basic principles of self-organization: namely, the imper-
ative to minimize surprise (maximize evidence) associated with
sensory states—by actively sampling the environment—and the
imperative to minimize uncertainty about the inferred causes of
that input—by making inferences about future or fictive states.
Together, these provide a complete account of optimal behavior,
in which value becomes log-evidence or negative surprise. This
paper tries to unpack these assertions using formal arguments and
simulations. In fact, the final simulation reproduces a simple form
of reading, in which an agent garners evidence for its beliefs using
saccadic eye movements (Rayner, 1978).

Implicit in this account of optimal behavior is a hierarchical
perspective on optimization, in which behavior is cast as active
Bayesian inference that is constrained by prior beliefs. Crucially,
these prior beliefs are themselves optimized at a higher hierarchal
level. This is important because it resolves the tautology inher-
ent in normative schemes based upon optimal control theory
and cost or reward functions. The tautology here is almost self-
evident: if behavior is optimal, then it maximizes value. But what

is value—other than an objective function that describes optimal
behavior. It is this descriptive (circular) aspect of conventional
formulations we associate with normative schemes. Put simply,
adopting a normative model subverts questions about the origin
and optimization of value functions per se. For example, it would
be difficult to specify a reward or value function that explains why
you are reading this text.

In the context of active inference, this issue is resolved by
appeal to hierarchical Bayesian inference, in which optimization
at one level is constrained by empirical priors from a higher
level. Optimization in this setting refers to maximizing Bayesian
model evidence (or minimizing surprise). In most real-world
examples—for example the Bayesian brain (Yuille and Kersten,
2006)—a hierarchical aspect to inference emerges naturally from
a separation of temporal scales. For example, inference about
the causes of some data is constrained by the parameters of a
generative model that are learned after all the data have been
seen. Similarly, the form of the model itself can be optimized
through model selection, after the parameters of competing mod-
els have been optimized. Neurobiologically, these optimization
or inference processes may be associated with synaptic activ-
ity, synaptic plasticity and synaptic regression—each operating
at successively slower timescales. Although the optimization pro-
cesses may differ (e.g., neuronal dynamics, associative learning,
and neurodevelopment), they are all fulfilling the same objective;
namely, to maximize the Bayesian model evidence averaged over
time. Clearly, one can develop this hierarchical perspective to an
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evolutionary level, where natural selection may play the role of
Bayesian model selection. In short, contextualizing optimization
processes at different temporal scales allows one to examine the
process theories (putative implementation) at each level and con-
sider them in relation to the level above. We will see an example
of this later, in terms of empirical prior beliefs that are updated
slowly after fast eye movements. Furthermore, formulating opti-
mal behavior in terms of active inference means that one can
associate value in normative schemes with probabilistic attributes
of sensory states. This is important because it provides a link
between normative models of optimal control and normative
models based upon information theory (Barlow, 1961; Linsker,
1990; Bialek et al., 2001; Zetzsche and Röhrbein, 2001)—such as
the principle of least action, the principle of maximum entropy,
the principle of minimum redundancy and the principle of maxi-
mum information transfer. This link rests on replacing reward or
cost functions in optimal control theory with prior beliefs in the
context of Bayes-optimal inference.

OVERVIEW
This paper comprises six sections. The first three focus on con-
ventional optimal control and reinforcement learning schemes
and their formulation in terms of active inference. In partic-
ular, they show how cost functions can be replaced by prior
beliefs under active inference. These sections use discrete time
formulations and summarises the material in Friston et al.
(2012b). The final three sections consider where prior beliefs
come and move from the abstract formulations of normative
models to biophysically realistic formulations. These sections use
continuous time and summarises the material in Friston et al.
(2012a).

The first section reviews the role of cost and value functions
in Markov decision processes (MDPs) and their extensions to
partially observable Markov decision processes (POMDPs). We
then revisit these formulations from the point of view of active
inference and demonstrate their formal relationships. In brief,
active inference separates inference about hidden states causing
observations from action. The motivation for this is pragmatic;
in that real agents cannot know how their action affects hidden
states (because hidden states have to be inferred). This means
that action must be based on a function of observed states,
as opposed to hidden states. Active inference assumes that this
function is the same variational free energy used in approxi-
mate Bayesian inference (Hinton and van Camp, 1993; Dayan
et al., 1995; MacKay, 1995; Neal and Hinton, 1998). In other
words, active inference extends the minimization of variational
free energy that underlies approximate Bayesian inference to
include action (Friston et al., 2010b). However, requiring action
to minimize variational free energy appears to contradict opti-
mal control theory, which requires action to minimize expected
cost. The purpose of the second section is to resolve this con-
flict. We will see that the cost functions that are used to guide
action in optimal control can be absorbed into prior beliefs in
active inference. Effectively, this means that agents expect their
state transitions to minimize cost, while action realizes these prior
beliefs by maximizing the marginal likelihood of observations.
This means one can use standard Bayesian inference schemes

to solve optimal control problems—see also McKinstry et al.
(2006). The third section illustrates this by showing how opti-
mal policies can be inferred under prior beliefs about future
(terminal) states using standard variational Bayesian procedures
(Beal, 2003). This section concludes with an example (the moun-
tain car problem) that illustrates how active inference furnishes
online nonlinear optimal control, with partially observed (hid-
den) states.

The fourth section turns to the nature and origin of prior
beliefs and shows how they can be derived from the basic imper-
atives of self-organization (Ashby, 1947; Tschacher and Haken,
2007). This section uses a general but rather abstract formu-
lation of agents—in terms of the states they can occupy—that
enables us to explain action, perception and control as corol-
laries of variational free energy minimization. The focus here is
on prior beliefs about control and how they relate to the princi-
ple of maximum mutual information and specific treatments of
visual attention such as Bayesian surprise (Itti and Baldi, 2009).
Having established the underlying theory, the fifth section con-
siders neurobiological implementations in terms of predictive
coding and recurrent message passing in the brain. This sec-
tion reprises a neural architecture we have described in previous
publications and extends it to include the encoding of prior
beliefs in terms of (place coded) saliency maps. The final sec-
tion provides an illustration of the basic ideas, using neuronally
plausible simulations of visual search and the control of saccadic
eye movements. This illustration allows us to understand Bayes-
optimal searches in terms of the accumulation of evidence during
perceptual synthesis.

MARKOVIAN FORMULATIONS OF VALUE AND OPTIMAL
CONTROL
In the following sections, we apply variational free energy min-
imization to a well-studied problem in optimal decision theory,
psychology and machine learning; namely MDPs. In brief, we
show that free energy minimization (active inference) and opti-
mal decision theory provide the same solutions when the policies
from optimal decision theory are replaced by prior beliefs about
transitions from one state to another. This is important because
specifying behavior in terms of prior beliefs finesses the diffi-
cult problem of optimizing behavior to access distal rewards.
Furthermore, it enables one to consider optimality in terms of
accessing particular states in the future. Bayes-optimal behav-
ior then depends upon a representation of future behaviors that
necessarily entails a model of agency.

This section considers discrete time (Markov) decision pro-
cesses of the sort found in optimal control theory, models of
behavior and decision making (Bellman, 1952; Watkins and
Dayan, 1992; Camerer, 2003; Daw and Doya, 2006; Todorov,
2006; Dayan and Daw, 2008). Its aim is to establish a link between
classical approaches to optimizing decisions, in terms of policy
optimization, and the variational free energy minimization that
underlies active inference (Beal, 2003; Friston et al., 2009). Here,
classical schemes are taken to imply that actions (and beliefs about
hidden states of the world) are chosen to maximize the expected
reward of future states. Conversely, in active inference, actions and
beliefs minimize a variational free energy bound on the (negative
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log) marginal likelihood of observed states—that is, they maximize
the marginal likelihood or Bayesian model evidence. Linking the
two formulations necessarily requires us to formulate free energy
minimization in discrete time and think about how reward or cost
functions are accommodated.

The key distinction between optimal control and active infer-
ence is that in optimal control, action optimizes the expected cost
associated with the hidden states a system or agent visits. In con-
trast, active inference requires action to optimize the marginal
likelihood (Bayesian model evidence) of observed states, under
a generative model. This introduces a distinction between cost-
based optimal control and Bayes-optimal control that eschews
cost. The two approaches are easily reconciled by ensuring the
generative model embodies prior beliefs about state transitions
that minimize expected cost. Our purpose is therefore not to
propose an alternative implementation of optimal control but
accommodate optimal control within the larger framework of
active inference.

MARKOV DECISION PROCESSES
First, we briefly consider Markov decision problems and their
solutions based upon cost or reward functions that are an integral
part of optimal control theory and reinforcement learning.

Notation and set up: We will use X for a finite set of states
and x ∈ X for particular values. A probability distribution will be
denoted by P(x) = Pr{X = x} using the usual conventions. The
tilde notation x̃ = (x0, . . . , xT) denotes a sequence of values at
time points t = 0, . . . , T.

Definition: A Markov decision process is the tuple (X, A, T, r),
where

• Hidden states X—a finite set of states.
• Action A—a finite set of actions.
• Transition probability T(x′|x, a) = Pr({xt+1 = x′|xt = x, at =

a})—the probability that the state x′ ∈ X at time t + 1 follows
action a ∈ A in state x ∈ X at time t.

• Reward r(x) ∈ R—some reward received at state x′ ∈ X.

Problem: The goal is to find a policy π : X → A that maxi-
mizes cumulative rewards. This can be expressed in terms of the
sequence of actions ã := (a0, . . . , aT) that maximizes value or
negative cost-to-go:

V(x) = max
ã

{
r(x) +

T∑
i=1

∑
x′

Pr({xi = x′|x0 = x,

a0, . . . , ai})r(x′)
}

(1)

The solution to this equation is a policy or sequence of optimal
actions at := π(xt) that maximizes expected reward in the future,
given a probabilistic model of state transitions. In this setting,
(T, r) constitutes a model that comprises a transition matrix and
rewards defined on states. Equation (1) can be expressed as the
Bellman optimality equation by exploiting the Markovian nature

of the problem using recursive substitution (Bellman, 1952):

V(x) = max
a

{
r(x) +

∑
s′

T(x′|x, a)V(x′)
}

(2)

For simplicity, we have assumed a finite horizon problem,
in which the reward is maximized from t = 0 to t = T. This
allows us to eschew notions of discounting required in infi-
nite horizon problems. Solutions to MDPs can be divided into
reinforcement learning schemes that compute the value function
explicitly and direct policy searches that find the optimal policy
directly.

In direct policy searches (Williams, 1992; Baxter et al., 2001;
Gomez and Miikkulainen, 2001), a policy is optimized by map-
ping each state directly to an action, without reference to the value
of the state. Direct policy searches are useful when the value func-
tion is hard to learn but the policy is easy to find. In reinforcement
learning there are two general approaches: The first model based
schemes compute the value function using a model of state transi-
tions and is usually considered when the state space is sufficiently
small. This is also known as dynamic programming and involves
iterating the following two steps (Bellman, 1952):

π(x) = arg max
a

{
r(x) +

∑
s′

T(x′|x, a)V(x′)
}

V(x) = r(x) +
∑

s′
T(x′|x,π(x))V(x′)

(3)

This scheme is guaranteed to find the optimal solution, pro-
vided all states are visited. In value iteration or backwards induc-
tion, the policy is only calculated when needed. This gives the
combined step in (1). In policy iteration (Howard, 1960), the first
step is repeated until convergence, thereby providing a definite
stopping condition. If the transition probabilities or rewards are
unknown or the state space is large (precluding a visit to every
state), the problem is usually solved with model free reinforce-
ment learning. In these schemes the value function is itself learnt
(Rescorla and Wagner, 1972; Sutton and Barto, 1981; Watkins
and Dayan, 1992; Friston et al., 1994): This enables one to solve
Markov decision problems without learning the transition proba-
bilities, because the value function acts as a guidance function for
action.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
The formulation above assumes that the agent knows what state
it is in. This is often unrealistic because an agent cannot know
the exact state of the world, given noisy or partial observations
(Rao, 2010). This leads to an extension of the MDP framework
to accommodate partially observed states (Kaelbling et al., 1998);
namely a POMDP. Although it is possible to solve POMDPs
using direct policy searches (Gomez et al., 2009), one cannot
perform value iteration or reinforcement learning directly, as
they require the hidden states. However, a POMDP can be con-
verted to a MDP using beliefs about the current state that can
be computed recursively from the observations and actions using
Bayes rule. This enables one to convert the partially observed
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process to a (Belief) MDP by treating the beliefs as states and
replacing reward with its expected value under the current belief
state.

