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Twenty years have passed since the dysconnection hypothesis was first proposed (Friston and Frith, 1995; Wein-
berger, 1993). In that time, neuroscience has witnessed tremendous advances: we now live in a world of non-in-
vasive neuroanatomy, computational neuroimaging and the Bayesian brain. The genomics era has come and
gone. Connectomics and large-scale neuroinformatics initiatives are emerging everywhere. So where is the
dysconnection hypothesis now? This article considers how the notion of schizophrenia as a dysconnection syn-
drome has developed - and how it has been enriched by recent advances in clinical neuroscience. In particular,
we examine the dysconnection hypothesis in the context of (i) theoretical neurobiology and computational psy-
chiatry; (ii) the empirical insights afforded by neuroimaging and associated connectomics - and (iii) how bot-
tom-up (molecular biology and genetics) and top-down (systems biology) perspectives are converging on the
mechanisms and nature of dysconnections in schizophrenia.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The dysconnection hypothesis (Friston and Frith, 1995; Weinberger,
1993) has been implicit from the inception of schizophrenia as a diag-
nostic construct: for example, Wernicke's sejunction hypothesis
(Ungvari, 1993) and Bleuler's disintegration of the psyche (Bob and
Mashour, 2011) provide complementary perspectives on a failure of
functional integration in the brain. These early formulations highlight
the distinction between an anatomical dysconnection (sejunction hy-
pothesis) and a functional dysconnection (disintegration of the psyche).
The dysconnection hypothesis per se is a hypothesis about functional
(synaptic) connectivity that is very specific about the pathophysiology;
namely, an aberrant modulation of synaptic efficacy. This is potentially
important because it speaks to the molecular basis of synaptic gain con-
trol in the context of distributed and hierarchical processing in the
brain.

The dysconnection hypothesis precludes a primary aetiological role
for anatomical disconnections. There are simple reasons for this — be-
cause schizophrenic signs and symptoms can be elicited by
psychomimetic drugs (e.g., NMDAR antagonists), the primary aetiology
cannot be attributed to a disruption of white matter tracts — or abnormal
neurodevelopmental trajectories. In other words, the fact that
psychosis can be induced by simply changing the neuromodulatory
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status of synaptic integration suggests that the anatomical and
neurodevelopmental characteristics of schizophrenia are consequences
not causes of the underlying pathophysiology. Furthermore, while syn-
aptic abnormalities can explain aberrant neurodevelopment (e.g., via
activity-dependent pruning), the converse is less obvious. Clearly, this
is a rather polemic argument: for instance, ketamine could just produce
a phenocopy or the pathophysiology at play may be manifest through-
out development, affecting both synaptic function and neurogenesis
(Zhang et al.,, 2016). Perhaps the most important aspect of the
dysconnection hypothesis is that it disambiguates between proximal
aetiologies at the level of synaptic physiology and neurodevelopmental
failures of cell migration and morphogenesis, acknowledging that the
two levels contextualize each other. Crucially, if the dysconnection hy-
pothesis can be falsified this would be a great advance - enabling a
focus on alternative (e.g., epigenetic) processes (Catts et al., 2013). Hav-
ing said this, the circumstantial evidence and theoretical support for the
dysconnection hypothesis appears to be accumulating as the years pass.
In what follows, we summarize some of the key developments.

2. The dysconnection hypothesis

The dysconnection hypothesis tries to establish a link between the
symptoms and signs of schizophrenia and the underlying molecular
and neuronal pathophysiology. Physiologically, it suggests that psycho-
sis is best understood - at a systems level - in terms of aberrant
neuromodulation of synaptic efficacy that mediates the (context-sensi-
tive) influence of intrinsic and extrinsic (long-range) connectivity. It
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proposes that the key pathophysiology lies in the interactions between
NMDA receptor function and modulatory neurotransmitter systems.
While many (synaptic) theories of schizophrenia postulate a central
role for NMDA receptors (Braff et al., 2001; Cull-Candy et al., 2001;
Geyer et al., 2001; Javitt and Zukin, 1991; Jentsch and Roth, 1999;
Krystal et al., 1994; Olney et al, 1989; Olney et al, 1999), the
dysconnection hypothesis highlights the influence of modulatory trans-
mitters on NMDAR-mediated changes in synaptic efficacy. For example,
changes in NMDAR conductivity (via phosphorylation), subunit expres-
sion and trafficking that follow activation of dopaminergic receptors
(Stephan et al,, 2009). Crucially, the dysconnection hypothesis explains
how the physiological consequences of abnormal modulation of
NMDAR-mediated plasticity (such as altered pyramidal cell gain) trans-
late into computational impairments at the level of neuronal circuits -
and how this leads to false inference and psychomotor poverty. It is
this attempt to close the explanatory gap between pathophysiology
and psychopathology that has seen the greatest development over the
past years. This development rests on the emergence of the Bayesian
brain and predictive coding as formal frameworks for understanding
connectivity and computational architectures in the brain:

3. The Bayesian brain

There are many computational perspectives that could be called
upon to characterize psychopathology. These range from neural net-
work and dynamical systems theory to reinforcement learning and
game theory. However, these frameworks do not address the quintes-
sential aspect of schizophrenia; namely, the production of false beliefs.
The symptoms and signs of schizophrenia are, almost universally,
attended by abnormal beliefs and their behavioral sequelae; for exam-
ple, paranoid ideation, delusions, hallucinations, and so on. This calls
for a theoretical framework that explains false inference - and how
this false inference is realized neurophysiologically.

A recent paradigm shift in cognitive neuroscience provides exactly
the right sort of theory that allows one to talk about false beliefs - and
understand how these arise from synaptic pathophysiology. Cognitive
neuroscientists now view the brain as a statistical organ that generates
hypotheses or fantasies that are tested against sensory evidence. This
perspective can be traced back to Helmholtz and the notion of uncon-
scious inference (Helmholtz, 1866/1962). In the past decades this ap-
proach has been formalized to cover deep or hierarchical Bayesian
inference - about the causes of our sensations - and how these infer-
ences induce beliefs and behavior (Clark, 2013b; Dayan et al., 1995;
Friston et al., 2006; Hohwy, 2013; Lee and Mumford, 2003).

