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In the past decade the importance of synchronized dynamics in the brain
has emerged from both empirical and theoretical perspectives. Fast dy-
namic synchronous interactions of an oscillatory or nonoscillatory nature
may constitute a form of temporal coding that underlies feature bind-
ing and perceptual synthesis. The relationship between synchronization
among neuronal populations and the population �ring rates addresses
two important issues: the distinction between rate coding and synchro-
nization coding models of neuronal interactions and the degree to which
empirical measurements of population activity, such as those employed
by neuroimaging, are sensitive to changes in synchronization. We exam-
ined the relationship between mean population activity and synchroniza-
tion using biologically plausible simulations. In this article, we focus on
continuous stationary dynamics. (In a companion article, Chawla (forth-
coming), we address the same issue using stimulus-evoked transients.) By
manipulating parameters such as extrinsic input, intrinsic noise, synap-
tic ef�cacy, density of extrinsic connections, the voltage-sensitive nature
of postsynaptic mechanisms, the number of neurons, and the laminar
structure within the populations, we were able to introduce variations
in both mean activity and synchronization under a variety of simulated
neuronal architectures. Analyses of the simulated spike trains and local
�eld potentials showed that in nearly every domain of the model’s pa-
rameter space, mean activity and synchronization were tightly coupled.
This coupling appears to be mediated by an increase in synchronous
gain when effective membrane time constants are lowered by increased
activity. These observations show that under the assumptions implicit in
our models, rate coding and synchrony coding in neural systems with
reciprocal interconnections are two perspectives on the same underlying
dynamic. This suggests that in the absence of speci�c mechanisms de-
coupling changes in synchronization from �ring levels, indexes of brain
activity that are based purely on synaptic activity (e.g., functional mag-
netic resonance imaging) may also be sensitive to changes in synchronous
coupling.
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1 Introduction

This article is about the relationship between fast dynamic interactions
among neuronal populations and measures of neuronal activity that are
integrated over time (e.g., functional neuroimaging). In particular, we ad-
dress the question, “Can anything be inferred about fast coherent or phasic
interactions based on averaged macroscopic observations of population ac-
tivity?” This question is important because a de�nitive answer would point
to ways in which data from functional neuroimaging might be related to
electrophysiological �ndings, particularly those based on multiunit elec-
trode recordings of separable spike trains.

The basic hypothesis behind this work is that fast dynamic interactions
between two units in distinct populations are a strong function of the macro-
scopic dynamics of the populations to which the units belong. In other
words, the coupling between the two neurons, re�ected in their coherent
activity over a time scale of milliseconds, cannot be divorced from the con-
text in which these interactions occur. This context is determined by the
population dynamics expressed over thousands of neurons and extended
periods of time. More speci�cally, on the basis of previous theoretical and
empirical work (Abeles, 1982; Aertsen & Preissl, 1990; Lumer, Edelman, &
Tononi, 1997a, b), we conjectured that the degree of phase locking, or more
generally synchronization, between units in two populations, would co-
vary with the average activity in both populations. Our aim was to test this
hypothesis using biologically plausible simulations over a large range of
parameters specifying the physiological and anatomical architecture of the
model. In this article we report simulations that address the relationship
between mean activity and synchronization during relatively steady-state
dynamics following the onset of continuous input lasting for a few sec-
onds. (In a subsequent article, we will address the same issue using evoked
transients and dynamic correlations at different levels of mean activity.)

Many aspects of functional integration and feature linking in the brain
are thought to be mediated by synchronized dynamics among neuronal
populations. In the brain, synchronization may re�ect the direct, reciprocal
exchange of signals between two populations, whereby the activity in one
population affects the activity in the second, such that the dynamics become
entrained and mutually reinforcing, leading to synchronous discharges. In
this way, the binding of different features of an object may be accomplished,
in the temporal domain, through the transient synchronization of oscillatory
responses (Milner, 1974; von der Malsburg, 1981; Sporns, Tononi, & Edel-
man, 1990). Physiological evidence has been generally compatible with this
theory (Engel, Konig, Kreither, & Singer, 1991). It has been shown that syn-
chronization of oscillatory responses occurs within as well as between visual
areas, for example, between homologous areas of the left and right hemi-
spheres and between remote areas in the same hemisphere at different levels
of the visuomotor pathway (Gray, Engel, Konig, & Singer, 1990; Engel et al.,
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1991; Konig, Engel, & Singer, 1995;Roelfsema, Engel, Konig, & Singer, 1997).
Synchronization in the visual cortex appears to depend on stimulus proper-
ties such as continuity, orientation similarity and motion coherency (Gray,
Konig, Engel, & Singer, 1989; Engel, Konig, Kreiter, Gray, & Singer, 1990;
Freiwald, Kreiter, & Singer, 1995). It would therefore seem that synchro-
nization provides a suitable mechanism for the binding of distributed fea-
tures of a pattern and thus contributes to the segmentation of visual scenes
and �gure-ground segregation. More generally, synchronization may pro-
vide a powerful mechanism for establishing dynamic cell assemblies that
are characterized by the phase and frequency of their coherent oscillations.
Accordingly, the effective connectivity among different populations can be
modulated in a context-sensitive way by synchronization-related mecha-
nisms. Taken together, these considerations indicate that synchronization is
an important aspect of neuronal dynamics.