In summary, conventional approaches to MDPs rest on the
optimization of future rewards and specify an optimal policy in
terms of an action from any given state. Partially observed MDPs
make inference explicit by introducing a probabilistic mapping
between hidden states of the world and observations. In this set-
ting, the beliefs that the agent forms (by observing histories of
actions and states) can be exploited to optimize behavior.

OPTIMAL CONTROL AS INFERENCE
Our focus is on optimal decision making or control as an infer-
ence process: see Filatov and Unbehauen (2004) for a review of
early work in this area. Initial approaches were based on con-
verting control problems into inference problems—by replacing
reward with an auxiliary random variable conditioned on desired
observations. This makes maximizing reward equivalent to max-
imizing the likelihood of desired observations (Cooper, 1988;
Shachter, 1988). Subsequent work focused on efficient meth-
ods to solve the ensuing inference problem (Jensen et al., 1994;
Zhang, 1998). Later, Dayan and Hinton (1997) proposed an
Expectation Maximization algorithm for reinforcement learning
with immediate rewards, while Toussaint and Storkey (2006) cast
the problem of computing optimal policies as a likelihood max-
imization problem. This generalized the work of Cooper (1988)
and Shachter (1988) to the case of infinite horizons and cost func-
tions over future states. More recently, this approach has been
pursued by applying Bayesian procedures to problems of opti-
mal decision making in MDPs (Botvinick and An, 2008; Toussaint
et al., 2008; Hoffman et al., 2009).

Related work on stochastic optimal control (Kappen, 2005a,b;
van den Broek et al., 2008; Rawlik et al., 2010) exploits the reduc-
tion of control problems to inference problems by appealing to
variational techniques to provide efficient and computationally
tractable solutions. In particular, formulating the problem in
terms of Kullback–Leibler minimization (Kappen, 2005a,b) and
path integrals of cost functions (Theodorou et al., 2010; Braun
et al., 2011).

The variational formalism has also found a powerful appli-
cation in the setting of optimal control and the construction of
adaptive agents. For example, Ortega and Braun (2010), con-
sider the problem of optimizing active agents, where past actions
need to be treated as causal interventions. They show that that
the solution to this variational problem is given by a stochas-
tic controller called the Bayesian control rule, which implements
adaptive behavior as a mixture of experts. This work illustrates
the close connections between minimizing (relative) entropy and
the ensuing active Bayesian inference that we will appeal to the
later.

SUMMARY
In summary, current approaches to partially observed MDPs and
stochastic optimal control minimize cumulative cost using the
same procedures employed by maximum likelihood and approxi-
mate Bayesian inference schemes. Indeed, the formal equivalence
between optimal control and estimation was acknowledged by

Kalman at the inception of Bayesian filtering schemes (Todorov,
2008). In the next section, we revisit this equivalence and show
that any optimal control problem can be formulated as a Bayesian
inference problem, within the active inference framework. The
key aspect of this formulation is that action does not mini-
mize cumulative cost but maximizes the marginal likelihood of
observations, under a generative model that entails an optimal
policy.

ACTIVE INFERENCE
This section introduces active inference, in which the optimiza-
tion of action and beliefs about hidden states are treated as two
separate processes that both maximize Bayesian model evidence
or the marginal likelihood of observations. In active inference,
action elicits observations that are the most plausible under beliefs
about (future) states. This is in contrast to conventional formu-
lations, in which actions are chosen to elicit (valuable) states. We
will see that active inference can implement any optimal policy;
however, it does not solve the optimal control problem explic-
itly, because active inference does not minimize cost-to-go but
minimizes the surprise of observations (maximizes their marginal
likelihood). This follows from the fact that active inference is a
corollary of the free energy principle:

THE FREE-ENERGY PRINCIPLE
The free-energy principle (Friston et al., 2006) tries to explain
how agents occupy a small number of attracting states by mini-
mizing the Shannon entropy of the probability distribution over
their sensory states. Under ergodic assumptions, this entropy is
(almost surely) the long-term time average of self-information or
surprise (Birkhoff, 1931). Surprise, or more precisely surprisal,
is a (probability) measure − ln P(st |m) on the states that are
sampled by an agent.

Minimizing the long-term average Et [− ln P(st |m)] is assured
when agents minimize surprise at each time point. Crucially,
surprise is just the negative marginal likelihood or Bayesian
model evidence, which means minimizing surprise maximizes
Bayesian model evidence. Surprise is minimized—approximately
or exactly—if agents minimize a variational free energy bound
on surprise (Feynman, 1972; Hinton and van Camp, 1993), given
a generative model m of state transitions (Dayan et al., 1995;
Friston, 2010). We will return to the relationship between entropy,
surprise and Bayesian model evidence in Section “Bayes-optimal
control without cost functions,” when we examine the motivation
for free energy minimization in more detail. Here, we consider
the nature of active inference in terms of free energy minimiza-
tion, where free energy is defined in relation to the following
definitions:

Definition: Active inference rests on the tuple
(X, A, ϑ, P, Q, R, S) comprising:

• A finite set of hidden states X
• Real valued hidden parameters ϑ ∈ R

d

• A finite set of sensory states S
• A finite set of actions A
• Real valued internal states μ ∈ R

d that parameterize a condi-
tional density
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• A sampling probability R(s′|s, a) = Pr({st+1 = s′|st = s, at =
a}) that observation s′ ∈ S at time t + 1 follows action a ∈ A,
given observation s ∈ S at time t

• A generative probability P(s̃, x̃, θ|m) = Pr({s0, . . . , st} =
s̃, {x0, . . . , xT} = x̃, ϑ = θ) over observations to time t, states
at all times and parameters

• A conditional probability Q(x̃, θ|μ) = Pr({x0, . . . , xT} =
x̃,ϑ = θ) over a sequence of states and parameters, with
sufficient statistics μ ∈ R

d

Remarks: Here, m denotes the form of a generative model
or probability distribution over sensory and hidden states and
parameters: Pm(s̃, x̃, θ) := P(s̃, x̃, θ|m). For clarity, we will omit
the conditioning on m for all but prior terms in the generative
probability. The sufficient statistics of the conditional probabil-
ity Qμ(x̃, θ) := Q(x̃, θ|μ) encode a probability distribution over
a sequence of hidden states x̃ = {x0, . . . , xT} and the parame-
ters of the model θ ∈ ϑ. Crucially, the conditional probability
and its sufficient statistics encode hidden states in the future
and past, which themselves can change with time: for example,
μk = {μk

0, . . . , μk
T}, where μk

t is the probability over hidden states
at time t in the future or past, under the conditional probability
at the present time k.

The probabilities above (P, Q, R) underwrite the action and
perception of the agent—they correspond to its formal beliefs
about the sensory consequences of action (sampling probability)
and the hidden states causing observations (generative probabil-
ity). Because the true states generating observations are unknown
and unknowable from the point of view of the agent, they can
only be inferred in terms of an approximate posterior probability
(conditional probability).

There are three important distinctions between this setup and
that used by MDPs. As in partially observed MDPs, there is a dis-
tinction between states and observations. However, the transition
probability over hidden states no longer depends on action. In
other words, the agent does not need to know the effect of its
actions on the (hidden) state of the world. It is instead equipped
with a probabilistic mapping between its actions and their direct
sensory consequences—this is the sampling probability. This is a
central tenet of active inference, which separates knowledge about
the sensory consequences of action from beliefs about the causes
of those consequences. In other words, the agent knows that if
it moves it will sense movement (c.f. proprioception); however,
beliefs about hidden states in the world causing movement have
to be inferred. These hidden states may or may not include its
own action: the key distinction between the agency free and agency
based schemes considered below depends on whether the agent
represents its own action or not.

The second distinction is that hidden states include future and
past states. In other words, the agent represents a sequence or
trajectory over states. This enables inference about a particular
state in the future to change with time. This will become impor-
tant when we consider planning and agency. Finally, there are no
reward or cost functions. This reflects the fact that active inference
does not call upon the notion of reward to optimize behavior—
optimal behavior minimizes variational free energy, which is
a functional of observations and the conditional probability

distribution or its sufficient statistics. As we will see below, cost
functions are replaced by priors over hidden states and transi-
tions, such that costly states are surprising and are avoided by
action.

PERCEPTION AND ACTION
The free energy principle states that the sufficient statistics of the
conditional probability and action minimize free energy

μt = arg min
μ

F({s0, . . . , st}, μ)

at = arg min
a

∑
S

R(st+1|st, a)F({s0, . . . , st+1},μt)
(4)

This dual optimization is usually portrayed in terms of perception
and action, by associating the sufficient statistics with internal
states of the agent (such as neuronal activity) and associating
action with the state of effectors or the motor plant. Equation (4)
just says that internal states minimize the free energy of currently
observed states, while action selects the next observation that, on
average, has the smallest free energy. By factorizing the generative
probability P (s̃, x̃, θ|m) = P(s̃|x̃, θ)P(x̃, θ|m) into likelihood and
prior probabilities, one can express the free energy as follows:

F(s̃, μ) = EQ[− ln P(s̃, x̃, θ|m)] − EQ[− ln Q(x̃, θ|μ)]
= DKL[Q(x̃, θ|μ)||P(x̃, θ|s̃)] − ln P(s̃|m)

(5)

The first equality in Equation (5) expresses free energy as
a Gibbs energy (expected under the conditional distribution)
minus the entropy of the conditional distribution. The second
shows that free energy is an upper bound on surprise, because
the first (Kullback–Leibler divergence) term is nonnegative by
Gibbs inequality (Beal, 2003). This means that when free energy
is minimized, the conditional distribution approximates the pos-
terior distribution Q(x̃, θ|μ) ≈ P(x̃, θ|s̃) over hidden states and
parameters. This formalizes the notion of unconscious inference
in perception (Helmholtz, 1866/1962; Dayan et al., 1995; Dayan
and Hinton, 1997) and, under some simplifying assumptions,
corresponds to predictive coding (Rao and Ballard, 1999).

This formulation highlights the fact that action selects observ-
able states (not hidden states) that are the least surprising or have
the smallest free energy. The free energy is determined by the suf-
ficient statistics of the conditional distribution. The optimization
of these sufficient statistics or internal states—the first equality
in Equation (4)—rests upon the generative model and therefore
depends on prior beliefs. It is these beliefs that specify what is
surprising and reproduces the optimal policies considered above.
There are clearly many ways to specify the generative probability.
We will consider two forms, both of which respect the Markov
property of decision processes. The first reproduces the behavior
under the optimal policy for Markov decision problems and can
be regarded as the corresponding free energy formulation:

AN AGENCY FREE FORMULATION OF OPTIMAL POLICIES
The natural generative model for a partially observable Markov
decision process can be expressed in terms of a likelihood plus
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priors over states and parameters, with the following forms:

P (s̃, x̃, θ|m) = P(s̃|x̃, θ)P(x̃|θ)P(θ|m)

P ({s0, . . . , st}|x̃, θ) = P(s0|x0)P(s1|x1) . . . P(st |xt)

P (x̃|θ) = P(x0|m)

T−1∏
t=0

P(xt+1|xt, θ)

(6)

This implies that the current observation depends only on
the current hidden state (like a belief MDP), where the hidden
states are a Markov process, whose transition probabilities depend
upon the parameters (unlike a belief MDP). We will assume that
the priors over the parameters P(θ|m) = δ(θ − θπ) make the pri-
ors over state transitions equivalent to the optimal policy of the
previous section. In other words, we assume the priors have a
point mass over values that render the transition probabilities
P(xt+1|xt, θπ) = T(xt+1|xt ,π(xt)) optimal in the conventional
sense. The second equality in Equation (5) shows that mini-
mizing the free-energy, with respect to the sufficient statistics of
the conditional distribution, renders it the posterior over hidden
states and parameters. This means that the conditional distribu-
tion becomes the posterior distribution, where (noting that the
posterior and prior over parameters are the same Dirac delta
function)

Q(x̃, θ|μt) ≈ P(x̃|{s0, . . . , st}, θ)δ(θ − θπ) (7)

We have used an approximate equality here because we
are assuming approximate Bayesian inference. In this context,
free-energy minimization with respect to action becomes, from
Equations (4) and (5):

at = arg min
a

∑
S

R(st+1|st, a)F({s0, . . . , st+1}, μt)

= arg max
a

∑
S

R(st+1|st, a)EQ(xt+1)[ln P(st+1|xt+1)]

Q(xt+1) ≈
∑

X

P(xt+1|xt, π(xt))P(xt|{s0, . . . , st}) (8)

Note that the free energy of the new observation is just its
improbability, expected under posterior beliefs about the hid-
den states that cause it—these posterior beliefs correspond to the
marginal conditional distribution Q(st + 1), over the next hidden
state.