3.1. Predictive coding and the Bayesian brain

Modern formulations of Helmholtz's ideas usually appeal to theories
such as predictive coding (Clark, 2013b; Friston, 2008; Rao and Ballard,
1999; Srinivasan et al., 1982). Predictive coding describes how the brain
processes sensory information by optimizing explanations for its sensa-
tions: see (Bastos et al., 2012) for a review of canonical microcircuits
and hierarchical predictive coding in perception and (Adams et al.,
2013a; Shipp et al., 2013) for corresponding treatments of the motor
system.

In predictive coding, neuronal representations in higher levels of
cortical hierarchies generate predictions of representations in lower
levels. These top-down predictions are compared with representations
at the lower level to form a prediction error (associated with the activity
of superficial pyramidal cells). The ensuing mismatch signal is passed
back up the hierarchy, to update higher representations (associated
with the activity of deep pyramidal cells). This recursive exchange of
signals suppresses prediction error at each and every level to provide
a hierarchical explanation for sensory inputs. In computational terms,
neuronal activity is thought to encode beliefs about states of the world
that cause sensations (e.g., my visual sensations are caused by a dog).

The simplest encoding corresponds to the expected value or expectation
of a (hidden) cause. These causes are referred to as hidden because they
have to be inferred from their sensory consequences. In short, predictive
coding represents a biologically plausible scheme for updating beliefs
about the world using sensory samples. Fig. 1 tries to convey the basic
idea behind predictive coding in terms of minimizing prediction errors.

3.2. How precise are our inferences?

Predictive coding provides a compelling (if metaphorical) explana-
tion for many aspects of functional anatomy and perception. However,
simply predicting the content of our sensations is only half the story.
There is something else that we have to predict; namely, the confidence
or precision that should be ascribed to ascending prediction errors. Pre-
cision is the inverse of variability or uncertainty, and describes the reli-
ability of a signal. Estimating precision speaks to a fundamental aspect
of inference in the brain; namely, the encoding of expected uncertainty
(Brown et al.,, 2013; Iglesias et al., 2013; Yu and Dayan, 2005). In other
words, not only do we have to infer the content of our sensorium but
also the context, in terms of its (expected or subjective) precision. This
represents a subtle but generic problem that the brain must solve,
where the solution may rest on modulating the gain or excitability of
neuronal populations reporting prediction error (Clark, 2013a;
Feldman and Friston, 2010; Friston, 2008).

Heuristically, one can regard the prediction errors that ascend corti-
cal hierarchies as broadcasting ‘newsworthy’ information that has yet to
be explained by descending predictions. However, the brain also has to
select the channels it listens to. It can do this by adjusting the volume of
competing channels. Neurophysiological, this corresponds to adjusting
the gain of prediction errors that compete to update expectations. Em-
pirical evidence suggests that this boosting or precision-weighting of
prediction errors is a central computational process throughout the
brain (Iglesias et al., 2013) and may be mediated by neuromodulatory
mechanisms of gain control at a synaptic level (Moran et al., 2013).

Computationally, synaptic gain control therefore corresponds to an
encoding of precision, which is reflected in the excitability of neuronal
populations reporting prediction errors. This may explain why superfi-
cial pyramidal cells (encoding prediction errors) have so many synaptic
gain control mechanisms; such as NMDA receptors and classical
neuromodulatory receptors like D1 dopamine receptors (Braver et al.,
1999; Doya, 2008; Goldman-Rakic et al., 1992; Lidow et al., 1991). Fur-
thermore, it places excitation-inhibition balance in a prime position to
mediate ‘precision engineered’ message passing between hierarchical
levels (Humphries et al., 2009). This contextual aspect of predictive cod-
ing has been associated with attentional gain control in sensory process-
ing (Feldman and Friston, 2010; Jiang et al., 2013) and has been
discussed in terms of affordance and action selection (Cisek, 2007;
Frank et al., 2007; Friston et al.,, 2012). Crucially, the delicate balance
of precision over hierarchical levels has a profound effect on veridical in-
ference — and may hold the key for a formal understanding of false be-
liefs in psychopathology (Adams et al., 2013b). Fig. 2 illustrates
schematically how neuromodulatory mechanisms may influence hier-
archical message passing in the brain.

4. Gain control and precision in schizophrenia

So why is the encoding of uncertainty or precision so important for
schizophrenia? If schizophrenia is a brain disorder - and the brain is
an organ of inference - then its psychopathology must be manifest as
a failure of prediction or inference. Analyses of false inference that
emerges under failures of predictive coding all point to one abnormali-
ty; namely, a failure to properly the encode precision of prediction er-
rors (Corlett et al., 2011; Fletcher and Frith, 2009; Powers lii et al.,
2015; Teufel et al., 2010). There is a growing literature in this area of
computational psychiatry that we will briefly summarize. Similar argu-
ments have also been applied in other psychiatric conditions;
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Fig. 1. predictive coding deals with the problem of inferring the causes of sparse and ambiguous sensory inputs. This is illustrated in the upper panel in terms of a shadow that can be
regarded as a sensory impression. A plausible explanation for this input could be a howling canine. Predictive coding assumes that the brain has a model that generates predictions of
sensory input, given a hypothesis or expectation about how that input was caused. Here, the expectation is denoted by  and the sensory prediction it generates is summarized with
g(u). The prediction error is the difference between the input and predictions of that input. This prediction error is then used to update or revise the expectation, until prediction error
is minimized. At this point, the expectation provides the best explanation or inference for the causes of sensations. Note that this inference does not have to be veridical: in the lower
panel, the actual cause of sensations was a cat; however, the beholder may never know the true causes - provided that we minimize our prediction errors consistently, our model of
the world will be sufficient to infer plausible causes in the outside world that are hidden behind a veil of sensations.

particularly autism: see (Lawson et al., 2014; Paton et al., 2012;
Pellicano and Burr, 2012; Skewes et al.,, 2014; Van de Cruys et al,, 2014).