The aim of this study was to see if population synchrony bears some
relationship to overall activity levels. We used physiologically based neu-
ronal networks comprising two simulated brain areas to look at how the
level of neuronal activity affects the degree of phase locking between the
two populations and vice versa. We used two models. The �rst had a fairly
realistic laminar architecture but simpli�ed dynamics. The second had a
simple architecture but detailed (Hodgkin-Huxley) dynamics. By modify-
ing different parameters, such as synaptic ef�cacy, the density of extrinsic
connections, the voltage-sensitive nature of postsynaptic mechanisms, the
number of neurons, and the laminar structure within the neuronal popula-
tions, we were able to model a broad range of different architectures. For
each architecture, we induced changes in the mean activity and synchro-
nization among simulated populations by manipulating extrinsic input (or
equivalently intrinsic noise). Analyses of the simulated spike trains and local
�eld potentials showed that in almost all regions of the model’s parameter
space, mean activity and synchronization were tightly coupled.

2 Methods

2.1 Integrate and Fire Model. The �rst component of this study looked
at the behavior of two reciprocally connected cortical areas. Each cortical
area was divided into three laminae corresponding to the supra- and in-
fragranular layers and layer 4 (see Figure 1a). This laminar organization
is consistent with known cortical anatomy (Felleman & Van Essen, 1991).
Each layer contained 400 excitatory cells and 100 inhibitory cells. Intralam-
inar connections had a density of 10% and included both excitatory and in-
hibitory connections (with AMPA and GABAa synapses, respectively). The
supragranular cells also expressed modulatory NMDA and slow GABAb
synapses. The pattern of interlayer connections can be seen in Figure 1a. In-
terlaminar connections were 7.5% and excitatory. GABAb connections were
also implemented from the supragranular layer to the other two layers to
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Figure 1: Architecture of the �rst model. (a) A schematic showing the connectiv-
ity structure within one cortical region. (b) Two cortical regions where the �rst
cortical area provides driving input to the second, and the second cortical area
provides modulatory input to the �rst. In these diagrams SG, L4, and IG refer
to supragranular layers, layer 4, and infragranular layers, respectively. D and
M refer to driving (AMPA) and modulatory (NMDA) connections respectively.

represent double-bouquet cells (Conde, Lund, Jacobwitz, Baimbridge, &
Lewis, 1994; Kawaguchi, 1995). Our ratio of interlayer /intralayer connec-
tions approximated the 45% /28% ratio reported in the cat striate cortex
(Ahmed, Anderson, Douglas, Martin, & Nelson, 1994).

Feedforward connections between cortical areas (see Figure 1b) were 5%,
from the supragranular excitatory cells in the �rst cortical area to the AMPA
synapses of layer 4 cells in the second cortical area. Feedback connections
were 5%, from the infragranular excitatory cells of the second cortical area to
the modulatory NMDA synapses of supragranular cells in the �rst cortical
area. The synapse-to-neuron ratio in this model was consistent with experi-
mental �ndings (Beaulieu & Colonnier, 1983, 1985). The extrinsic, interareal
connections were exclusively excitatory. This is consistent with known neu-
roanatomy where, in the real brain, long-range connections that traverse
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white matter are almost universally glutaminergic and excitatory. The ex-
citatory extrinsic connections between the neuronal populations targeted
both excitatory and inhibitory neurons within each population. These tar-
get neurons are randomly allocated to the excitatory afferent in proportion
to the percentage of each cell type. This results in extrinsic connections tar-
geting preferentially excitatory cells, which is consistent with the empirical
data (Domenici, Harding, & Burkhalter, 1996; Johnson & Burkhalter, 1996).
The anatomy used in this model was consistent with Lumer et al. (1997a)
and has been tested against empirical data (Sukov & Barth, 1998).