It can be seen from Equation (8) that action under active infer-
ence is exactly the same as action under the optimal policy. This is
because action selects the observation that is most likely under the
(approximate) posterior distribution. In turn, this is the hidden
state that follows the currently inferred state, under the optimal
policy. This means that active inference can be considered as a
generalization of optimal control. This is because there are prior
beliefs that can reproduce an optimal policy to minimize expected
cost. However, there are prior beliefs that specify Bayes-optimal
control that cannot be expressed as minimizing value (Friston and
Ao, 2012). Put simply, although prior beliefs about a particular
trajectory through state space may be the solution to an optimal

control problem, there may be prior beliefs that are not. These
prior beliefs are particularly relevant in robotics and the contin-
uous time formulations considered later. In brief, any trajectory
specified by a prior belief can be decomposed into divergence
and curl free components (by the fundamental theorem of vec-
tor calculus or the Helmholtz decomposition). Crucially, only the
curl free (irrotational) component can be specified by a value
function. This is problematic because nearly every real-world
movement trajectory has divergence free components; such as the
rotational components of walking, reading and writing. These are
relatively easy to specify and simulate using appropriate priors—
see the handwriting simulations in Friston et al. (2011) or the
animate behaviors in Tani (2003)—but cannot be specified in
terms of a value function of states. See Friston and Ao (2012) for
a technical discussion and Friston (2011) for a discussion in the
setting of motor control.

SUMMARY
In summary, we have seen that is fairly straightforward to place
optimal decision or Markovian control theory schemes in an
active inference framework. This involves replacing optimal poli-
cies, defined by cost or reward functions, with prior beliefs about
transitions among hidden states. The advantage of doing this is
that we can formulate action and perception as jointly minimiz-
ing the same objective function that provides an upper bound on
surprise or negative log Bayesian evidence. This enables optimal
control to be cast as Bayesian inference, with a clear distinction
between action and inference about partially observed or hid-
den states. We will see later that formulating the optimal control
problem in terms of prior beliefs enables us to connect to other
normative theories about perception and entertain questions
about where these prior beliefs come from. For example, the prior
beliefs above depend upon the parameters of the generative model
(transition probabilities among hidden states) that can be learned
in a Bayes-optimal sense. See Friston et al. (2009) for an example.

The fact that one can replace cost functions with priors to pro-
duce the same behavior is related to the complete class theorem
(Brown, 1981). The complete class theorem states that any admis-
sible decision rule (behavior) is Bayes-optimal for at least one pair
of prior beliefs and cost function (Robert, 1992). However, this
pair is not necessarily unique: in other words, the same decisions
can be reproduced under different combinations of prior and cost
functions. In one sense, this duality is resolved by replacing the
cost functions of optimal control theory with prior beliefs about
state transitions. Casting Bayes-optimal decisions in this way sim-
ply means that the agent believes it will sample state space in a
way that minimizes future costs, while action fulfills these prior
beliefs. In the next section, we consider what would happen if the
agent inferred its own action:

BAYES-OPTIMAL CONTROL WITHOUT COST FUNCTIONS
In this section, we consider agency based optimization, in which
the hidden states are extended to include hidden (control), states
that model action. This is necessary, when inferring optimal state
transitions, because transitions depend upon action in the future
which is hidden from observation. In what follows, we focus on
policies that are specified by prior beliefs about specific states that
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will be occupied at specific times in the future. This corresponds
to a finite horizon control problem with terminal costs over states
and intermediate control costs that are specified through prior
beliefs about control.

AGENCY-BASED OPTIMIZATION
In what follows, we describe a scheme for POMDPs that optimizes
action in relation to prior beliefs about future states. This scheme
uses representations of hidden states in the future to optimize
a sequence of fictive actions before they are enacted. This calls
for a more sophisticated generative model—a model of agency or
control. In other words, the agent must infer its future actions
via Bayesian updates of posterior beliefs about the future. The
heuristic benefit of introducing hidden control states is that future
actions can be optimized, when choosing the best current action.
The ensuing solutions are optimal in relation to prior beliefs
about states that will be occupied. These are prior beliefs about
the final (desired) hidden state and can be expressed in terms of
the following generative model:

An agency based model: The generative probability used in
this section introduces (a finite set of) hidden control states u ∈ U
and can be expressed in terms of the following likelihood and
prior distributions:

P (s̃, x̃, ũ, θ|m) = P(s̃|x̃, θ)P(x̃, ũ|θ)P(θ|m)

P ({s0, . . . , st}|x̃, θ) = P(s0|x0, θ)P(s1|x1, θ) . . . P(st |xt, θ) (9)

P (x̃, ũ|θ) = P(xT |θ)
T∏

t=1

P (xt−1|xt, ut, θ)P(ut |θ)

Remarks: There are two important aspects of this generative
model: First, control states are not action—they are an inter-
nal representation of action that may or may not be related to
actions emitted by the agent. In the generative model, control
states affect the transitions among hidden states; in other words,
they only affect outcomes vicariously through hidden states. It is
these control states that represent agency, which may or may not
be a veridical representation of what the agent can actually do (or
is doing)—in this sense, they can be regarded as fictive action that
gives the generative model extra degrees of freedom to model state
transitions under prior beliefs. Recall that action only changes
observations and is selected on the basis of posterior beliefs about
the next observable state. Conversely, control states are modeled
as hidden states over time and are inferred. This means they only
exist in the mind (posterior beliefs) of the agent.

Second, the priors on the hidden states P(x̃, ũ|θ) are formu-
lated in a pullback sense; that is, they run backwards in time. This
preserves the Markov dependencies but allows us to specify the
prior over a sequence of states in terms of transition probabilities
and a prior distribution over the final (terminal) state. Put sim-
ply, the parameters of the (transition) model encode where I came
from, not where I am going. See Figure 1. This particular form
of prior belief is chosen for convenience, because it accommo-
dates beliefs about the desired final state—of the sort that would
be specified with a terminal cost function, r(xT).

The generative model in Equation (9) is fairly general and
makes no specific assumptions about the implicit cost of inferred

FIGURE 1 | Probabilistic graphical model illustrating the Markovian

dependencies among hidden states generating sensory data. These
hidden states (st , ut ) are represented explicitly, over all time points: t = 0,
. . ., T . This means there is a representation of the past and future that
includes hidden states mediating control. Note that the dependency of this
hidden Markov model runs backwards in time so that all preceding hidden
states are conditioned recursively on the final or terminal (goal) state.

control (it does not assume quadratic control costs) or allow-
able state transitions. In what follows, we illustrate inference or
model inversion using a particular parameterization and varia-
tional inversion scheme. This example is used to illustrate agency-
based inference, accepting that there are many different model
parameterizations and inversion schemes that could have been
used.

Generative probability: The generative model used below
comprises the following likelihood and prior distributions:

P (st |xt, θ) = A · xt

P(xt−1|xt, ut, θ) =
(∏

i

Buti
i

)
· xt

P(xT |θ) = c

P(ut|θ) =
∏

i

duti
i

(10)

The parameters θ = {A, B1, B2, . . . , c, d} of this model are

A = {aij} :
∑

j

aij = 1, ∀i

Bk = {bijk} :
∑

j

bijk = 1, ∀i, k

c = {ci} :
∑

i

ci = 1

d = {di} :
∑

i

di = 1

(11)
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The parameters in the matrices Bk encode transition prob-
abilities among hidden states that are engaged when the con-
trol state uk = 1, where the control states have a multinomial
distribution—only one can be “on” at any time. The hidden states
cause observed states through the mapping encoded by A. The
vectors c and d encode the prior distribution over the final hid-
den state and control states, respectively; these specify the goal
and prior costs on control.

Conditional probability: To exploit the Markovian form of
the generative model we will use an efficient approximate infer-
ence scheme afforded by variational Bayesian learning (Beal,
2003); for a tutorial see Fox and Roberts (2011). The efficiency
rests on replacing posterior dependencies among hidden states
(over time) with mean field effects on the marginal probabilities
at each time point. This is achieved using the following mean-field
assumption for the conditional distribution:

Q(s, u) =
T∏

t=1

Q(st)Q(ut)

Q(st |αt) =
∏

i

α
si
ti :
∑

i

αti = 1

Q(ut |βt) =
∏

i

β
ui
ti :

∑
i

βti = 1

(12)

Standard variational Bayesian learning now provides a
recipe for optimizing the sufficient statistics (αt , βt) of the
conditional probability over hidden and control states. The
ensuing variational updates for the sufficient statistics μk =
{αk

0, . . . ,α
k
T , βk

0, . . . , β
k
T} at successive times k are Friston et al.

(2012b):
for k = 1 to T

until · convergence:

for t = (T − 1) to (k + 1)

α′
t = exp([ln AT · st ] +

∑
j

βk
(t+1)j ln Bj

·αk
(t+1) +

∑
j

βk
tj ln BT

j · αk
(t−1))

αk+1
t = α′

t∑
i α

′
ti

β′
ti = exp(αkT

t−1 · ln Bi · αk
t + ln di)

βk+1
t = β′

t∑
i β

′
ti

(13)

The square brackets in [ln AT · st ] indicate that this term is
used only when observations are available. This speaks to an
important aspect of these update schemes; namely, posterior
beliefs about the hidden states at all points during the sequence
are updated iteratively at each time point. At each time point, the
variational updates cycle over representations of future states to
update the sufficient statistics encoding posterior beliefs. These

update cycles are themselves repeated as time progresses, so
that there is convergence both within and between cycles. This
means the sufficient statistics change over two timescales; a fast
timescale that updates posterior beliefs about the future and
a slow timescale that updates posterior beliefs in the future.
Posterior beliefs about the trajectory, at both timescales, ensure
that the trajectory convergences on the final (desired) location,
where the anticipated trajectory is realized through action. It is
interesting to speculate about neurophysiologic implementations
of this sort of scheme, particularly in relation to nested elec-
trophysiological oscillations (Canolty et al., 2006). The notion
here is that the electrophysiological correlates of updating may
show nested oscillations, with fast (gamma) oscillations reflecting
updates in a fictive future and slower (theta) dynamics that reflect
updates in real time; with timescales of 25 and 250 ms respect,
respectively. To illustrate the nature of this optimal control, we
now apply it to a well-known problem in optimal control theory
that presents some special challenges.

THE MOUNTAIN CAR PROBLEM
In the mountain car problem, one has to park a mountain car
halfway up the side of a valley. However, the mountain car is not
strong enough to climb directly to the parking place, which means
the only way to assess the goal is to ascend the other side of the val-
ley to acquire sufficient momentum during the return trip. This
represents an interesting problem, when considered in the state
space of position and velocity: the agent has to move away from
its target location to attain the goal later. In other words, it has to
execute a circuitous trajectory through state space (as in avoiding
obstacles). We have used this problem previously to illustrate how
Bayes-optimal control can be learned in terms of the parameters
controlling prior beliefs about trajectories (Friston et al., 2009)
and using heuristic policies (Gigerenzer and Gaissmaier, 2011)
based on the destruction of costly fixed point attractors (Friston,
2010).