4.1. The psychopathology of perception

The recurring theme in schizophrenia appears to be a failure to atten-
uate sensory precision; in other words, an inability to modulate the gain
of sensory prediction errors, relative to higher-level prediction errors
that optimize prior beliefs about the causes of the sensory stream. A fail-
ure to attenuate sensory precision, from a psychological perspective,
means one cannot ignore stimuli and call upon prior beliefs or predic-
tions. In brief, this means that everything is surprising (in statistical
terms) because it cannot be predicted. This single computational failure
can explain a wide range of signs and symptoms in schizophrenia. For
example, if everything is surprising, then it would be difficult to elicit
oddball, violation or omission responses - as measured electrophysio-
logically. This explains impoverished mismatch negativity responses
in schizophrenia (Dima et al., 2012; Umbricht and Krljes, 2005; Zarchi
et al., 2013). Furthermore, it explains the peculiar resistance to illusions
that is characteristic of schizophrenia (Barch et al., 2012; Brown et al.,
2013; Butler et al., 2008; Jardri and Deneve, 2013). This resistance can
be explained in the straightforward way in terms of a relative attenua-
tion of prior beliefs in relation to the precision of sensory evidence.
This follows because illusions rest upon prior expectations to induce a
false (illusory) percept. Arguments along these lines provide a nice ex-
planation for perceptual and psychophysical abnormalities in schizo-
phrenia but what about soft neurological signs? Perhaps the most
consistent soft sign is a failure of pursuit eye movements (Beedie et
al,, 2011). Again, when modeled carefully using predictive coding, the
characteristic failure of predictive pursuit movements - and paradoxical

improvements in the tracking of unpredictable targets - can be
reproduced by an imbalance between the precision afforded sensory
(visual) prediction errors and prediction errors higher in the cortical hi-
erarchy predicting target motion (Adams et al., 2012).

The above phenomenology provides a fairly comprehensive expla-
nation for many of the trait abnormalities in schizophrenia (i.e., abnor-
mal eye movements, resistance to illusions, suppression of oddball
responses etc.). This has led some to suggest that state abnormalities re-
flect a compensation for overly precise sensory prediction errors. For ex-
ample, if one reduces sensory precision it is relatively easy to simulate
hallucinosis (Adams et al., 2013b). This follows simply from the fact
that ascending prediction errors lose their influence over neuronal pop-
ulations encoding expectations at higher levels in the hierarchy. In other
words, perceptual representations are statistically sequestered from
sensory constraints (Lawrie et al., 2002). However, this form of halluci-
nosis does not speak to the positive symptoms of psychosis seen in
schizophrenia. To understand the key role of sensory attenuation in
explaining delusions we have to turn from perception to action:

4.2. The psychopathology of action

To consider agency and action from the perspective of predictive
coding, we need to introduce active inference (Friston et al., 2011). Ac-
tive inference is effectively the same as predictive coding but includes
the suppression of prediction errors by action or movement. Put simply,
there are two ways that we can minimize prediction errors. We can ei-
ther change predictions (i.e., perception) or we can resample the world
to make sensations conform to our predictions (i.e., action). This is noth-
ing more than a description of the motor reflex arc - in which muscles
respond reflexively to fulfill top-down predictions of an expected
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Fig. 2. This figure summarizes the neuronal message passing that underlies predictive coding. The basic idea is that neuronal activity encodes expectations about the causes of sensory input,
where these expectations minimize prediction error. Prediction error is the difference between (ascending) sensory input and (descending) predictions of that input. This minimization
rests upon recurrent neuronal interactions between different levels of cortical hierarchies. Anatomical and physiological evidence suggests that superficial pyramidal cells (grey
triangles) compare the representations (at each level) with top-down predictions from deep pyramidal cells (black triangles) of higher levels. Right panel: this schematic shows a
simple cortical hierarchy with ascending prediction errors and descending predictions. This graphic includes neuromodulatory gating or gain control (dotted lines) of superficial

pyramidal cells that determines their relative influence on deep pyramidal cells encodin

g expectations (in the same level and the level above). Note that the implicit descending gain

control rests on predictions of the precision of prediction errors at lower levels - and can be thought as mediating top-down attentional gain. Left panel: this provides a schematic
example in the visual system: it shows the putative cells of origin of ascending or forward connections that convey prediction errors (grey arrows) and descending or backward
connections that construct predictions (black arrows). The prediction errors are weighted by their expected precision, associated with projections from ventral tegmental area (VTA)
and substantia nigra (SN). In this example, the frontal eye fields send predictions to primary visual cortex, which sends predictions to the lateral geniculate body. However, the frontal
eye fields also send proprioceptive predictions to pontine nuclei, which are passed to the oculomotor system to cause movement through classical reflexes. Note that every top-down
prediction is reciprocated with a bottom-up prediction error to ensure predictions are constrained by sensory information.

proprioceptive and somatosensory state. However, to engage move-
ment, we have to ignore sensory evidence that suggests we are not
moving. This is where the attenuation of sensory precision becomes
necessary for action. It is almost self-evident that a failure to attenuate
sensory precision will preclude movement - because any prior expecta-
tions about moving will be immediately quenched by precise prediction
errors correctly reporting the absence of movement.

A corollary of this failure would be a psychomotor poverty not dis-
similar to that seen in Parkinson's disease (c.f., bradykinesia and catato-
nia). This provides a straightforward explanation for some trait
abnormalities in schizophrenia; both in terms of psychomotor poverty
and in terms of psychophysics. Psychophysically, the attenuation of sen-
sory precision is known as sensory attenuation - a reduced sensitivity to
the sensory consequences of self-made acts (Brown et al., 2013; Frith et
al., 2000). A failure of sensory attenuation is nicely illustrated in the
force matching illusion - to which schizophrenic patients are character-
istically resistant (Oestreich et al., 2015; Shergill et al., 2005). We can
now ask the same question above: what would compensatory increases
in the precision of high-level (prior) beliefs look like in a state of psycho-
sis? The answer furnishes a plausible explanation for delusions: to over-
ride (unattenuated) sensory prediction errors, it is necessary to increase
the precision or confidence in high-level beliefs so that they are more
resistant to sensory evidence. The resulting false inference is particular-
ly interesting in the setting of action because there are only two expla-
nations for action: either it was generated internally or by some outside
agency. This means that the only explanation for a precise belief about
an internally (self) generated act - in the face of precise evidence to
the contrary - is that an external agency is preventing that act (or acting
antagonistically). Indeed, this is exactly the sort of false expectation
(paranoid delusion) that emerges in predictive coding simulations of

the force matching illusion, under a failure of sensory attenuation
(Brown et al,, 2013).