Individual neurons, both excitatory and inhibitory, were modeled as
single-compartment, integrate-and-�re units (see the appendix, model 1).
Synaptic channels were modeled as fast AMPA and slow NMDA for ex-
citatory and fast GABAa and slow GABAb for inhibitory channels (Stern,
Edwards, & Sakmann, 1992;Otis & Mody, 1992;Otis, Konick, & Mody, 1993).
These synaptic in�uences were modeled using dual exponential functions,
with the time constants and reversal potentials taken from the experimen-
tal literature (see Lumer et al., 1997a, for the use and justi�cation of similar
parameters to those used in the present model). Adaptation was imple-
mented in each excitatory cell by simulating a GABAb input from the cell
onto itself. Adaptation is an important feature of neocortical cell behavior,
and it has been observed consistently that repetitive cell stimulation pro-
duces a progressive and reversible decrease of spontaneous depolarizations
and a decrease in �ring rate (Calabresi, Mercuri, Stefani, & Bernardi, 1990;
Lorenzon & Foehring, 1992). Implementing slow GABAb inhibitory inputs
from each cell onto itself emulates this effect. Transmission delays for indi-
vidual connections were sampled from a noncentral gaussian distribution.
Intra-area delays had a mean of 2 ms and a standard deviation of 1 ms and
interarea delays had a mean and standard deviation of 5 ms and 1 ms, re-
spectively. A continuous random noisy input was provided to all units in
layer 4 of the �rst area. Variations in this input were used to induce changes
in mean activity and synchronization.

2.2 Model Based on the Hodgkin-Huxley Formalism. Once we had
characterized the relationship between phase locking and �ring rate in the
model above, we tried to replicate our results over a much larger parameter
space within the framework of a simpler model consisting of two areas, each
containing 100 cells that were 90% intrinsically connected. Due to the com-
paratively small number of cells used in this model, such a high connection
density gives a similar synapse-to-neuron ratio as in the previous model. In
this second component of our study, individual neurons were modeled as
single-compartment units. Spikegeneration in these units was implemented
according to the Hodgkin-Huxley formalism for the activation of sodium
and potassium transmembrane channels. This facilitated a more detailed
and biologically grounded analysis of effective membrane time constants
(see below). Speci�c equations governing these channel dynamics can be
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found in the appendix (model 2). In addition, synaptic channels provided
fast excitation and inhibition. These synaptic in�uences were modeled us-
ing exponential functions, with the time constants and reversal potentials
for AMPA (excitation) and GABAa (inhibition) receptor channels speci�ed
as in the previous model. Cells were 20% inhibitory and 80% excitatory
(Beaulieu, Kisvarday, Somogyi, & Cynader, 1992). Reciprocal extrinsic (in-
terarea) connections were all excitatory. Transmission delays for individual
connections were sampled from a noncentral gaussian distribution, with
means and standard deviations as given in the �rst model. A continuous
random noisy input was provided to all units in one of the two areas (area 1).
In some simulations, the mean interarea delay was increased to 8 ms to
mimic a greater separation between the areas. In other simulations, excita-
tory NMDA synaptic channels were incorporated. These NMDA channels
were used only in the feedback connections.

2.3 Data Analysis. The neuronal dynamics from both models were an-
alyzed with the cross-correlation-function between time series from two ar-
eas, after subtraction of the shift predictor (Nowak, Munk, Nelson, James,
& Bullier, 1995). We used the time series of the number of cells spiking per
millisecond (in each population) as well as the mean membrane potential
or local �eld potential of each population. We ran the model for 2 seconds
of simulated time, eight times. The cross-correlation between the �rst time
series (eight runs in order) and a second time series, constituting eight runs
in a random order, constituted our shift predictor.The shift predictor re�ects
phase locking due only to transients locked to the onset of each stimulation.

As a measure of the level of phase locking between the two popula-
tions, we used the peak cross-correlation following correction. This sepa-
rates stimulus-related phase locking from that due purely to neuronal in-
teractions, allowing us to see how phase locking due to the interactions
between the two neuronal populations varied as a function of activity level.

The measure of phase locking given above is effectively a measure of
the functional connectivity between the two areas. Functional connectiv-
ity has been de�ned as the correlation between two neurophysiological
time series, whereas effective connectivity refers to the “in�uence” that one
neuronal system exerts over another (Friston, 1994). In this work, we also
examined how mean activity and phase locking vary with effective connec-
tivity, using the second model. As our measure of effective connectivity, we
used the probability (averaged over units and time) that a cell in the �rst
population would cause a connected cell in the second population to �re.
Furthermore, we tried to elucidate some of the mechanisms that could un-
derlie the relationship between mean activity and synchronization in terms
of temporal integration at a synaptic level. Our hypothesis was that high
levels of activity would engender shorter membrane time constants. This,
in turn, would lead to the selection of synchronized interactions by virtue of
the reduced capacity for temporal integration (Bernander, Douglas, Martin,
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Figure 2: Synchrony versus mean activity for the �rst model. (a) A plot of the
peak shift predictor subtracted cross-correlation between mean spike trains in
different layers in area 1 of the �rst model against mean �ring rate in population
1, as the random input to population 1 was increased systematically. (b) A plot
for the same input levels, buthere the phase locking between homologous layers
in each area is shown.

& Koch, 1991). We therefore estimated the time constants to see how these
varied with mean activity and phase locking. Details of the simulations,
measurement of effective connectivity, and derivation of the effective time
constants will be found in the appendix.