It should be noted that the mountain car problem is normally
cast as a learning problem—in which an optimal policy has to
be learned. However, here, we use it to illustrate optimal behav-
ior in terms of inference. In other words, we assume the agent
has already learned the constraints afforded by the world it oper-
ates in—and now has to infer an optimal policy within a single
trial. In this setting, the mountain car problem provides a chal-
lenging inference problem, particularly when we include random
fluctuations in both the states generating observations and the
observations themselves. The mountain car problem can be spec-
ified with the equations of motion in Figure 2. Here, we consider
a discrete state space and time formulation of this problem and
use it to illustrate agency based control.

To create a discrete version, we ensured that expected changes
in position and velocity match the equations of motion, when
integrated over discrete time intervals (here �t = 2s). The ensu-
ing pullback probabilities for each level of control satisfy (subject
to the constraint that only the states adjacent to the expected
position and velocity are non-zero).

∑
i

x(xi)Bijk = x(x̃j) − f (x(xj), a(uk))�t (14)
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FIGURE 2 | Schematic of the mountain car problem. The upper panel

(and associated equations) illustrate the landscape or potential energy
function that defines the motion of the car. This has a minima at
x = ( − 0.5, 1). The mountain-car is shown at the desired parking position at
the top of the hill on the right x = (1, 0) (indicated with a red ball). The
equations of motion in the lower panel describe the forces exerted on the
car, which include σ(a), a sigmoid (hyperbolic tangent) function of action,
gravitational forces, and friction.

Here, x(xi) ∈ R
2 returns the continuous position and veloc-

ity associated with the i-th hidden state. Similarly, a(uk) ∈ R

returns the real valued action associated with the k-th control
state. In these simulations, we used five levels of control cor-
responding to a(uk) ∈ {−2,−1, 0, 1, 2}. This means the agent
assumes that strong or intermediate acceleration can be applied
in a right or leftward direction. To simulate random fluctuations
in the motion of the mountain car, we smoothed the parame-
ter matrix B to augment the uncertainty about the previous state
incurred by discretizing state space. The state space comprised 32
position (from −2 to 2) and velocity bins (from −3 to 3), giv-
ing 32 × 23 = 1024 discrete states. For simplicity, we assumed a
one-to-one mapping between hidden and observed states; that is
A = I and placed uniform prior costs over control. Prior beliefs
about the final state specify the goal x = (1, 0)—namely, to main-
tain a position at the parking location with zero velocity; see
Figure 2. Finally, the action-dependent sampling probabilities

R(st+1|st, at) were the transposed versions of the pullback proba-
bilities in Equation (14). These sampling probabilities were used
to select action and to generate the next sensory input. Action
used the same five levels as the control states—however, as noted
above, there is no requirement that action and control be related
in this way.

Figure 3 shows the results of a simulation using T = 16 time
steps and a starting position of x = (0, 0). In these simulations
the variational updates were repeated eight times and then an
action was selected. The upper panel shows the trajectories (real
and anticipated) through state space, while the lower panels show
the inferred control states and selected action as a function of
time. The darker line in the upper panel connects the states visited
over the 16 time steps, while the gray lines report the antici-
pated trajectories from the beginning of the trial to the end. The
inferred trajectories are shown as the expected position and veloc-
ity, based on posterior beliefs over discrete states. One can see
that the actual trajectory fulfills, fairly faithfully, the anticipated
sequences and that there has been relatively little updating dur-
ing execution. As anticipated, the mountain car moves away from
its target to acquire sufficient momentum to access the goal on
the right. Note the similarity between the selected actions (right)
and the inferred control states (left). The interesting thing here
is that the agent was not always sure about which control state
was currently engaged. However, the control state with the highest
posterior probability, which corresponds to the action the agent
believes it will emit next, is always selected by active inference. In
other words, even under uncertainty about hidden and control
states, there is sufficient confidence in the next sensory state to
inform action.

SUMMARY
In summary, we have reviewed conventional approaches to (par-
tially observable) Markov decision problems and have cast reward
or cost functions in terms of prior beliefs about state tran-
sitions. This implicitly resolves the redundancy between cost
functions and priors that underlies the complete class theo-
rems. We then exploited this redundancy by specifying optimal
policies in terms of prior beliefs about future (terminal) states.
The ensuing scheme may provide a metaphor for model-based
decision-making in real agents that has an explicit planning or
anticipatory aspect. This solution was based upon approximate
(variational) Bayesian inference that respects the Markov nature
of decision processes.

The aim of this work was to unpack some of the implica-
tions of optimal control for its implementation in real-world
agents. The most important is the representation of hidden con-
trol states that are required for accessing distal rewards in the
future. This contrasts with the usual problem formulation of
MDPs, which is to define a normative model and a corresponding
notion of optimality. In optimal control theory, state transitions
are specified in terms of value functions that are solutions to
the appropriate Bellman optimality equations, given a cost func-
tion. The notion that the Bellman optimality principle “can be
derived as a limit case” from the variational principles that under-
lie active inference also emerges in recent information theoretic
formulations of bounded rationality (Braun et al., 2011): Braun
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FIGURE 3 | This figure shows the results of a simulated (agency based)

trajectory over T = 16 time steps starting at x = (0, 0) and ending at the

goal location x = (1, 0) (red ball) using active inference and explicit

representations of the future. The upper panel shows the trajectories in
the state space of position and velocity. The grey lines represent anticipated
trajectories accumulated during control, while the dark (dotted) lines show
the actual trajectory through state space. The anticipated trajectories are the
expected values based upon posterior expectations about past and future

states. They are therefore continuous functions of position and velocity. In
contrast, the actual trajectory is restricted to the 1024 discrete states that
can be occupied; these are shown as light grey dots. The lower panels show
the anticipated control and the actual actions selected under active inference
(in image format where lighter colors mean a higher probability). Note that
there is a high degree of correspondence; however, the posterior beliefs
about control and not always absolutely certain: these are the beliefs at the
times each action is selected.

et al. consider control costs in terms of the (cross) entropy of
choice probabilities and augment expected utility to produce a
free energy optimality criterion. This free utility captures bounded
rationality by ensuring the divergence between optimal and prior
choice probabilities is minimized. They show that minimizing
free utility includes both discrete and continuous stochastic opti-
mal control as special cases and can be derived “without invoking
the Hamilton–Jacobi–Bellman equation or the Bellman optimal-
ity equations”. See also Theodorou et al. (2010), who exploit
a similar formalism but with a more classical motivation. The

generalization of optimal control using free utility is compelling
and unifies approximate optimal control methods in both the
continuous and discrete domain. However, free utility is funda-
mentally different from variational free energy, because it is a
functional of choice probabilities over hidden states. In contrast,
variational free energy is a function of observed states. Crucially,
free utility depends on a cost function, while free energy does not.
This is because the free energy principle is based on the invariant
or ergodic solution P(s|m) to the Kolmogorov forward equation,
which specifies the value of an observed state V(s|m) = ln P(s|m)
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directly, without reference to cost—see next section and Friston
and Ao (2012). In other words, value is (log) evidence or nega-
tive surprise. Conversely, free utility is based on the Kolmogorov
backward equation, which can only be solved given terminal
costs.

In answer to the title of this paper, the value of an observed
state is then prescribed by a generative model in terms of the
probability a state will be occupied. It can be seen easily that min-
imizing the entropy of the invariant probability distribution over
observations maximizes expected value:

EP[− ln P(s|m)] = EP[V(s|m)] (15)

Minimizing the entropy of observed states is the raison d’être
for the free energy principle (see below), which invokes varia-
tional free energy to finesse the intractable problem of marginal-
izing over hidden states to evaluate value or negative surprise.
This complements the use of free utility to finesse the intractable
problem of solving Bellman optimality equations (Braun et al.,
2011). It can be seen from Equation (5) that free energy F(s,μ) ≥
− ln P(s|m) = −V(s|m) bounds surprise and can therefore be
minimized to maximize value.

In conclusion, we have described a variational free energy for-
mulation of (partially observable) Markov decision problems in
decision making under uncertainty. We have seen that optimal
control can be cast as active inference, in which both action and
posterior beliefs about hidden states minimize a free energy bound
on the value (log Bayesian model evidence) of observed states,
under a generative model. In this setting, reward or cost functions
are absorbed into prior beliefs about state transitions and termi-
nal states. This converts optimal control into a pure inference
problem, enabling the application of standard Bayesian filter-
ing techniques. Crucially, this entails modeling future states state
that endows the generative model with a sense of agency. This
leads to a distinction between models with and without inference
on future states—namely, agency free and agency based models,
respectively. In the next section, we ask: where do prior beliefs
about future states come from?

ACTION, PERCEPTION, AND CONTROL
The previous section suggested that value is simply the log-
evidence associated with sensory samples or evidence for an
internal model or hypothesis about the world. In this setting,
valuable behavior simply involves sampling the world to ensure
model predictions are fulfilled, where these predictions rest upon
(prior) beliefs about future states. In this section, we motivate the
imperative to maximize log-evidence from the basic principles
of self-organization. We go on to show that prior beliefs about
future states have a relatively simple form; namely, we believe
that our future states will minimize uncertainty about our current
beliefs.

If perception corresponds to hypothesis testing (Gregory,
1980); then sensory sampling might be correspond to experi-
ments that generate sensory data. In the next three sections, we
explore the idea that eye movements are optimal experiments,
in which data are gathered to test hypotheses or beliefs about
how those data are caused. This provides a plausible model of

visual search that can be motivated from the basic tenets of
self-organized behavior: namely, the imperative to minimize the
entropy of hidden states of the world and their sensory con-
sequences. Simulations of the resulting active inference scheme
reproduce sequential eye movements that are reminiscent of
empirically observed saccades and provide some counterintuitive
insights into the way that sensory evidence is accumulated or
assimilated into beliefs about the world.

If variational free energy minimization is applied to both
action and perception, action will fulfill predictions based upon
conditional beliefs about the state of the world. However, the
uncertainty associated with those conditional beliefs depends
upon the way data are sampled: for example, where we direct
our gaze or how we palpate a surface. The deployment of sensory
epithelia is itself a hidden state that has to be inferred. However,
these hidden states can be changed by action, which means there
is a subset of hidden states over which we have control. These
are the hidden control states of the previous section. Prior beliefs
about these hidden control states dictate how we engage actively
with the environment and lead to the notion of fictive or counter-
factual representations; in other words, what we would infer about
the world, if we sampled it in a particularly way. This leads nat-
urally to the internal representation of prior beliefs about future
sampling and the emergence of things like agency, intention, and
salience. We will illustrate these points using visual search and
the optimal control of saccadic eye movements (Grossberg et al.,
1997; Itti and Baldi, 2009; Srihasam et al., 2009); noting that
similar principles should apply to other sensory modalities. For
example, they should apply to motor control when making infer-
ences about objects causing somatosensory sensations (Gibson,
1979).

ACTIVE INFERENCE—A CONTINUOUS TIME FORMULATION
This section establishes the nature of Bayes-optimal inference
in the context of controlled sensory searches. It starts with the
basic premise that underlies free energy minimization; namely,
the imperative to minimize the dispersion of sensory states and
their hidden causes to ensure a homoeostasis of the external and
internal milieu (Ashby, 1947). It rehearses briefly how action and
perception follow from this imperative and highlights the impor-
tant role of prior beliefs about the sampling of sensory states.
At this point, we move away from the discrete formulations of
MDPs and turned to continuous formulations, where probability
distributions become densities and discrete time becomes contin-
uous. This shift is deliberate and allows the discrete formulations
of the previous sections to be compared and contrasted with
the equivalent continuous time formulations that predominate in
biologically realistic simulations.