A key insight afforded by this (active inference) account of false in-
ference in schizophrenia is that similar mechanisms underlie hallucina-
tions and delusions: namely, a compensatory increase in the precision
of prior (high-level) beliefs, relative to the (unattenuated) precision of
(low-level) sensory evidence. This suggests that delusions are hallucina-
tions about agency or action. This has an interesting corollary: it means
that delusions must necessarily entail false beliefs about behavior, ac-
tion, agency and intention - of the self or others. Furthermore, rational
beliefs formed under irrational precision may necessarily involve out-
side agencies that are antagonistic, leading to a formal understanding
of paranoid ideation.

Computational studies of hallucinations and delusions are still in
their infancy; however, they already speak to some fundaments of
false inference. Key among these is the relative precision at different
levels of the cortical hierarchy. At present, consensus suggests that delu-
sions are associated with unduly precise prior beliefs deep within the
hierarchy, leading to recalcitrant explanations for - and attention to —
sensory evidence. See (Notredame et al., 2014) for a review of stronger
top-down effects in the context of illusions. Furthermore there is an as-
sociation between top-down effects on perceptual inference and symp-
tom severity, suggesting that “early psychosis and psychosis proneness
both entail a basic shift in visual information processing, favoring prior
knowledge over incoming sensory evidence” (Teufel et al., 2015).

In summary, to explain false inference in schizophrenia (e.g., delu-
sions and hallucinations), we are drawn to modern versions of
Helmholtz's formulation of perception as (unconscious) inference.
When deconstructed in terms of neuronally plausible process theories
- such as predictive coding - we arrive at the same conclusion that
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underlies the dysconnection hypothesis; namely, an aberrant modula-
tion of synaptic gain. This convergence equips the dysconnection hy-
pothesis with a formal state theory (hierarchical Bayesian inference)
and a process theory (aberrant precision or gain control in predictive
coding). The ensuing false inference is explained not in terms of an in-
ability to predict sensory content but a failure to encode the relative
confidence that should be placed in sensory evidence, relative to prior
beliefs. This can produce a pernicious form of false inference that has
been considered at a number of levels; from the genesis of delusions
and hallucinations (Corlett et al., 2011; Fletcher and Frith, 2009;
Powers lii et al., 2015; Teufel et al., 2010) through to detailed simula-
tions of hallucinosis, soft neurological signs and characteristic neuro-
physiological deficits in schizophrenia (Adams et al., 2013b). We now
consider the implications for pathophysiology of schizophrenia.

4.3. The physiology of gain control

Having a process theory is important because it provides mechanistic
predictions that can be tested empirically. Furthermore, it grounds phys-
iological (synaptic) theories of schizophrenia in a functional framework;
thereby linking pathophysiological explanations to functional deficits
and the patient's beliefs and experiences. Dysfunctional integration at
the synaptic level fits comfortably with earlier theories framed in terms
of signal-to-noise (Braver et al., 1999; Cohen and Servan-Schreiber,
1992; Winterer and Weinberger, 2004). Furthermore, this putative ab-
normality is consistent with nearly every synaptic or physiological theory
of schizophrenia; ranging from dopaminergic and NMDA receptor dys-
function (Laruelle, 2014; Lisman et al., 2008), GABAergic abnormalities
(Gonzalez-Burgos and Lewis, 2012; Lisman, 2012) and a loss of excita-
tion-inhibition balance (Jardri and Denéve, 2013). The common theme
here is a failure to contextualize the gain of principal or pyramidal cells.
This means that any pathophysiology whose downstream effects com-
promise the modulation of synaptic gain constitutes an ontological class
with a common functional expression - a loss of precise inference and
subsequent false beliefs about the world (or indeed the self). A focus on
synaptic gain control also speaks to the interaction among distinct
neuromodulatory mechanisms. An important example here is the inter-
action between neuromodulation and neuronal oscillations:

One of the most potent physiological mechanisms for synaptic gain
rests on synchronous interactions, sometimes referred to as synchro-
nous gain. The mechanism here is simple: fast synchronous exchange
of neuronal signals increases postsynaptic conductance, synaptic rate
constants and postsynaptic gain (Chawla et al., 1999). Almost invariably,
this entails interactions between principal cells and inhibitory interneu-
rons (Sohal et al., 2009); thereby linking neuromodulation, abnormalities
of fast (e.g., gamma) synchronization and cortical gain control (Spencer et
al., 2003; Uhlhaas and Singer, 2010). GABAergic deficits have often
implicated parvalbumin positive inhibitory interneurons that target
perisomatic regions of pyramidal cells and mediate fast synchronous
(gamma) activity. This is important because a number of lines of evidence
point to prediction errors being communicated preferentially in the
gamma range by superficial pyramidal cells (Bastos et al., 2012).

The gain control implicit in the modulation of inhibitory interneu-
rons underlies several theories of attentional gain: e.g., communication
through coherence (Fries et al., 2008). Other examples here include do-
paminergic deficits in Parkinson's disease and the modulation of go and
no-go pathways - leading to a pathological slowing of neuronal dynam-
ics: e.g., beta activity. Similar themes can be found in schizophrenia,
where D2 mediated hyperpolarization in thalamic nuclei may underlie
pathological slowing: e.g., delta activity (Belousov and van den Pol,
1997; Ferrarelli and Tononi, 2011).