3 Results

We found that increases in the activity level of the network were univer-
sally associated with increases in the phase locking between and within
the populations as represented by the peak shift predictor subtracted cross-
correlation. This held for large ranges of mean activity with a falloff at very
high levels. This was observed regardless of the way that the activity level
was varied (e.g., changing the input to population one, varying the number
of connections, or manipulating the synaptic ef�cacies).

First, we used the model incorporating two cortical areas, each compris-
ing three layers (see Figure 1b) and manipulated the input activity level (see
Figure 2) to layer 4 of the �rst area. Phase locking rose systematically with
activity levels, with a falloff at very high levels.

The second component of our study represented an exploration of a
larger parameter space, using the second model consisting of two areas,
each comprising 100 cells. Figure 3 shows the phase locking between the
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two populations as a function of mean activity in population 1, for 10 differ-
ent levels of extrinsic connectivity. In these simulations, the input activity
level was varied systematically to elicit changes in the dynamics. It can
be seen in Figures 3a to 3d that phase locking increases monotonically be-
tween the spike trains or local �eld potential, as the activity level increases.
Furthermore, the rate of increase of phase locking with mean activity in-
creases with extrinsic connectivity. This is expressed as an increase in the
slope of the regression of phase locking on mean activity and represents an
interaction between mean activity and extrinsic connectivity in producing
synchronization. Figures 3e and 3f illustrate the spiking and subthreshold
activity in populations 1 and 2 at low and high levels of activity, respec-
tively. It is seen that as activity rises, the spiking activity in each population
becomes increasingly oscillatory.

In the previous simulations, changes in the dynamics were elicited under
different levels of extrinsic connectivity by manipulating the input to popu-
lation 1. The results pointed to an interaction between input activity and ex-
trinsic connectivity. To characterize these in�uences fully, we examined the
main effect of connectivity per se on synchrony by changing both extrinsic
and intrinsic connections. This can be regarded as an analysis of the relation-
ships between synaptic ef�cacy or anatomical connectivity and functional
connectivity. Figure 4 shows plots of phase locking between spike trains for
the second model, when the input activity level was kept constant and the
interarea connectivity level, interarea weights, and intra-area weights were
manipulated respectively (i.e., the density or ef�cacy of connections were
modulated). These simulations were performed with feedback in�uences
mediated either by AMPA or NMDA receptors. As shown in the �gure,
the phase locking, within and between populations, increases to a certain
level before reaching a plateau and eventually decreasing slightly, as either
the extrinsic or intrinsic connectivity level increases (through changing the
number of connections or weight values).

Figure 3: Facing page. Synchrony versus mean activity for the second model. (a,
b) The peak shift predictor subtracted cross-correlation between the time series
of number of cells spiking per ms for each population is plotted against mean
number of cells spiking in population 1 per millisecond for extrinsic reciprocal
connectivities of (a) 5%, 15%, 45%, 65% and (b) 75%, 85%, and 95%. (b, c) The
peak cross-correlation between the time series of mean membrane potential is
plotted against mean membrane potential of population 1 for the same extrinsic
connectivities as in a and b. (e, f) The spiking activity in populations 1 and 2
are plotted over the course of 2 seconds. Time is plotted horizontally, and all
100 neurons are shown on the vertical axis. The membrane potential is shown
in terms of the color (see the color scale at the side of the graph). (e, f) For low-
and high-input activity levels, respectively.
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Next, we increased the extrinsic mean transmission delays from 5 to 8 ms.
This was done to simulate longer-range connections and assess their effect
on the behavior of phase locking with activity level. Figure 5 shows plots of
phase locking (within and between populations) against activity level varied
in four different ways using AMPA or NMDA feedback connections. As can
be seen in Figure 5a, the results are almost identical to those of Figure 3a,
indicating that increasing the transmission delay does not signi�cantly alter
the nature of the phase locking. Figures 5c and 5d show the phase locking
between one neuron in population 1 and the rest of the population. These
results suggest that phase locking varies with activity level in much the
same way as between populations. Figures 5b and 5d show that changing
the receptor types to NMDA does not have a signi�cant effect on how phase
locking varies with activity.

Figure 6 shows the relationship between phase locking and mean �ring
rate when the input to area 1 is changed systmatically under different levels
of inhibition. The level of inhibition was manipulated by changing either
the proportion of inhibitory neurons (see Figure 6a) or the value of the in-
hibitory synaptic timeconstants (see Figure 6b). Under all levels of inhibition
within the network, a monotonic relationship between phase locking and
mean activity was evidenced. As inhibition increased, the rate of increase of
phase locking with mean activity decreased. This was evident as a decrease
in the slope of the regression of phase locking on mean activity. These results