Notation and set up: Here we use X : � × . . . → R for real
valued random variables and x ∈ X for particular values. A
probability density will be denoted by p(x) = Pr{X = x} using
the usual conventions and its entropy H[p(x)] by H(X). From
now on, the tilde notation x̃ = (x, x′, x′′, . . .) denotes variables
in generalized coordinates of motion (Friston, 2008), where
each prime denotes a temporal derivative (using Lagrange’s
notation). For simplicity, constant terms will be omitted from
equalities.
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Definition: Active inference rests on the tuple
(�,�, S, A, R, q, p) that comprises the following:

• A sample space � or non-empty set from which random
fluctuations or outcomes ω ∈ � are drawn

• Hidden states � : � × A × � → R—states of the world that
cause sensory states and depend on action

• Sensory states S : � × A × � → R—the agent’s sensations
that constitute a probabilistic mapping from action and hidden
states

• Action A : S × R → R—an agent’s action that depends on its
sensory and internal states

• Internal states R : R × S × � → R—the states of the agent that
cause action and depend on sensory states

• Generative density p(s̃, ψ̃|m)—a probability density function
over sensory and hidden states under a generative model
denoted by m

• Conditional density q(ψ̃) := q(ψ̃|μ̃)—an arbitrary probability
density function over hidden states ψ̃ ∈ � that is parameter-
ized by internal states μ̃ ∈ R

We assume that the imperative for any biological system is
to minimize the dispersion of its sensory and hidden states,
with respect to action (Ashby, 1947; Nicolis and Prigogine, 1977;
Friston and Ao, 2012). We will refer to the sensory and hid-
den states collectively as external states S × � . As noted above,
the dispersion of external states corresponds to the (Shannon)
entropy of their probability density that, under ergodic assump-
tions, equals (almost surely) the long-term time average of a
Gibbs energy:

H(S,�) = Et[G(s̃(t), ψ̃(t))]
G = − ln p(s̃(t), ψ̃(t)|m)

(16)

Gibbs energy G(s̃, ψ̃) is defined in terms of the generative den-
sity or model. Clearly, agents cannot minimize this energy directly
because the hidden states are unknown. However, we can decom-
pose the entropy into the entropy of the sensory states (to which
the system has access) and the conditional entropy of hidden
states (to which the system does not have access). This second
term is also called the equivocation of the hidden states about the
sensory states:

H(S,�) = H(S) + H(�|S)

= Et[− ln p(s̃(t)|m) + H(�|S = s̃(t))] (17)

This decomposition means that the entropy of the external
states can be minimized through action to minimize sensory sur-
prise − ln p(s̃(t)|m), under the assumption that the consequences
of action minimize the equivocation or average uncertainty about
hidden states:

a(t) = arg min
a∈A

{− ln p(s̃(t)|m)}

ũ(t) = arg min
ũ∈U

{H(�|S = s̃(t))} (18)

The consequences of action are expressed by changes in a
subset of hidden states U ⊂ �—the hidden control states or
hidden controls. When Equation (18) is satisfied, the variation of
entropy in Equation (16) with respect to action and its conse-
quences are zero, which means the entropy has been minimized
(at least locally). However, the hidden controls cannot be opti-
mized explicitly because they are hidden from the agent. To
resolve this problem, we first consider action and then return to
optimizing hidden control states.

ACTION AND PERCEPTION
Action cannot minimize sensory surprise directly because this
would involve an intractable marginalization over hidden states,
so—as in the discrete formulation—surprise is replaced with an
upper bound called variational free energy (Feynman, 1972).
However, replacing surprise with free energy means that internal
states also have to minimize free energy, because free energy is a
function of internal states:

a(t) = arg min
a∈A

{F(s̃(t), μ̃(t))}

μ̃(t) = arg min
μ̃∈R

{F(s̃(t), μ̃)} (19)

F = Eq[G(s̃, ψ̃)] − H[q(ψ̃|μ̃)]
= − ln p(s̃|m) + D[q(ψ̃)||p(ψ̃|s̃, m)]
≥ − ln p(s̃|m)

This induces a dual minimization with respect to action
and the internal states that parameterize the conditional den-
sity. These minimizations correspond to action and perception,
respectively. In brief, the need for perception is induced by intro-
ducing free energy to finesse the evaluation of surprise; where free
energy can be evaluated by an agent fairly easily, given a genera-
tive model. The last equality says that free energy is always greater
than surprise because the second (Kullback–Leibler divergence)
term is non-negative. As in the discrete formulation, when free
energy is minimized with respect to the internal states, free energy
approximates surprise and the conditional density approximates
the posterior density over external states:

D[q(ψ̃)||p(ψ̃|s̃, m)] ≈ 0 ⇒
{

q(ψ̃) ≈ p(ψ̃|s̃, m)

H[q(ψ̃)] ≈ H(�|S = s̃)
(20)

Minimizing free energy also means that the entropy of the
conditional density approximates the equivocation of the hid-
den states. This allows us to revisit the optimization of hidden
controls, provided we know how they affect the conditional
density.

THE MAXIMUM ENTROPY PRINCIPLE AND THE LAPLACE
ASSUMPTION
If we admit an encoding of the conditional density up to second
order moments, then the maximum entropy principle (Jaynes,
1957) implicit in the definition of free energy (Equation 19)
requires q(ψ̃|μ̃) = N (μ̃, �) to be Gaussian. This is because a
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Gaussian density has the maximum entropy of all forms that can
be specified with two moments. Adopting a Gaussian form is
known as the Laplace assumption and enables us to express the
entropy of the conditional density in terms of its first moment
or expectation. This follows because we can minimize free energy
with respect to the conditional covariance as follows:

F = G(s̃, μ̃) + 1
2 tr(� · ∂μ̃μ̃G) − 1

2 ln |�|
⇒ ∂�F = 1

2 ∂μ̃μ̃G − 1
2 �

∂�F = 0 ⇒ � = ∂μ̃μ̃G ⇒ H(�|S = s̃)

≈ H[q(ψ̃)] = − 1
2 ln |∂μ̃μ̃G|

(21)

Here, the conditional precision �(s̃, μ̃) is the inverse of the
conditional covariance �(s̃, μ̃). In short, the entropy of the con-
ditional density and free energy are functions of the conditional
expectations and sensory states. Now that we have (an approxi-
mation to) the equivocation, we can return to its minimization
through prior beliefs.

BAYES-OPTIMAL CONTROL
We can now optimize the hidden controls vicariously through
prior expectations that are fulfilled by action. This can be
expressed in terms of prior expectations about hidden controls.

η̃u(t) = arg min
η̃u∈U

{H[q(ψ̃|μ̃x(t + τ), η̃u)]} (22)

This equation means the agent expects hidden control states
to minimize uncertainty about hidden states in the future—this
is the entropy of the conditional density in the future, which we
will call a counterfactual density. Interestingly, Equations (19) and
(22) say that conditional expectations (about hidden states) max-
imize conditional uncertainty, while prior expectations (about
hidden controls) minimize conditional uncertainty. This means
the posterior and prior beliefs are in opposition, trying to maxi-
mize and minimize uncertainty about hidden states, respectively.
The latter represent prior beliefs that hidden states are sampled
to maximize conditional confidence, while the former minimizes
conditional confidence to ensure the explanation for sensory data
does not depend on particular hidden states—in accord with the
maximum entropy principle (or Laplace’s principle of indiffer-
ence). In what follows, we will refer to the negative entropy of the
counterfactual density as salience; noting that salience is a mea-
sure of confidence about hidden states that depends on how they
are sampled. This means that the agent believes, a priori, that
salient features will be sampled.

SUMMARY AND RELATED PRINCIPLES
To recap, we started with the assumption that biological systems
minimize the dispersion or entropy of states in their external
milieu to ensure a sustainable and homoeostatic exchange with
their environment (Ashby, 1947). Clearly, these states are hidden
and therefore cannot be measured or changed directly. However,
if agents know how their action changes sensations (for example,
if they know contracting certain muscles will necessarily excite
primary sensory afferents from stretch receptors), then they can

minimize the dispersion of their sensory states by countering sur-
prising deviations from expected values. However, reducing the
dispersion of sensory states will only reduce the dispersion of hid-
den states, if the sensory states report the underlying hidden states
faithfully. This faithful reporting requires agents to minimize their
conditional uncertainty about hidden states, through prior beliefs
about the way sensory organs are deployed. This imperative—to
minimize conditional uncertainty—is remarkably consistent with
a number of other constructs, such as Bayesian surprise (Itti and
Baldi, 2009). It is fairly easy to show that maximizing salience is
the same as maximizing Bayesian surprise (Friston et al., 2012a).
This is important because it links salience in the context of
active inference with salience in the theoretical (Humphreys et al.,
2009) and empirical literature (Shen et al., 2011; Wardak et al.,
2011). Here, we will focus on the principle of maximum mutual
information.

Priors about hidden controls express the belief that conditional
uncertainty will be minimal. The long-term average of this con-
ditional uncertainty is the conditional entropy of hidden states,
which can be expressed as the entropy over hidden states minus
the mutual information between hidden and sensory states:

H(�|S) = Et[H(�|S = s̃(t))] = H(�) − I(�; S) (23)

In other words, minimizing conditional uncertainty is equiv-
alent to maximizing the mutual information between external
states and their sensory consequences. This is one instance of the
Infomax principle (Linsker, 1990). Previously, we have considered
the relationship between free energy minimization and the prin-
ciple of maximum mutual information, or minimum redundancy
(Barlow, 1961, 1974; Optican and Richmond, 1987; Oja, 1989;
Olshausen and Field, 1996; Bialek et al., 2001) in terms of the
mapping between hidden and internal states (Friston, 2010). In
this setting, one can show that “the infomax principle is a special
case of the free-energy principle that obtains when we discount
uncertainty and represent sensory data with point estimates of
their causes.” Here, we consider the mapping between external
and sensory states and find that prior beliefs about how sensory
states are sampled further endorse the Infomax principle. In what
follows, we consider the neurobiological implementation of these
principles.

NEUROBIOLOGICAL IMPLEMENTATIONS OF ACTIVE
INFERENCE
In this section, we take the general principles above and consider
how they might be implemented in a (simulated) brain. The equa-
tions in this section may appear a bit complicated; however, they
are based on just four assumptions.

• The brain minimizes the free energy of sensory inputs defined
by a generative model.

• This model includes prior expectations about hidden controls
that maximize salience.

• The generative model used by the brain is hierarchical, non-
linear, and dynamic.

• Neuronal firing rates encode the expected state of the world,
under this model.
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The first assumption is the free energy principle, which leads
to active inference in the embodied context of action. The sec-
ond assumption follows from the arguments of the previous
section. The third assumption is motivated easily by noting
that the world is both dynamic and non-linear and that hier-
archical causal structure emerges inevitably from a separation
of temporal scales (Ginzburg and Landau, 1950; Haken, 1983).
Finally, the fourth assumption is the Laplace assumption that, in
terms of neural codes, leads to the Laplace code that is arguably
the simplest and most flexible of all neural codes (Friston,
2009).

Given these assumptions, one can simulate a whole variety
of neuronal processes by specifying the particular equations that
constitute the brain’s generative model. The resulting perception
and action are specified completely by the above assumptions and
can be implemented in a biologically plausible way as described
below (see Table 1 for a list of previous applications of this
scheme). In brief, these simulations use differential equations that
minimize the free energy of sensory input using a generalized
gradient descent (Friston et al., 2010a).

˙̃μ(t) = Dμ̃(t) − ∂μ̃F(s̃, μ̃)

ȧ(t) = −∂aF(s̃, μ̃)
(24)

Table 1 | Processes and paradigms that have been modeled using the

generalized Bayesian filtering scheme in this paper.

Domain Process or paradigm

Perception Perceptual categorization (bird songs)
(Friston and Kiebel, 2009a,b)

Novelty and omission-related
responses (Friston and Kiebel, 2009a,b)

Perceptual inference (speech) (Kiebel
et al., 2009)

Sensory learning Perceptual learning (mismatch
negativity) (Friston and Kiebel, 2009a,b)

Attention Attention and the Posner paradigm
(Feldman and Friston, 2010)

Attention and biased competition
(Feldman and Friston, 2010)

Motor control Retinal stabilization and oculomotor
reflexes (Friston et al., 2010b)

Saccadic eye movements and cued
reaching (Friston et al., 2010b)

Motor trajectories and place cells
(Friston et al., 2011)

Sensorimotor integration Bayes-optimal sensorimotor integration
(Friston et al., 2010b)

Behavior Heuristics and dynamical systems
theory (Friston and Ao, 2012)

Goal-directed behavior (Friston et al.,
2009)

Action observation Action observation and mirror neurons
(Friston et al., 2011)

These coupled differential equations describe perception and
action, respectively, and just say that internal brain states and
action change in the direction that reduces free energy. The first
is known as generalized predictive coding and has the same form
as Bayesian (e.g., Kalman–Bucy) filters used in time series anal-
ysis; see also Rao and Ballard (1999). The first term in Equation
(24) is a prediction based upon a differential matrix operator D
that returns the generalized motion of the expectation, such that
Dμ̃ = [μ′, μ′′, μ′′′, . . .]T . The second term is usually expressed
as a mixture of prediction errors that ensures the changes in con-
ditional expectations are Bayes-optimal predictions about hidden
states of the world. The second differential equation says that
action also minimizes free energy. The differential equations
above are coupled because sensory input depends upon action,
which depends upon perception through the conditional expec-
tations. This circular dependency leads to a sampling of sensory
input that is both predicted and predictable, thereby minimizing
free energy and surprise.