44. Summary

To recap, a neurobiological plausible implementation of perceptual
inference is predictive coding - a process theory that assigns specific

roles to neuronal populations, canonical microcircuits and hierarchical
connections (Bastos et al., 2012; Clark, 2013b). The most promising can-
didate for explaining false inference in schizophrenia is the neuronal
encoding of uncertainty (Averbeck et al., 2011). Psychologically, this
corresponds to the salience or precision afforded to sensory evidence
(Joyce et al., 2013); while physiologically it is thought to be encoded
by the gain or excitability of principal (e.g., superficial pyramidal)
cells. This resonates with concepts like aberrant salience (Kapur,
2003), while explicitly implicating modulatory neurotransmission in
pathophysiology. This line of thinking poses several important ques-
tions: for example, how do dopamine and other neuromodulators inter-
act with NMDA receptors and GABAergic interneurons to adjust
postsynaptic gain - and is this the key pathophysiological dimension
which explains heterogeneity within patients with schizophrenia
(Adams et al., 2013b; Stephan et al., 2009). Is the common pathophysi-
ological pathway a failure to optimize excitation-inhibition balance (i.e.
gain control) - and is this indexed by aberrations of fast synchronous
neuronal activity (Gonzalez-Burgos and Lewis, 2012)? In short, compu-
tational and pathophysiological theories of schizophrenia converge on a
singular deficit - a failure of neuromodulatory gain control that trans-
lates into a failure to contextualize sensory evidence. So what is the em-
pirical evidence for this failure?

5. The physiology of dysconnection

There are many empirical lines of enquiry we could discuss here;
ranging from abnormalities in physiological responses to predictability
and precision; e.g., the mismatch negativity (Umbricht and Krljes,
2005), to low-level synaptic gain mechanisms in vision (e.g., surround
inhibition (Barch et al., 2012)). However, we will focus on systemic
(systems-level) measures of connectivity that currently predominate
in the neuroimaging literature. The dysconnection paradigm has seen
a remarkable surge in interest following the advent of high-resolution
neuroimaging - and, in particular, the use of resting state fMRI and
EEG activity as a biomarker of dysconnection (see Fig. 3). These studies
have looked at functional connectivity in schizophrenia at rest and un-
derlying responses induced by specific tasks: e.g., (Ellison-Wright and
Bullmore, 2009; Lawrie et al., 2002; Liang et al., 2006; Lynall et al.,
2010; Meyer-Lindenberg et al., 2001; Pettersson-Yeo et al., 2011;
Rubinov et al., 2009). The overall picture that emerges from these stud-
ies is summarized nicely in (Pettersson-Yeo et al,, 2011):

“In this article, we systematically review both the structural and func-
tional connectivity literature in SZ. The main trends to emerge are that
schizophrenia is associated with connectivity reductions, as opposed to in-
creases, relative to healthy controls, and that this is particularly evident in
the connections involving the frontal lobe. These two trends appear to
apply across all stages of the disorder, and to be independent of the neuro-
imaging methodology employed.” (but see also (Anticevic et al., 2015)
and (Fornito and Bullmore, 2015) for empirical evidence for concurrent
reductions and increases of connectivity in schizophrenia).

These studies concern measures of functional connectivity (and as-
sociated graph theoretic characterizations), where functional connec-
tivity is defined as the statistical dependence between remote
neurophysiological measures. As such, they only provide circumstantial
evidence for dysconnection. In other words, they are a compelling
‘smoking gun’. Definitive evidence for systemic dysconnectivity at the
synaptic level requires estimates of effective connectivity (defined as
the causal influence one neural system over another). In fMRI, estimat-
ing effective (directed) connectivity is difficult due to hemodynamic
variability across regions; this is usually resolved by biophysically in-
formed state space models like dynamic causal modelling (DCM). Dy-
namic causal modelling has, in principle, the potential to drill down
on very specific synaptic processes implicated in schizophrenia. For ex-
ample, DRD2 and AKT1 polymorphisms in healthy subjects - implicated
in DRD2 signalling — have a selective effect on directed prefrontal-
striatal connectivity, while the same polymorphisms alter the dose-
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Fig. 3. Citations per year, from 1980 to 2016, when searching for TOPIC: (schizophrenia) AND (TOPIC: (disconnection) OR TOPIC: (disconnectivity) OR TOPIC: (dysconnection) OR TOPIC:
(dysconnectivity)) in WEB OF SCIENCE™, The arrow indicates the first papers on the disconnection hypothesis were published.

response effects of anti-psychotic drugs on cognition in schizophrenia
(Tan et al., 2012).

In recent years, DCM studies of schizophrenia have started to appear
(Allen et al., 2010; Bastos-Leite et al., 2015; Benetti et al., 2009;
Brodersen et al., 2014; Curcic-Blake et al., 2015; Dauvermann et al.,
2013; Dimaetal., 2012; Kaplan et al., 2016; Schmidt et al., 2014). Almost
invariably, these studies disclose abnormal effective connectivity in-
volving the prefrontal cortex. This is consistent with the functional con-
nectivity studies reviewed above. Some DCM studies have looked
explicitly for the synaptic correlates of precision. For example, “in pro-
cessing subsequent information indicating reduced uncertainty of
their predictions, patients engaged relatively increased mid-brain acti-
vation, driven in part by increased dorsolateral prefrontal cortex to mid-
brain connectivity” (Kaplan et al., 2016).

These fMRI studies of disconnection are consistent with a failure of
top-down modulation (from prefrontal and parietal cortex) of postsyn-
aptic gain or precision in DCM studies of electrophysiological data; es-
pecially studies of the mismatch negativity and related paradigms
(Dima et al., 2012; Fogelson et al., 2014). But what about structural
connectivity?

The dysconnection hypothesis suggests a failure of functional inte-
gration in distributed but circumscribed neuronal systems that are par-
ticularly dependent upon neuromodulatory afferents (Adams et al.,
2013b); e.g., frontal areas in receipt of (mesocorticolimbic) dopaminer-
gic projections. This would be manifest in terms of abnormal functional
connectivity as measured with whole brain techniques (Anticevic et al.,
2015). Although the dysconnection hypothesis does not call on a form of
sejunction hypothesis or leukodystrophy (i.e., it does not posit a disrup-
tion of white matter fasciculi), one would not be surprised to find abnor-
mal functional integration producing changes in morphometry -
through changes in the composition of the neuropil (Keifer et al.,
2015) via trophic effects of NMDARs on dendritic trees and spines
(Monfils and Teskey, 2004; Sin et al., 2002) or changes in tractography
- through activity-dependent myelination (Fields, 2015). Indeed, ana-
tomical (e.g., cortical thickness) and structural connectivity abnormali-
ties are common in schizophrenia; however, these differences evolve
over time (Sun et al., 2016; van Haren et al., 2011), highlighting the im-
portance of (synaptic) plasticity. A meta-analysis of tractography stud-
ies of schizophrenia concludes (Ellison-Wright and Bullmore, 2009):

“Over all studies, significant reductions were present in two regions: the
left frontal deep white matter and the left temporal deep white matter. The
first region, in the left frontal lobe, is traversed by white matter tracts
interconnecting the frontal lobe, thalamus and cingulate gyrus. The second
region, in the temporal lobe, is traversed by white matter tracts
interconnecting the frontal lobe, insula, hippocampus-amygdala, temporal
and occipital lobe. This suggests that two networks of white matter tracts
may be affected in schizophrenia, with the potential for ‘disconnection’ of
the gray matter regions which they link.”