Figure 4: Facing page. Synchrony as a function of connectivity for the second
model. (a, b) The level of intrinsic connectivity was held constant at 90%, while
the extrinsic connectivity was varied through 5%, 15%, 25%, 35%, 45%, 55%,
65%, 75%, 85%, and 95%. Plotted horizontally is the level of extrinsic connec-
tivity. Plotted vertically is the maximum value of the shift predictor subtracted
cross-correlation between the two neuronal populations or within population
1. (a) The peak cross-correlation between the time series of number of cells spik-
ing per ms for each population is plotted against extrinsic connectivity. The
two cases when the feedback receptors were AMPA and NMDA are shown.
(b) The peak cross-correlation between the time series of spikes per millisecond
in one cell and the spikes per millisecond in the rest of population 1 is plotted
against the percentage of extrinsic connectivity. Again, this graph shows this
plot under both AMPA and NMDA feedback receptors. (c, d) Same as a and
b, except that here the number of connections was not changed. Instead, the
actual values of the extrinsic weights were varied with the density of extrinsic
connections remaining at 5%. Here, extrinsic synaptic weight is plotted hori-
zontally. (e) Intrinsic and extrinsic connectivity levels remained constant (90%
and 5%, respectively), while intrinsic weights were increased. This plot shows
how phase locking varies between populations and also within each population
as the intrinsic weights are increased. These graphs show the results for AMPA
feedback receptors, but similar �ndings were obtained with NMDA feedback
receptors.



Synchronization and Firing Rates 1399



1400 D. Chawla, E. D. Lumer, & K. J. Friston

Figure 5: These graphs show how phase locking varies with neuronal activity
when the extrinsic delays were increased to a mean of 8 ms. Here, the activity
level was varied in four different ways: (1) By changing the input activity levels
while all other parameters remained constant. The effect of this manipulation
on phase locking and activity level is denoted by x. (2) By varying the extrinsic
connectivity level between 5% and 95% (These data are shown by ±). (3) By
changing the proportion of inhibitory neurons between 60% to 0%. This is de-
noted by C . (4) By changing the values of the inhibitory synaptic time constants
from 500 to 0.5 ms (denoted by *). (a, c) The feedback receptors were AMPA.
(b, d) Feedback receptors were NMDA. (a, b) Phase locking against mean �ring
rate between populations. (c, d) Phase locking between the �ring rates of one
cell and the rest of the population.

point to a clear interaction between input activity and inhibition level,where
inhibition attenuates the increase in synchrony with mean activity.
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Figure 6: (a) Phase locking versus mean �ring rate as input to area 1 is varied
systematically with network inhibitory cell proportions of 10%, 25%, and 50%.
(b) Is the same as a except inhibition is varied by changing the inhibitory synaptic
time constants between 1, 25, and 100 ms while keeping the number of inhibitory
cells constant. The feedback receptors were AMPA in both cases.

To address the mechanisms behind the relationship between activity and
phase locking, we assessed how the effective connectivity and mean instan-
taneous membrane time constants varied with both activity level and phase
locking. The results of this analysis are shown in Figure 7. Figures 7a and
7b show how the effective connectivity varies with mean �ring rate (see
Figure 7a) and with phase-locking (see Figure 7b), as the input activity level
was manipulated. A saturating relationship was observed with a falloff at
very high levels. Figures 7c and 7d show the relationship between the mean
membrane time constant and mean �ring rate (see Figure 7c) and between
the mean membrane time constant and phase locking (see Figure 7d). As
mean �ring rate increases, the mean membrane time constant decreases
(see Figure 7c). The decrease in mean membrane time constant is accompa-
nied by an increase in both synchrony and effective connectivity between
the simulated populations. The implications of this �nding are discussed
below.

4 Discussion

Our results suggest that the phenomenon of phase locking’s increasing with
activity level is a robust effect that is relatively insensitive to the context in
which the activity level is varied, changes in the transmission delays, the
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Figure 7: (a) Effective connectivity between the two populations of the second
model (as given by the average probability of a cell in population one causing
a connected cell in population two to �re) is plotted against average �ring rate.
The extrinsic connectivity was 25%, and the mean �ring rate was manipulated
by varying the input activity. (b) A graph of functional connectivity as given
by the peak shift predictor subtracted cross-correlation in terms of effective
connectivity. (c) A plot of the mean membrane time constant, computed for
each activity level, against mean �ring rate. (d) A plot of phase locking as a
function of the mean membrane time constant.

type of synapse, the number of cells, and the laminar structure within the
populations. They also show that functional connectivity (i.e., synchrony)
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varies with mean activity in much the same way as effective connectivity
and that there is an almost monotonic relationship between the two metrics
(see Figure 7b). These results clearly hold only for the simulations presented,
which addressed unstructured, continuous, or stationary dynamics. How-
ever, it may be reasonable to generalize the inference to real neuronal pop-
ulations with similar simple architectures if they are expressing relatively
stationary dynamics.