To perform neuronal simulations under this scheme, it is only
necessary to integrate or solve Equation (24) to simulate the neu-
ronal dynamics that encode conditional expectations and ensuing
action. Conditional expectations depend upon the brain’s gen-
erative model of the world, which we assume has the following
hierarchical form.

s = g(1)(x(1), v(1), u(i)) + ω(1)
v

ẋ(1) = f (1)(x(1), v(1), u(i)) + ω(1)
x

...

v(i−1) = g(i)(x(i), v(i), u(i)) + ω(i)
v

ẋ(i) = f (i)(x(i), v(i), u(i)) + ω(i)
x

...

(25)

This equation is just a way of writing down a model that spec-
ifies a probability density over the sensory and hidden states,
where the hidden states � = X × V × U have been divided into
hidden dynamic, causal, and control states. Here, (g(i), f (i)) are
non-linear functions of hidden states that generate sensory inputs
at the first level. Hidden causes V ⊂ � can be regarded as func-
tions of hidden dynamic states; hereafter, hidden states X ⊂ � .

Random fluctuations (ω
(i)
x ,ω

(i)
v ) on the motion of hidden states

and causes are conditionally independent and enter each level
of the hierarchy. It is these that make the model probabilistic:
they play the role of sensory noise at the first level and induce
uncertainty about states at higher levels. The inverse amplitudes
of these random fluctuations are quantified by their precisions

(�
(i)
x , �

(i)
v ). Hidden causes link hierarchical levels, whereas hid-

den states link dynamics over time. Hidden states and causes are
abstract quantities (like the motion of an object in the field of
view) that the brain uses to explain or predict sensations. In hier-
archical models of this sort, the output of one level acts as an input
to the next. This input can produce complicated (generalized)
convolutions with deep (hierarchical) structure.
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PERCEPTION AND PREDICTIVE CODING
Given the form of the generative model (Equation 25) we can now
write down the differential equations (Equation 24) describing
neuronal dynamics in terms of (precision-weighted) prediction
errors on the hidden causes and states. These errors represent the
difference between conditional expectations and predicted values,
under the generative model (using A · B := ATB and omitting
higher-order terms):

˙̃μ(i)
x = Dμ̃(i)

x + ∂ g̃(i)

∂μ̃
(i)
x

· ξ(i)
v + ∂ f̃ (i)

∂μ̃
(i)
x

· ξ(i)
x − DTξ(i)

x

˙̃μ(i)
v = Dμ̃(i)

v + ∂ g̃(i)

∂μ̃
(i)
v

· ξ(i)
v + ∂ f̃ (i)

∂μ̃
(i)
v

T

· ξ(i)
x − ξ(i+1)

v

˙̃μ(i)
u = Dμ̃(i)

u + ∂ g̃(i)

∂μ̃
(i)
u

· ξ(i)
v + ∂ f̃ (i)

∂μ̃
(i)
u

· ξ(i)
x − ξ(i+1)

u (26)

ξ(i)
x = �(i)

x (Dμ̃(i)
x − f̃ (i)(μ̃(i)

x , μ̃(i)
v , μ̃(i)

u ))

ξ(i)
v = �(i)

v (μ̃(i−1)
v − g̃(i)(μ̃(i)

x , μ̃(i)
v , μ̃(i)

u ))

ξ(i)
u = �(i)

u (μ̃(i−1)
u − η̃(i)

u )

Equation (26) can be derived fairly easily by computing the
free energy for the hierarchical model in Equation (25) and
inserting its gradients into Equation (24). This produces a rel-
atively simple update scheme, in which conditional expecta-
tions are driven by a mixture of prediction errors, where pre-
diction errors are defined by the equations of the generative
model.

It is difficult to overstate the generality and importance of
Equation (26): its solutions grandfather nearly every known sta-
tistical estimation scheme, under parametric assumptions about
additive or multiplicative noise (Friston, 2008). These range
from ordinary least squares to advanced variational deconvolu-
tion schemes. The resulting scheme is called generalized filtering
or predictive coding (Friston et al., 2010a). In neural network
terms, Equation (26) says that error-units receive predictions
from the same level and the level above. Conversely, conditional
expectations (encoded by the activity of state units) are driven
by prediction errors from the same level and the level below.
These constitute bottom–up and lateral messages that drive con-
ditional expectations toward a better prediction to reduce the
prediction error in the level below. This is the essence of recur-
rent message passing between hierarchical levels to optimize
free energy or suppress prediction error: see Friston and Kiebel
(2009a) for a more detailed discussion. In neurobiological imple-
mentations of this scheme, the sources of bottom–up prediction
errors are thought to be superficial pyramidal cells that send
forward connections to higher cortical areas. Conversely, pre-
dictions are conveyed from deep pyramidal cells, by backward
connections, to target (polysynaptically) the superficial pyra-
midal cells encoding prediction error (Mumford, 1992; Friston
and Kiebel, 2009a). Figure 4 provides a schematic of the pro-
posed message passing among hierarchically deployed cortical
areas.

ACTION
In active inference, conditional expectations elicit behavior by
sending top–down predictions down the hierarchy that are
unpacked into proprioceptive predictions at the level of the cra-
nial nerve nuclei and spinal-cord. These engage classical reflex
arcs to suppress proprioceptive prediction errors and produce the
predicted motor trajectory.

ȧ = − ∂

∂a
F = − ∂ s̃

∂a
· ξ(1)

v (27)

The reduction of action to classical reflexes follows because
the only way that action can minimize free energy is to change
sensory (proprioceptive) prediction errors by changing sen-
sory signals; cf., the equilibrium point formulation of motor
control (Feldman and Levin, 1995). In short, active inference
can be regarded as equipping a generalized predictive coding
scheme with classical reflex arcs: see Friston et al. (2009, 2010b)
for details. The actual movements produced clearly depend
upon top–down predictions that can have a rich and complex
structure.

COUNTERFACTUAL PROCESSING
To optimize prior expectations about hidden controls it is neces-
sary to identify those that maximize the salience. We will focus
on visual searches and assume that competing (counterfactual)
prior expectations are represented explicitly in a saliency map.
In other words, we assume that salience is encoded on a grid
corresponding to discrete values of competing prior expectations
associated with different hidden control states. The maximum of
this map defines the prior expectation with the greatest salience.
This prior expectation enters the predictive coding in Equation
(25). The salience of the j-th counterfactual prior expectation is,
from Equations (21) and (22),

η̃u(t) = arg max
η̃j

S(η̃j)

S(η̃j) = 1
2 ln |∂μ̃μ̃G(μ̃x(t + τ), μ̃v(t + τ), η̃j)|

(28)

Given that we will be simulating visual searches with saccadic
eye movements, we will consider the prior expectations to be
updated at discrete times to simulate successive saccades, where
the hidden control states correspond to locations in the visual
scene that attract visual fixation.

SUMMARY
In summary, we have derived equations for the dynamics of per-
ception and action using a free energy formulation of adaptive
(Bayes-optimal) exchanges with the world and a generative model
that is generic and biologically plausible. In what follows, we use
Equations (26), (27), and (28) to simulate neuronal and behav-
ioral responses. A technical treatment of the material above can
be found in Friston et al. (2010a), which provides the details of
the generalized Bayesian filtering scheme used to produce the
simulations in the next section. The only addition to previous
illustrations of this scheme is Equation (28), which maps con-
ditional expectations about hidden states to prior expectations
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FIGURE 4 | Schematic detailing the neuronal architecture that might

encode conditional expectations about the states of a hierarchical

model. This shows the speculative cells of origin of forward driving
connections that convey prediction error from a lower area to a higher area
and the backward connections that construct predictions (Mumford, 1992).
These predictions try to explain away prediction error in lower levels. In
this scheme, the sources of forward and backward connections are
superficial and deep pyramidal cells, respectively. The equations represent

a generalized descent on free-energy under the hierarchical models
described in the main text: see also Friston (2008). State-units are in black
and error-units in red. Here, neuronal populations are deployed
hierarchically within three cortical areas (or macro-columns). Within each
area, the cells are shown in relation to cortical layers: supra-granular (I–III),
granular (IV), and infra-granular (V and VI) layers. For simplicity, conditional
expectations about control states had been absorbed into conditional
expectations about hidden causes.

about hidden controls: it is this mapping that underwrites the
sampling of salient features and appeals to the existence of hidden
control states that action can change. Put simply, this formu-
lation says that action fulfills predictions and we predict that
the consequences of action (hidden control states) minimize our
uncertainty about predictions.

MODELING SACCADIC EYE MOVEMENTS
This section illustrates the theory of the previous section, using
simulations of sequential eye movements. Saccadic eye move-
ments are a useful vehicle to illustrate active inference because
they speak directly to visual search strategies and a wealth
of psychophysical, neurobiological, and theoretical study (e.g.,
Grossberg et al., 1997; Ferreira et al., 2008; Srihasam et al., 2009;
Bisley and Goldberg, 2010; Shires et al., 2010; Tatler et al., 2011;
Wurtz et al., 2011). We will focus on a fairly simple paradigm—
the categorization of faces—and therefore sidestep many of the
deeper challenges of understanding visual searches.

THE GENERATIVE PROCESS
That first thing that we need to do is to define the processes
generating sensory signals as a function of (hidden) states and
action:

sp = xp + ωv,p

sq = g(I, xp) + ωv,q

gi = I(di,1 + xp,1, di,2 + xp,2) · hi (29)

ẋp = a − 1
16 xp + ωx,p

Note that these hidden states are true states that actually
produce sensory signals. These have been written in boldface
to distinguish them from the hidden states assumed by the
generative model (see below). In these simulations, the world
is actually very simple: sensory signals are generated in two
modalities—proprioception and vision. Proprioception, sp ∈ R

2
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reports the center of gaze or foveation as a displacement from
the origin of some extrinsic frame of reference. Inputs in the
visual modality comprise a list sq ∈ R

256 of values over an array
of sensory channels sampling a two-dimensional image or visual
scene I : R

2 → R. This sampling uses a grid of 16 × 16 channels
that samples a small part the image—representing a local high-
resolution (foveal) sampling that constitutes an attentional focus.
To make this sampling more biologically realistic, each channel
was equipped with a center-surround receptive field that samples
a local weighted average of the image. This provides an on-off
center-surround sampling. Furthermore, the signals are modu-
lated by a two-dimensional Hamming function—to model the
loss of precise visual information from the periphery of the visual
field.

The only hidden states in this generative process xp ∈ R
2 are

the center of oculomotor fixation, whose motion is driven by
action and decays with a suitably long time constant of 16 time
bins (were a time bin corresponds to 12 ms). In practice, the
visual scene corresponds to a large grayscale image, where the
i-th visual channel is sampled at location di + xp ∈ R

2. Here,
di ∈ R

2 specifies the displacement of the i-th channel from the
center of the sampling grid. The proprioceptive and visual sig-
nals were effectively noiseless, where there random fluctuations
had a log-precision of 16. The motion of the fixation point was
subject to low amplitude fluctuations with a log-precision of
eight. This completes our description of the process generating
proprioceptive and visual signals for any given action. We now
turn to the model of this process that generates predictions and
action.