5.1. Summary

In summary, the evidence for a systemic dysfunctional integration
from non-invasive studies of schizophrenia is overwhelming. Much of
this evidence is circumstantial and predicated on measures of functional
connectivity; i.e., correlations or coherence among measures of neuro-
physiology. The consensus of these findings is a functional
dysconnection involving prefrontal cortex and key subcortical (e.g., tha-
lamic) and associative cortical (e.g., temporal) nodes. Recent (dynamic
causal) modelling of intrinsic (within source) and extrinsic (between
source) connectivity suggests a specific failure of intrinsic gain within
the prefrontal cortex or descending modulation of synaptic efficacy in
hierarchically subordinate structures. So what might mediate these
neuromodulatory failures?

6. The genetics of schizophrenia

In this section, we revisit the dysconnection hypothesis from the
perspective of genetic studies. We review the evidence that the genetic
alterations in schizophrenia have pathogenetic implications for NMIDA
receptors and their interactions with neuromodulatory transmitters.
With the discovery of the DISC1 translocation in a large family with
high penetrant psychosis in 1990 (St Clair et al., 1990), it was hoped
that the genetic architecture of psychosis would quickly emerge. Coarse
genetic mapping techniques in the 1990s facilitated the discovery of a
number of genes associated with schizophrenia via linkage analysis.
The scope of these studies was expanded with the completion of the
HapMap project (International HapMap, 2003), enabling the study
of large cohorts of disease singletons using single nucleotide
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polymorphism (SNP) microarray studies. Many large-scale genome
wide association studies (GWAS) of thousands of schizophrenia pa-
tients and controls have now been performed, identifying many associ-
ations between genetic variants and psychosis (Ripke et al., 2013).

Despite the large number of associations, SNPs only account for up to
23% of the variation in liability for schizophrenia (Lee et al., 2012), with
odds ratios of only 1.1-1.25. Additionally, the biological functions of
genes uncovered by GWAS are often unknown, with some strongly as-
sociated SNPs located in poorly characterized pseudo-genes and zinc
finger genes (O'Donovan et al., 2008). However, the largest GWAS
study to date, with 36,000 patients and 113,000 controls, recently iden-
tified more than 100 SNPs with genome-wide significance
(Schizophrenia Working Group of the Psychiatric Genomics, 2014). No-
tably, genes related to NMDAR function and plasticity at glutamatergic
synapses featured prominently (see Fig. 4 and Table 1). These included
genes encoding the NR2B subunit (GRIN2A), serine racemase (SRR;
which catalyzes the production of b-serine, a co-agonist at NMDA recep-
tors), the GIuR1 subunit of AMPA receptors (GRIA1), and various genes
encoding calcium channels critical for plasticity at glutamatergic synap-
ses. Further genes identified by this study implicated receptors whose
activation is known to modulate NMDAR function, including the D2 re-
ceptor (DRD2) and the metabotropic glutamate receptor 3 gene
(GRM3).

Beyond SNPs, recent advances in genomics have allowed new sorts
of genetic variation to be examined. Application of exome capture and
sequencing has identified rare, putatively damaging mutations in multi-
ple genes related to NMDAR function in multiplex families (Timms et al.,
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2013). In addition, trio based study designs (two healthy parents and a
mentally ill child) have revealed that schizophrenic patients carry a
higher burden of non-synonymous and deleterious de novo SNPs (var-
iants that result from a new mutational event and are unique to the
child) than normal controls (Girard et al., 2011; Xu et al,, 2011), some
of which have been replicated in unrelated patients (Xu et al., 2012).
The importance of de novo mutations also fits with the observation
that children of older fathers have a two-fold increase in risk for schizo-
phrenia (Kong et al., 2012). Patients with schizophrenia carry a higher
number of these de novo mutations than controls (Fromer et al., 2014;
Kenny et al., 2014).

Copy number variants (CNVs) have also been investigated in psy-
chosis. For example 25-30% of adult patients with 22q11.2 deletion syn-
drome (DiGeorge Syndrome), a deletion which includes the COMT gene
- of relevance for dopamine metabolism (Gothelf et al., 2014) - suffer
from schizophrenia (Murphy et al., 1999), making this one of the
highest-penetrance genetic changes involved in schizophrenia to date.
Other CNVs have also been identified which are significantly associated
with schizophrenia (Kirov et al,, 2014). Again, a number of duplications
and deletions of NMDA-related genes have been discovered to be
strongly associated with schizophrenia: e.g., (Rujescu et al., 2009).

These findings have refined our understanding of the genetic archi-
tecture of schizophrenia (Fig. 4). Moving beyond the simplistic com-
mon-variant-common-disease and rare-variant-common-disease
models considered previously, it is now clear that disease susceptibility
is most likely due to the interaction of multiple genetic changes - of
which a notable subset relates to NMDAR function and its interaction
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Fig. 4. Genes associated with schizophrenia that are implicated in NMDA-receptor function and its interaction with modulatory neurotransmitter systems. Genes with high evidence -
genome-wide significance or identified as the relevant gene in a common schizophrenia-associated duplication or deletion - are shown in dark green. Genes with less evidence -
replication in two association and/or linkage studies in two different populations, or carrying a rare or de novo deleterious mutation in a patient - are shown in light green. The gene

products and functions of these genes are listed in Table 1.