4.1 Activity Levels and Effective Connectivity. This work indirectly
addresses the relationship between rate and synchrony coding and sug-
gests that they may represent two perspectives on the same underlying
dynamic. In this view, synchronized, mutually entrained signals enhance
overall �ring levels and can be thought of as mediating an increase in the
effective connectivity between the two areas. Equivalently, high levels of
discharge rates increase the effective connectivity between two populations
and augment the fast synchronous exchange of signals. In a previous mod-
eling study, Aertsen & Preissl (1990) showed that by increasing the level of
network activity, the ef�cacy of the effective synaptic connections increases:
“The ef�cacy varies strongly with pool activity, even though the synapse
itself is kept at a �xed strength throughout all simulations. With increasing
pool activity, the ef�cacy of the connection initially increases strongly to
reach a maximum, after which it slowly decays again.” This result is consis-
tent with our �ndings (see Figure 7a) and is intuitive; as the network activity
is increased, the individual neuronal connections come into play more. This
can be explained in the following way: If network activity is very low, the
inputs to a single neuron (say neuron j) will cause only a subthreshold
excitatory postsynaptic potential (EPSP) in neuron j. If some presynaptic
neuron (say neuron i) �res, so that it provides input to neuron j, this input
will be insuf�cient to cause neuron j to �re. However, if the pool activity
is high enough to maintain a slightly subthreshold EPSP in neuron j, then
an input from neuron i is more likely to push the membrane potential of
neuron j over the threshold and elicit an action potential. This effect resem-
bles the phenomenon of stochastic resonance (Wiesenfeld & Moss, 1995).
As pool activity becomes very large, however, the coincident input to cell
j will eventually become enough to make neuron j �re without any input
from cell i, thus decreasing the in�uence that cell i has on cell j and conse-
quently the effective connectivity between the two cells. This may explain
the slow decline in effective connectivity as the network activity becomes
very large (see Figure 7a). In short, we can say that the pool activity provides
a background neuronal tonus that, depending on its magnitude, will make
activity in neuron i more or less viable in eliciting activity in neuron j.

4.2 Activity Levels and Synchronization. The above argument pertains
to the relationship between mean activity and effective connectivity but
does not deal explicitly with the relationship between activity levels and
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synchronization. This study examined the mechanistic basis of synchro-
nized and oscillatory dynamics at high levels of activity. The membrane
time constants were shown to decrease with mean activity, and thus syn-
chrony emerged with shorter membrane time constants. The decrease in
time constants is a natural consequence of conjointly increasing membrane
conductances through excitatory and inhibitory channels at high levels of
activity (see the appendix). Hence, as activity levels increase, smaller mem-
brane time constants promote the synchronous gain in the network; that is,
individual neurons became more sensitive to temporal coincidences in their
synaptic inputs, responding with a higher �ring rate to synchronous rather
than asynchronous inputs. In other words, as the level of activity increases,
network interactions tend toward synchronous �ring. At the same time,
the overall increase in background synaptic activity causes individual cell
membranes to become more leaky, thereby decreasing their effective time
constants (Bernander et al., 1991). This promotes synchrony by increasing
the sensitivity of individual cells to synchronous inputs. Put simply, there is
a circular causality: Only synchronous interactions can maintain high �ring
rates when temporal integration is reduced. High �ring rates reduce tem-
poral integration. This behavior underlies the emergence of self-selecting
dynamics in which high degrees of synchrony can be both cause and con-
sequence of increased activity levels.

In our model architecture, extrinsic excitatory connections targeted both
excitatory and inhibitory neurons within the population. Further simula-
tions are clearly needed to determine if the relative proportion of excitatory
targets is an important parameter in relation to the phenomena that we
have observed. One conjecture, however, is that it is not the overall excita-
tionor inhibition elicited by afferent input that determines the dynamics, but
rather the increase in membrane conductance consequent upon the conjoint
increase in balanced excitatory and inhibitory activity. In other words, driv-
ing predominantly inhibitory subpopulations will inhibit excitatory cells,
or driving excitatory cells will excite inhibitory cells. In both cases, the over-
all level of excitatory and inhibitory presynaptic discharges will reduce the
effective membrane time constants and predispose the population to fast
dynamic and synchronized dynamics.