THE GENERATIVE MODEL
The model of sensory signals used to specify variational free
energy and consequent action (visual sampling) is slightly more
complicated than the actual process generating data:

sp = xp + ωv,p

sq =
∑

i

exp(xq,i)g(Ii, xp) + ωv,q

ẋp = 1
4 (u − xp) + ωx,p

ẋq = 1 −
∑

i

exp(xq,i) − 1
1024 xq + ωx,p

(30)

As above, proprioceptive signals are just a noisy mapping from
hidden proprioceptive states encoding the direction of gaze. The
visual input is modeled as a mixture of images sampled at a
location specified by the proprioceptive hidden state. This hid-
den state decays with a time constant of four time bins (48 ms)
toward a hidden control state. In other words, the hidden control
determines the location that attracts gaze.

The visual input depends on a number of hypotheses or inter-
nal images Ii : R

2 → R : i ∈ {1, . . . N} that constitute the agent’s
prior beliefs about what could cause its visual input. In this paper,
we use N = 3 hypotheses. The input encountered at any partic-
ular time is a weighted mixture of these internal images, where

the weights correspond to hidden perceptual states. The dynam-
ics of these perceptual states (last equality above) implement a
form of dynamic softmax—in the sense that the solution of their
equations of motion ensures the weights sum (approximately) to
one:

ẋq = 0 ⇒
∑

i

exp(xq,i) ≈ 1 (31)

This means we can interpret exp(xq,i) as the (softmax) prob-
ability that the i-th internal image or hypothesis is the cause of
visual input. The decay term (with a time constant of 512 time
bins) just ensures that perceptual states decay slowly to the same
value, in the absence of perceptual fluctuations.

In summary, given hidden proprioceptive and perceptual
states the agent can predict its proprioceptive and visual input.
The generative model is specified by Equation (17) and the preci-
sion of the random fluctuations that determine the agent’s prior
certainty about sensory inputs and the motion of hidden states.
In the examples below, we used a log-precision of eight for pro-
prioceptive sensations and the motion of hidden states. We let the
agent believe its visual input was fairly noisy, with a log-precision
of four. In practice, this means it is more likely to change its (less
precise) posterior beliefs about the causes of visual input to reduce
prediction error, as opposing to adjusting its (precise) posterior
beliefs about where it is looking.

PRIORS AND SALIENCY
To simulate saccadic eye movements, we integrated the active
inference scheme for 16 time bins (196 ms) and then computed
a map of salience to reset the prior expectations about the hidden
control states that attract the center of gaze. Salience was com-
puted for 1024 = 32 × 32 locations distributed uniformly over
the visual image or scene. The prior expectation of the hidden
control state was the location that maximized salience, according
to Equation (28). The ensuing salience over the 32 × 32 locations
constitutes a salience map that drives the next saccade. Notice that
salience is a function of, and only of, fictive beliefs about the state
of the world and essentially tells the agent where to look next.

Figure 5 provides a simple illustration of salience based upon
the posterior beliefs or hypothesis that local (foveal) visual inputs
are caused by an image of Nefertiti. The left panels summaries the
classic results of the Yarbus (1967); in terms of a stimulus and the
eye movements it elicits. The right panels depict visual input after
sampling the image on the right with center-surround receptive
fields and the associated saliency map based on a local sampling
of 16 × 16 pixels, using Equation (21). Note how the receptive
fields suppress absolute levels of luminance contrast and high-
light edges. It is these edges that inform posterior beliefs about
the content of the visual scene and where it is being sampled.
This information reduces conditional uncertainty and is there-
fore salient. The salient features of the image include the ear,
eye, and mouth. The location of these features and a number
of other salient locations appear to be consistent with the loca-
tions that attract saccadic eye movements (as shown on the right).
Crucially, the map of salience extends well beyond the field of
view (circle on the picture). This reflects the fact that salience is
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FIGURE 5 | This provides a simple illustration of salience based upon

the posterior beliefs or hypothesis that local (foveal) visual inputs

are caused by an image of Nefertiti. The left panels summaries the
classic results of the Yarbus; in terms of a stimulus and the eye
movements it elicits. The right panels depict visual input after sampling
the image on the right (using conventional center surround receptive
fields) and the associated saliency map based on a local sampling of

16 × 16 pixels, using the generative model described in the main text.
The size of the resulting field of view, in relation to the visual scene, is
indicated with the circle on the left image. The key thing to note here is
that the salient features of the image include the ear, eye, and mouth.
The location of these features and other salient locations appear to be
consistent with the locations that attract saccadic eye movements (as
shown on the right).

not an attribute of what is seen, but what might be seen under a
particular hypothesis about the causes of sensations.

To make the simulations a bit more realistic, we added a fur-
ther prior implementing inhibition of return (Itti and Koch, 2001;
Wang and Klein, 2010). This involved suppressing the salience
of locations that have been recently foveated, using the following
scheme:

Sk = Sk − (Sk × Rk−1)

Rk = ρ(Sk) + 1
2 Rk−1

(32)

Here, Sk = S(η̃j) − min(S(η̃j)) is the differential salience for
the k-th saccade and Rk is an inhibition of return map that
remembers recently foveated locations. This map reduces the
salience of previous locations if they were visited recently. The
function ρ(Sk) ∈ [0, 1] is a Gaussian function (with a standard
deviation of 1/16 of the image size) of the distance from the
location of maximum salience that attracts the k-th saccade. The
addition of inhibition of return ensures that a new location is
selected by each saccade and can be motivated ethologically by
prior beliefs that the visual scene will change and that previous
locations should be revisited.

FUNCTIONAL ANATOMY
Figure 6 provides an intuition as to how active inference under
salience priors might be implemented in the brain. This schematic
depicts a particular instance of the message passing scheme in
Figure 4, based on the generative model above. This model pre-
scribes a hierarchical form for generalized predictive coding;
shown here in terms of state and error units (black and red,
denoting deep and superficial pyramidal cell populations, respec-
tively) that have been assigned to different cortical or subcortical
regions. The insert on the left shows a visual scene (a picture
of Nefertiti) that can be sampled locally by foveating a partic-
ular point—the true hidden state of the world. The resulting
visual input arrives in primary visual cortex to elicit prediction

errors that are passed forward to “what” and “where” streams
(Ungerleider and Mishkin, 1982). State units in the “what” stream
respond by adjusting their representations to provide better pre-
dictions based upon a discrete number of internal images or
hypotheses. Crucially, the predictions of visual input depend
upon posterior beliefs about the direction of gaze, encoded by
the state units in the “where” stream (Bisley and Goldberg,
2010). These posterior expectations are themselves informed by
top–down prior beliefs about the direction of gaze that maxi-
mizes salience. The salience map shown in the center is updated
between saccades based upon conditional expectations about
the content of the visual scene. Conditional beliefs about the
direction of gaze provide proprioceptive predictions to the ocu-
lomotor system in the superior colliculus and pontine nuclei,
to elaborate a proprioceptive prediction error (Grossberg et al.,
1997; Shires et al., 2010; Shen et al., 2011). This prediction
error drives the oculomotor system to fulfill posterior beliefs
about where to look next. This can be regarded as an instance
of the classical reflects arc, whose set point is determined by
top–down proprioceptive predictions. The anatomical designa-
tions should not be taken seriously (for example, the salience
map may be assembled in the pulvinar or frontal cortex and
mapped to the deep layer of the superior colliculus). The impor-
tant thing to take from this schematic is the functional logic
implied by the anatomy that involves reciprocal message pass-
ing and nested loops in a hierarchical architecture that is not
dissimilar to circuits in the real brain. In particular, note that
representations of hidden perceptual states provide bilateral top–
down projections to early visual system is (to predict visual input)
and to the systems computing salience, which might involve the
pulvinar of the thalamus (Wardak et al., 2011; Wurtz et al.,
2011).

SIMULATING SACCADIC EYE MOVEMENTS
Figure 7 shows the results of a simulated visual search, in which
the agent had three internal images or hypotheses about the scene
it might sample (an upright face, an inverted face, and a rotated
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FIGURE 6 | This schematic depicts a particular instance of the message

passing scheme in Figure 4. This example follows from the generative
model of visual input described in the main text. The model prescribes a
particular hierarchical form for generalized predictive coding; shown here in
terms of state and error units (black and red, respectively) that have been
assigned to different cortical or subcortical regions. The insert on the left
shows a visual scene (a picture of Nefertiti) that can be sampled locally by
foveating a particular point—the true hidden state of the world. The
resulting visual input arrives in primary visual cortex to elicit prediction
errors that are passed forward to what and where streams. State units in
the “what” stream respond by adjusting their representations to provide
better predictions based upon a discrete number of internal images or
hypotheses. Crucially, the predictions of visual input depend upon posterior
beliefs about the direction of gaze encoded by state units in the “where”
stream. These conditional expectations are themselves informed by

top–down prior beliefs about the direction of gaze that maximizes salience.
The salience map shown in the center is updated between saccades
based upon posterior beliefs about the content of the visual scene.
Posterior beliefs about the content of the visual scene provide predictions
of visual input and future hidden states subtending salience. Posterior
beliefs about the direction of gaze are used to form predictions of visual
input and provide proprioceptive predictions to the oculomotor system in
the superior colliculus and pontine nuclei, to elaborate a proprioceptive
prediction error. This prediction error drives the oculomotor system to fulfill
posterior beliefs about where to look next. This can be regarded as an
instance of the classical reflects arc, whose set point is determined by
top–down proprioceptive predictions. The variables associated with each
region are described in detail in the text, while the arrows connecting
regions adopt same format as in Figure 4 (forward prediction error
afferents in red and backward predictions in black).

face). The agent was presented with an upright face and its poste-
rior expectations were evaluated over 16 (12 ms) time bins, after
which salience was evaluated. The agent then emitted a saccade by
foveating the most salient location during the subsequent 16 time
bins—from its starting location (the center of the visual field).
This was repeated for eight saccades. The upper row shows the
ensuing eye movements as red dots (in the extrinsic coordinates
of the true scene) at the fixation point of each saccade. The cor-
responding sequence of eye movements are shown in the insert
on the upper left, where the red circles correspond roughly to the
agent’s field of view. These saccades were driven by prior beliefs
about the direction of gaze based upon the salience maps in the
second row. Note that these maps change with successive saccades
as posterior beliefs about the hidden perceptual states become

progressively more confident. Note also that salience is depleted
in locations that were foveated in the previous saccade—this
reflects the inhibition of return. Posterior beliefs about hidden
states provide visual and proprioceptive predictions that suppress
visual prediction errors and drive eye movements, respectively.
Oculomotor responses are shown in the third row in terms of the
two hidden oculomotor states corresponding to vertical and hor-
izontal displacements. The portions of the image sampled (at the
end of each saccade) are shown in the fourth row (weighted by the
Hamming function above). The final two rows show the poste-
rior beliefs in terms of their sufficient statistics (penultimate row)
and the perceptual categories (last row), respectively. The poste-
rior beliefs are plotted here in terms of posterior expectations and
90% confidence interval about the true stimulus. The key thing
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FIGURE 7 | This figure shows the results of a simulation, in which a

face was presented to an agent, whose responses were simulated

using the optimal inference scheme described in the main text. In this
simulation, the agent had three internal images or hypotheses about the
stimuli it might sample (an upright face, an inverted face, and a rotated
face). The agent was presented with an upright face and its conditional
expectations were evaluated over 16 (12 ms) time bins until the next
saccade was emitted. This was repeated for eight saccades. The ensuing
eye movements are shown as red dots at the location (in extrinsic
coordinates) at the end of each saccade in the upper row. The
corresponding sequence of eye movements is shown in the insert on the
upper left, where the red circles correspond roughly to the proportion of
the image sampled. These saccades are driven by prior beliefs about the
direction of gaze based upon the saliency maps in the second row. Note
that these maps change with successive saccades as posterior beliefs
about the hidden states, including the stimulus, become progressively

more confident. Note also that salience is depleted in locations that were
foveated in the previous saccade. These posterior beliefs provide both
visual and proprioceptive predictions that suppress visual prediction errors
and drive eye movements, respectively. Oculomotor responses are shown
in the third row in terms of the two hidden oculomotor states
corresponding to vertical and horizontal displacements. The associated
portions of the image sampled (at the end of each saccade) are shown in
the fourth row. The final two rows show the posterior beliefs in terms of
their sufficient statistics and the stimulus categories, respectively. The
posterior beliefs are plotted here in terms of conditional expectations and
the 90% confidence interval about the true stimulus. The key thing to note
here is that the expectation about the true stimulus supervenes over its
competing expectations and, as a result, conditional confidence about the
stimulus category increases (the confidence intervals shrink to the
expectation). This illustrates the nature of evidence accumulation when
selecting a hypothesis or percept the best explains sensory data.

to note here is that the expectation about the true stimulus super-
venes over its competing representations and, as a result, posterior
confidence about the stimulus category increases (the posterior
confidence intervals shrink to the expectation): see Churchland
et al. (2011) for an empirical study of this sort phenomena. The

images in the lower row depict the hypothesis selected; their
intensity has been scaled to reflect conditional uncertainty, using
the entropy (average uncertainty) of the softmax probabilities.