Image of Fig. 4

90

Table 1

K. Friston et al. / Schizophrenia Research 176 (2016) 83-94

Lists of genes that are associated with schizophrenia. A list of specific citations for the table entries is available from the authors. See also (Schizophrenia Working Group of the Psychiatric

Genomics, 2014).

I. Gene

II. Evidence

III. Gene product

IV. Known Functions

Genes reported with genome-wide significance, or showing strong evidence for pathogenicity within deletions/duplications

NMDAR/GRIN2A GWAS NMDA receptor subunit Lynchpin of synaptic plasticity at glutamatergic synapses
GRM3 GWAS Metabotropic glutamate receptor 3 May influence synaptic glutamate levels or NMDA receptor exocytosis
(mGIuR3)
AMPAR/GRIA1A GWAS lonotropic glutamate receptor Influences postsynaptic glutamate responsiveness.
subunit
CACNAIC GWAS CaV1.2 voltage-gated calcium channel Important in NMDA-independent synaptic plasticity in the hippocampus
subunit
NRGN GWAS Neurogranin - calmodulin-binding Contributes to regulation of post-synaptic calcium levels and long-term potentiation
protein
MIR137 GWAS mir137 - microRNA Interferes with transcription of target mRNAs including CACNA1C, DPYD, CSMD1, ZNF804A and
TCF4
TCF4 GWAS Transcription Factor 4 Targets may include other important schizophrenia related genes as well as stress/survival and
developmental pathways. Haploinsufficiency causes Pitt-Rivers syndrome, a mental retardation
syndrome.
C100rf26 GWAS Unknown Unknown
CACNB2, GWAS Voltage-gated calcium channel Unknown
CACNALI, subunit
CACNA1C
ZNF804A GWAS Zinc Finger Protein transcription Unknown
factor
TSNARE1 GWAS
EPHX2 GWAS Epoxide hydrolyse 2 Inhibition reverses PCP (and NMDA antagonist)-induced changes to behavior in mice
SRR GWAS Serine racemase Converts L-serine to D-serine, a co-agonist of NMDA receptors. Mouse SRR knockouts
demonstrate NMDA hypofunction
DRD2 GWAS Dopamine receptors DRD2 is the main site of antipsychotic action
SLC38A7 GWAS Glutamine transporter May be involved in glutamate recycling in the synaptic cleft
PLCH2 GWAS Intracellular calcium receptor Involved in calcium signalling during neural development
NRXN1 Deletion, rare Multiple splice variants yield Involved in the formation, stabilisation and remodelling of both glutamatergic and glycinergic
mutation neurexins - cell-cell adhesion synapses together with NLGN.
molecules
MEF2C GWAS Transcription factor Allosteric modulator of the NMDA receptor
CNNM2 GWAS Cyclin M2 Important in renal regulation of magnesium
VIPR2 Duplication G-protein-coupled VIPR receptor VIP known to regulate NMDA receptor activity in the hippocampus.

Genes with weaker evidence of linkage to schizophrenia

NRG1-ErbB4 signalling pathway causes reduction of NMDA currents and long-term plasticity via
phosphorylation of NR2B subunit.

G72 activates DAOA, which in turn degrades p-serine, a potent co-agonist at the glycine site of the
NMDA receptor.

Post-synaptic density protein involved in synaptic spine formation, NMDAR trafficking and
presynaptic glutamate release. Also stabilises serine racemase.

Post-synaptic density protein which controls NMDAR expression, NMDA-mediated glutamate
currents and glutamate release.

Degrades dopamine and noradrenaline

Physically coupled to NMDAR at the post-synaptic density; co-activation potentiates NMDA

Influences the levels of mGIuR5

Competes for NMDA binding site on PSD-95 structural protein
Competes for NMDA binding site on PSD-95 structural protein
NMDA receptor agonist at the glutamate binding site

NRG1 Association
ErbB4 Association
G72 Association p-amino acid oxidase activator
DAAO Association p-amino acid oxidase
DISC1 Association, Disrupted in schizophrenia-1
linkage
DTNBP1 Association, Dysbindin
linkage
COMT Linkage, deletion Catechol-O-methyltransferase
CHRNA7 Association, Acetylcholine receptor
linkage
GRM5 Rare mutation Metabotropic glutamate receptor 5
(mGIuR5) currents
PPEF2 Rare mutation Calmodulin-binding phosphatase
LRPB1 Rare mutation LDL-like receptor
LRP1 Rare mutation LDL-like receptor
PRODH Linkage, Proline dehydrogynase
deletion, rare
mutation

with dopamine. Common variation with low penetrance along with en-
vironmental factors may be sufficient to trigger schizophrenia in some
patients. Rare high penetrance variants will contribute to the pathology
in some patients, possibly leading to severe, early-onset disease (Ahn et
al., 2014). In short, the high heritability of schizophrenia is probably
caused by alleles that individually are neither necessary nor sufficient
to cause disease.

6.1. Summary

Recent advances in the genetics of schizophrenia suggest a central
role of the NMDA receptor and its interactions with modulatory trans-
mitters in the pathogenesis of schizophrenia. Fig. 4 highlights genes im-
plicated in the modulation of synaptic efficacy that have been associated
with schizophrenia. These genes relate to the NMDAR and its

interactions with neuromodulatory systems that are, in turn, under con-
trol of afferent projections from cortex with NMDAR-dependent plastic-
ity (Bonci and Malenka, 1999); e.g., prefrontal connections targeting
midbrain dopamine neurons (Sesack and Carr, 2002).

In terms of the dysconnection hypothesis, the genetic evidence
points away from Wernicke's sejunction hypothesis and towards a pri-
mary synaptic abnormality: although white matter pathway disruption
is an important anatomical finding in schizophrenia, the evidence sug-
gests that developmental failures of axon guidance are unlikely to be
the primary aetiology. NMDAR hypofunction disrupts the formation of
dendritic spines and growth of dendritic trees (Monfils and Teskey,
2004; Sin et al., 2002), as well as the myelination of axons (Lundgaard
et al., 2013). This means that white matter changes can be explained
as a consequence of aberrant modulation of synaptic plasticity via
NMDA receptors, but not vice versa. This conclusion speaks to the
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exciting prospect of neurogenetic connectivity studies. Proof of princi-
pleis already at hand in, for example, effective connectivity studies of al-
lelic variation in bipolar disorder. “During perception of fearful faces, the
presence of the A risk [CACNA1C] allele was associated with decreased
outflow of information from medial frontal gyrus, which was signifi-
cantly more marked in patients than in their unaffected relatives and
healthy controls” (Radua et al., 2013). Again, we see a selective failure
of descending connectivity from the prefrontal cortex.