4.3 Uncoupling of Activity and Synchronization. The overall impres-
sion given by our results is that there is an obligatory relationship between
mean activity and synchronized interactions. This is mediated by decreases
in the effective membrane time constants under high levels of activity. Due
to the reduced capacity for temporal integration, the only dynamics that can
ensue are synchronous ones. It is important, however, to qualify this con-
clusion by noting that in this study, the inputs driving the coupled neuronal
populations were spatiotemporally unstructured and continuous. Clearly,
desynchronization between two dynamic cell assemblies is not only a pos-
sibility but can be observed in both the real brain and simulations where
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changes in synchrony have, in some instances, been found to occur without
any change in mean �ring rate. Such regional decoupling of spike timing
and �ring rates has been reported in primary sensory cortices (Roelfsema,
Konig, Engel, Sireteanu, & Singer, 1994;deCharms & Merzenich, 1996; Fries,
Roelfsma, Engel, Konig, & Singer, 1997) and may re�ect feedback in�uences
fromhigher corticalareas (Lumer et al., 1997b). Our input stimulus consisted
of unstructured random noise that did not have any spatiotemporal struc-
ture. Furthermore, our models did not include any feature selectivity (such
as orientation columns). It is this feature speci�city and stimulus structure
that may cause a regional decoupling of synchrony and �ring rate. This
decoupling could specify which neuronal populations are excluded from
dynamic cell assemblies coding for the feature in question. It could be that
the temporal patterning of action potentials in primary areas, which show a
regional decoupling between synchrony and �ring rate, may lead to changes
in �ring rates in the areas that they target, and thus such changes in syn-
chrony will be re�ected in changes in global activity levels (i.e., summed
over all dynamic cell assemblies), if not local activity levels. In other words,
a particular population could maintain high levels of desynchronized activ-
ity, in relation to its inputs from one cell assembly, if it was part of another
dynamic cell assembly that did exhibit a coupling between overall activity
and synchrony.

In essence, although the coupling that we have shown between mean
activity and synchronization may represent a generic property of cortical
dynamics, it should be noted that desynchronized interactions can arise
from nonlinear coupling of a stronger sort than that employed in our cur-
rent model or by speci�c inputs that selectively engage distinct cohorts of
interacting populations. Other mechanisms that may cause synchrony to
decouple from �ring rates include those that are capable of modulating �r-
ing rates as synchrony increases, such as fast synaptic changes. However,
in the context of our studies that looked explicitly at stationary dynamics,
this is unlikely to be an explanatory factor. These and other parameters
have to be explored before any de�nitive statements can be made about
the relationship between mean activity and synchronization in a real-world
setting. However, our results point to some fundamental aspects of neu-
ral interactions under a set of minimal assumptions. Our current lines of
inquiry include revisiting the relationship between mean activity and syn-
chrony in the context of evoked transients (Chawla, in press) and trying
to characterize the nonlinear coupling between neuronal populations that
underpins asynchronous interactions (Friston, 1997).

4.4 Practical Implications. The �nal point that can be made on the ba-
sis of our �ndings relates to macroscopic measures of neural activity such
as those used in functional brain imaging. Functional magnetic resonance
imaging (FMRI) and positron emission tomography (PET) have been es-
tablished as tools for localizing brain activity in particular tasks using the
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blood oxygenation level–dependent response (BOLD signal in fMRI) and
blood �ow (PET). The fMRI BOLD signal is attributed to changes in local ve-
nous blood deoxygenation. These studies rely on the assumption that such
changes are representative of global synaptic activity levels. This is sup-
ported by optical imaging studies (Frostig, Lieke, Ts’o, & Grinvald, 1990)
showing that there is a local coupling between neuronal activity integrated
over a few seconds and the microcirculation (hemodynamics). The lack of
temporal sensitivity of fMRI raises the possibility that such measurements
will fail to identify areas in which neuronal processes are expressed solely
in terms of changes in synchrony. However, this study demonstrates a clear
link between mean �ring rates and synchronization, suggesting that metrics
based on mean synaptic activity may in part be sensitive to changes in syn-
chronization. We are investigating this issue empirically, using combined
fMRI and electroencephalograms and with simulations looking at evoked
transients and dynamic correlations.

Appendix A: Modeling Neuronal Dynamics

A.1 Model 1. The instantaneous change in membrane potential of each
model neuron, V(t), was given by:

tm dV /dt D ¡V C V0 ¡ Sjgj(V ¡ Vj),

where tm is a passive membrane time constant set at 16 ms (8 ms) for corti-
cal excitatory (inhibitory) cells and the sum on the right-hand side is over
synaptic currents. V0 denotes the passive resting potential that was set to a
value of ¡60 mV. Vj are the equilibrium potentials for the jth synaptic type.
V was reset to the potassium reversal potential of ¡90 mV when it exceeded
a threshold of¡50 mV and a spike event was generated for that unit. Synap-
tic activations of AMPA, GABAa, and GABAb receptors were expressed as
a change in the appropriate channel conductance, gj, according to a dual
exponential response to single-spike events in afferent neurons given by:

g D gpeak[exp(¡t /t1)¡exp(¡t /t2)] /[exp(¡tpeak /t1) ¡ exp(¡tpeak /t2)].

t1 and t2 are the rise and decay time constants, respectively, and tpeak, the
time to peak. tpeak D t1t2 /(t1 ¡ t2). gpeak represents the maximum conduc-
tance for any particular receptor. Conductances were implicitly normalized
by a leak membrane conductance, so that they were adimensional. The
implementation of NMDA channel, was based on Traub, Wong, Miles, &
Michelson, (1991):

INMDA D gNMDA(t)M(V ¡ VNMDA)

dgNMDA /dt D ¡gNMDA /t2

M D 1 /(1 C (Mg2C /3)(exp[¡0.07(V ¡j )])
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Table 1: Parameter Values of Model 1.