This simulation illustrates a number of key points. First, it
illustrates the nature of evidence accumulation in selecting a

Frontiers in Neurorobotics www.frontiersin.org November 2012 | Volume 6 | Article 11 | 20

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Friston et al. Value and evidence

hypothesis or percept the best explains sensory data. One can see
that this proceeds over two timescales; both within and between
saccades. Within-saccade accumulation is evident even during
the initial fixation, with further stepwise decreases in uncertainty
as salient information is sampled. The within-saccade accumu-
lation is formally related to evidence accumulation as described
in models of perceptual discrimination (Gold and Shadlen, 2003;
Churchland et al., 2011). This is reflected in the progressive eleva-
tion of the correct perceptual state above its competitors and the
consequent shrinking of the posterior confidence interval. The
transient changes in the posterior beliefs, shortly after each sac-
cade, reflect the fact that new data are being generated as the eye
sweeps toward its new target location. It is important to note that
the agent is not just predicting visual contrast, but also how con-
trast changes with eye movements—this induces an increase in
conditional uncertainty (in generalized coordinates of motion)
during the fast phase of the saccade. However, due to the veracity
of the posterior beliefs, the conditional confidence shrinks again
when the saccade reaches its target location. This shrinkage is
usually to a smaller level than in the previous saccade.

This illustrates the second key point; namely, the circular
causality that lies behind perception. Put simply, the only hypoth-
esis that can endure over successive saccades is the one that
correctly predicts the salient features that are sampled. This sam-
pling depends upon action or an embodied inference that speaks
directly to the notion of active vision or visual palpation (O’Regan
and Noë, 2001; Wurtz et al., 2011). This means that the hypoth-
esis prescribes its own verification and can only survive if it is a
correct representation of the world. If its salient features are not
discovered, it will be discarded in favor of a better hypothesis.
This provides a nice perspective on perception as hypothesis test-
ing, where the emphasis is on the selective processes that underlie
sequential testing. This is particularly pertinent when hypothe-
ses can make predictions that are more extensive than the data
available at any one time.

Finally, although the majority of saccades target the eyes and
nose, as one might expect, there is one saccade to the forehead.
This is somewhat paradoxical, because the forehead contains no
edges and cannot increase posterior confidence about a face.
However, this region is highly informative under the remaining
two hypotheses (corresponding to the location of the nose in the
inverted face and the left eye in the rotated face). This sublimi-
nal salience is revealed through inhibition of return and reflects
the fact that the two competing hypotheses have not been com-
pletely excluded. This illustrates the competitive nature of percep-
tual selection induced by inhibition of return and can regarded,
heuristically, as occasional checking of alternative hypotheses.
This is a bit like a scientist who tries to refute his hypothesis by
acquiring data that furnish efficient tests of his competing or null
hypotheses.

CONCLUSION
This ideas reviewed in this paper suggest that the reward or cost-
functions that underlie value in conventional (normative) models
of optimal control can be cast as prior beliefs about future states,
which are disclosed through active inference. In this setting, value
becomes the evidence for generative models of our world—and

valuable behavior is nothing more or less than accumulating evi-
dence for our embodied models, through Bayesian updating of
posterior beliefs. Subsequently, we saw that prior beliefs about
future states are simply those that minimize the uncertainty of
posterior beliefs. In this general formulation, we can understand
exploration of the sensorium in terms of optimality principles
based on ergodic or homoeostatic principles. In other words,
to maintain the constancy of our external milieu, it is sufficient
to expose ourselves to predicted and predictable stimuli. Being
able to predict current observations also enables us to predict fic-
tive sensations that we could experience from another viewpoint;
where the best viewpoint is the one that confirms our predic-
tions with the greatest precision or certainty. In short, action
fulfills our predictions, while we predict the consequences of
our actions will minimize uncertainty about those predictions.
This provides a principled way in which to sample the world;
for example, with visual searches using saccadic eye movements.
These theoretical considerations are remarkably consistent with
a number of compelling heuristics; most notably the Infomax
principle or the principle of minimum redundancy, signal detec-
tion theory and formulations of salience in terms of Bayesian
surprise.

An interesting perspective on active inference and embodied
perception emerges from these considerations, in which percepts
are selected through a form of circular causality: in other words,
only the correct perceptual hypothesis can survive the cycle of
action and perception, when the percept is used to predict where
to look next. If the true state of the world and the current hypoth-
esis concur, then the percept can maintain itself by selectively
sampling evidence for its own existence. This provides an embod-
ied (enactivist) explanation for perception that fits comfortably
with the notion of visual sniffing or palpation (O’Regan and Noë,
2001; Wurtz et al., 2011). Furthermore, it resonates with neuro-
dynamic accounts of self-generated behavior in a robotics context
(Namikawa et al., 2011).

The arguments in this paper have been inspired by devel-
opments in theoretical neurobiology and machine learning.
However, it is interesting to consider parallel developments in
neurorobotics. Two decades ago most neurorobotics employed
simple architectures with sensory-motor mappings implemented
by perceptron-type networks and supervised learning; for exam-
ple, the supervised learning of driving skills in robot cars
(Pomerleau, 1991). In principle, active inference provides a for-
malism to revisit these sorts of problems using self-supervised
schemes based upon deep hierarchical models. The usefulness of
hierarchical schemes has been demonstrated by Morimoto and
Doya, who show how a robot can stand up using hierarchical rein-
forcement learning (Morimoto and Doya, 2001). Furthermore,
the idea of forward (predictive) modeling is now established in
neurorobotics: Schaal (1997) has shown how learning a predictive
forward model is beneficial in imitation learning, while Tani and
Nolfi (1999) show how prediction error can be used to recognize
self-generated behavior using a hierarchically organized mixture
of predictive expert networks. There are clear parallels here with
active inference under hierarchical generative (forward) mod-
els that suggest a theoretical convergence of neurobiology and
neurorobotics. One can imagine exploiting the fairly simple and
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principled optimization schemes provided by free energy mini-
mization to elaborate robots with deep hierarchical models, were
these models that generally entail a separation of temporal scales
and context sensitive behavior. On a more general note, active
inference may provide a formal framework that connects the
compelling work in neurorobotics on imitation and action obser-
vation to some of the highest level questions that currently pre-
occupy psychologists and cognitive neuroscientists—particularly
those people interested in psychopathology and its mechanistic
underpinnings.

The treatment of optimality in this paper has focused on the
nature of value and its relationship to evidence. There are many
other important issues that we have glossed over; such as the
acquisition or learning of models. For example, as noted by one
of our reviewers: “Many traditional (alternate) methods would be
capable of arriving at optimal policies despite limitations in the
model, owing to the properties of the approximation procedures.
In the authors’ proposal, the underlying generative model would
need to capture the necessary dynamics through the definition of
the priors and model structure (which the authors note may be
learnt separately at a higher level). Do we know that this internal
model can be learnt, in a tractable form given what can be known
about the task? Do we know if the solutions to the two cases will
be similar?”

In one sense, traditional methods are not necessarily alterna-
tive methods, because optimal policies can be cast as prior beliefs.
In other words, the current framework just allows one to con-
vert optimal control problems into pure inference problems. The
motivation for this is to understand where prior beliefs (opti-
mal policies) come from in a hierarchical setting. The hierarchical
aspect is important because this necessarily induces empirical
priors, which means that cost functions can themselves be opti-
mized in relation to model evidence. This is illustrated nicely
in the context of learning and model selection: a fuller treat-
ment would show that the parameters of any given model can be
learned in a Bayes optimal fashion by minimizing variational free
energy (Friston, 2008). Furthermore, the model itself can also be
optimized with respect to variational free energy, in exactly the
same way that Bayesian model selection operates in data analy-
sis. This hierarchical optimization may provide a nice metaphor
for understanding selection at a neurodevelopmental or evolu-
tionary timescale (Friston et al., 2006). Crucially, because we are
dealing with approximate Bayesian inference, the models selected
will necessarily be approximations and provide the simplest (most
parsimonious) explanations for sampled outcomes. In answer to
the reviewer’s questions, any extant phenotype is an existence
proof that its particular (approximate) model can be learnt. The
question about the uniqueness of models is a bit more subtle—
in the sense that (in active inference) models create their own
data. This means that each phenotype may be a uniquely optimal
model for its own sensorium but not that of another phenotype.
These are clearly very important issues, which motivate the work
reviewed in this paper.

The ideas described in this paper try to go beyond the for-
mal similarity between optimal control and Bayesian inference
schemes to suggest that optimal control is a special case of Bayes-
optimal inference and that inference is the hard problem. In this

setting, optimality reduces to sampling states prescribed by the
priors of a generative model that specifies state transitions. So
what are the practical advantages of casting optimal control as
inference? In Friston et al. (2012b) we summarized the advantages
of active inference as providing:

• A tractable approximate solution to any stochastic, non-
linear optimal control problem to the extent that stan-
dard (variational) Bayesian procedures exist. Variational or
approximate Bayesian inference is well-established in statis-
tics and data assimilation because it finesses many of
the computational problems associated with exact Bayesian
inference.

• The opportunity to learn and infer environmental constraints
in a Bayes-optimal fashion; particularly the parameters of
equations of motion and amplitudes of observation and hidden
state noise.

• The formalism to handle system or state noise: currently, opti-
mal control schemes are restricted to stochastic control (i.e.,
random fluctuations on control as opposed to hidden states).
One of the practical advantages of active inference is that
fluctuations in hidden states are modeled explicitly, rendering
control robust to exogenous perturbations.

• The specification of control costs in terms of priors on control,
with an arbitrary form: currently, most approximate stochas-
tic optimal control schemes are restricted to quadratic control
costs. In classical schemes that appeal to path integral solutions
there are additional constraints that require control costs to be
a function of the precision of control noise; e.g., Theodorou
et al. (2010) and Braun et al. (2011). These constraints are not
necessary in active inference.

The disadvantage of active inference is that one cannot pre-
scribe optimality in terms of cost functions, because (Bayes)
optimal behavior rests on a generative model that is speci-
fied by its likelihood and prior functions. Having said this, for
every Bayes-optimal policy there is an associated cost function
(Friston and Ao, 2012). Perhaps the most important advantage
of active inference—for practical applications—is its simplicity
and robustness. It simplicity stems from the fact that one only
has to specify desired movements or trajectories in terms of prior
beliefs (equations of motion in the generative model) as opposed
to desired endpoints of movement (which requires the solution of
a generally intractable optimal control problem). The robustness
follows from the context sensitivity of active inference schemes
and their ability to handle unpredicted (random) fluctuations or
indeed changes in the motor plant—see Friston et al. (2010b).
Finally, treating control problems as inference problems allows
one to exploit the advances made in approximate Bayesian infer-
ence and model selection. A nice example here would be the
hierarchal optimization of control architectures using Bayesian
model selection and free energy as an approximation to log model
evidence. This strategy is now used routinely to select among
thousands of models within a few seconds (Friston and Penny,
2011) but has only been applied in a data analysis setting. In prin-
ciple, these Bayesian procedures could also be used in a control
setting.
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In summary, we have tried to formalize the intuitive notion
that our interactions with the world are akin to sensory
experiments, by which we confirm our hypotheses about its
causal structure in an optimal and efficient fashion. This man-
dates prior beliefs that the deployment of sensory epithelia
and our physical relationship to the world will disclose its
secrets—beliefs that are fulfilled by action. The resulting active
or embodied inference means that not only can we regard

perception as hypothesis testing, but we could regard action
as performing experiments that confirm or disconfirm those
hypotheses.
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