Receptor gpeak (mS) t1 (ms) t2 (ms) Vj (mV)

AMPA 0.05 0.5 2.4 0
GABAa 0.175 1 7 ¡70
GABAb 0.0017 30–90 170–230 ¡90
NMDA 0.01 0 100 0

INMDA is the current that enters linearly into the equation for dV /dt, above.
gNMDA is a ligand-gated virtual conductance. M is a modulatory term that
mimicks the voltage-dependent af�nity of the Mg2C channel pore. j is
¡10 mV and Mg2C is the external concentration of Mg2C often used in
hippocampal slice experiments (2 mM). These and other parameters (see
Table 1) were consistent with experimental data (see Lumer et al., 1997a, for
details).

A.2 Model 2. Model 2 was similar to model 1 but included explicitmod-
eling of NaC and KC channels that mediate action potentials. The neuronal
dynamics of this modelwere based on the equations from the Yamada, Koch,
and Adams (1989) single neuron model, using the Hodgkin and Huxley for-
malism:

dV /dt D ¡1 /CMf(gNam2h(V ¡ VNa) C gKn2y(V ¡ VK) C gl(V ¡ Vl)

C gAMPA(V ¡ VAMPA) C gGABA(V ¡ VGABA)g,
dm /dt D am(1 ¡ m) ¡ bmm, dh /dt D ah(1 ¡ h) ¡ bhh,
dn /dt D an(1 ¡ n) ¡ bnn, dy /dt D ay(1 ¡ y) ¡ byy,
dgAMPA /dt D ¡gAMPA /tAMPA dgGABA /dt D ¡gGABA /tGABA

CM represents the membrane capacitance (1m F), gNa, gK and gl represent the
maximum Na+ channel, KC channel and leakage conductances respectively.
VNa represents the Na+ equilibrium potential and similarly for VK and Vl . m,
h, n, and y are the fraction of NaC and KC channel gates that are open. gAMPA
and gGABA are the conductances of the excitatory (AMPA) and inhibitory
(GABAa) synaptic channels, respectively. t represents the excitatory and
inhibitory decay time constants. an, bn, am, bm, ah, bh, ay, by are nonnegative
functions of V that model voltage-dependent rates of channel con�guration
transitions. Speci�c values for the parameters of this model are given in
Table 2.

A.3 Measuring the EffectiveConnectivity. Consider two cells—the �rst,
cell i, being some neuron in population 1 and the second, cell j, being in pop-
ulation 2, that receives an input from cell i. The number of times cell j �res
in a time window of 10 ms immediately following an event in cell i is nj.
The total number of spikes from cell i is ni. nj /ni is an estimate of the con-
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Table 2: Parameter Values of Model 2.

Receptor/Channel gpeak (mS) t (ms) Vj (mV)

AMPA 0.05 3 0
GABAa 0.175 7 ¡70
NaC 200 50
KC 170 ¡90
Leak 1 ¡60

ditional probability that cell j �res in a time interval after cell i. To discount
the effect of incidental �ring in cell j, we subtracted the probability that cell
j would �re spontaneously in this interval (p) when cell i had not previously
�red. This was calculated as the total number of spikes from cell j divided
by the total number of 10 ms intervals comprising the time series (having
discounted intervals following an input from cell i). The resulting estimate
can be construed as an index of effective connectivity, E D nj /ni ¡ p.

A.4 Determining the Effective Membrane Time Constant. The effec-
tive membrane time constant was determined as follows: tmem D RmCm,
where Rm is the membrane resistance and:

Cm dV /dt D gl(V ¡ Vl ) C gAMPA(V ¡ VAMPA) C gGABA(V ¡ VGABA)

C sodium and potassium currents.

Discounting the internal sodium and potassium channel dynamics that gen-
erate the action potentials, the last equation can be rearranged in the fol-
lowing way;

Cm dV /dt D (gl C gAMPA C gGABA)(V ¡ V0) C gAMPA(V0 ¡ VAMPA)

C gGABA(V0 ¡ VGABA) C gl(V0 ¡ Vl).

V0 denotes the resting membrane potential. Over time, the average cur-
rents (inhibitory, excitatory and leakage) cancel each other out. Therefore,
gAMPA(V0 ¡ VAMPA) C gGABA(V0 ¡ VGABA) C gl(V0 ¡ Vl) is negligible com-
pared to (gl C gAMPA C gGABA )(V ¡ V0) and, thus approximately, tmem D
Cm /(gl C gAMPA C gGABA) at any given time for any particular cell. In this
article, we take the average value of tmem over time and units.
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