7. Conclusion

Neuroimaging correlates of dysconnection have been shown to be
stable over time, heritable and can differentiate between patients and
controls (Khadka et al, 2013). These systemic measures of
dysconnection may therefore serve as neurobiological indices for defin-
ing subgroups of schizophrenic patients. For example, (Brodersen et al.,
2014) identified, in an unsupervised way, three distinct subgroups of
schizophrenic patients from estimates of prefrontal-parietal-visual con-
nectivity using DCM and a working memory task. Although the search
for gold-standard measures of effective connectivity is on-going, there
are several well validated phenotypes that depend on intact NMDAR
function and neuromodulation. For example, patients with schizophre-
nia show significantly reduced amplitudes of the mismatch negativity
(Umbricht and Krljes, 2005), which can be explained by reduced intrin-
sic and extrinsic connectivity in the auditory system (Dima et al., 2012;
Garrido et al.,, 2007). Importantly, the MMN is sensitive to manipula-
tions of NMDA and cholinergic receptors (Garrido et al., 2009;
Gil-da-Costa et al., 2013). Furthermore, the MMN abnormalities seen
in schizophrenia might be attributable to changes in NMDAR-depen-
dent plasticity of forward connections in the auditory system
(Schmidt et al,, 2013). Interestingly, recent applications of DCM to elec-
trophysiological data suggest that “differential intrinsic recurrent con-
nectivity observed during processing of predictable versus
unpredictable targets was markedly attenuated in schizophrenia pa-
tients” (Fogelson et al., 2014). Important schizophrenia risk variants
are known to influence MMN; for example, a GRM3 variant influences
its amplitude (Marenco et al., 2006). This is potentially important,
given that mGIuR3 receptors regulate NMDAR function (Trepanier et
al., 2013). Furthermore, carrying risk variants in the single remaining
COMT and PRODH alleles in 22q11 deletion syndrome reduces its am-
plitude (Zarchi et al., 2013), as with deletion of a NGL1 allele in mice
(Ehrlichman et al., 2009). There may be interesting twist to the MMN
story schizophrenia: in large cohort studies the reduction in the MMN
amplitude shows a large effect size (Light et al., 2015); however, the
correlation between the MMN and symptoms is not necessarily high
(Wynn et al,, 2010). This raises intriguing questions about the underly-
ing trait abnormalities that implicate a failure to modulate synaptic effi-
cacy, relative to the (possibly compensatory) state abnormalities that
produce symptoms and signs.

Measures of functional connectivity have also been found to have a
genetic basis. A meta-analysis (Mothersill et al., 2012) found that puta-
tive schizophrenia risk variants in genes including ZNF804A, PRODH,
DISC1 and PPP1R1B, reduced functional connectivity, while the genetic
changes examined had no overall effect on structural connectivity. This
is interesting given the precedence afforded to synaptic pathology (over
axonal pathology) by the dysconnection hypothesis.

7.1. Summary

Perhaps the best way to conclude is to think about how we would
describe schizophrenia to a patient or relative. On the basis of the
above, one could plausibly say:

« At present, our best guess is that schizophrenia is caused by de novo or
inherited mutations of one or more genes that influence the expres-
sion of (other genes and) proteins mediating the neuromodulation

of synaptic efficacy or postsynaptic gain in specific brain systems; par-
ticularly prefrontal systems.

We think that this molecular pathology arises from an abnormal re-
sponse of the NMDA receptor to specific (e.g. dopaminergic)
neuromodulatory receptor activation. This is important because the
NMDA receptor mediates activity-dependent changes in postsynaptic
gain and subsequent changes in synaptic efficacy.

* The consequences of this abnormal neuromodulation can be diverse;
ranging from dendritic and cytoarchitectonic changes, through to ac-
tivity-dependent changes in myelination, which can be observed mi-
croscopically (post-mortem) and macroscopically (using non-
invasive neuroimaging).

The physiological consequences of abnormal gain control are also
expressed in terms of a failure to modulate synchronous gain and ab-
normalities in the coherence of neurophysiological measurements. It
is likely that this involves secondary abnormalities in GABAergic neu-
rotransmission that can be summarized as a failure to optimize excita-
tion-inhibition balance or cortical gain control.

The psychological consequences of failing to modulate synaptic gain
can be understood by appreciating that the brain generates hypothe-
ses or beliefs that best explain sensory evidence. A crucial aspect of
this process is the encoding of precision or uncertainty that is neces-
sary to select the salient information that updates and contextualizes
our beliefs. This attentional selection depends on modulating synaptic
gain.

A failure of neuromodulatory mechanisms that control synaptic effica-
cy or postsynaptic gain corresponds, functionally, to an inability to
augment (attend) or attenuate (ignore) the precision of sensory evi-
dence, relative to the precision of beliefs about the causes of sensory
cues. This can lead to false inference (e.g., hallucinations and delu-
sions) that may reflect the brain's attempt to compensate for a perni-
cious and fundamental attentional failure.

The particular (prefrontal and dopaminergic) systems implicated in
the pathophysiology of schizophrenia may be particularly compro-
mised at later stages of neurodevelopment - or environmental factors
that could induce a circular causality (e.g., drug misuse in adoles-
cence).

A further consequence of false inference is compromised learning that
rests on activity-dependent associative plasticity. This means that
false inference associated with the positive symptoms of schizophre-
nia may go hand-in-hand with impaired learning and associated cog-
nitive difficulties.

Clearly, this summary is rather speculative: to close the explanatory
gap between pathophysiology at the molecular (synaptic) level and the
psychopathology experienced by patients, we still need to identify the
links between abnormal synaptic integration, polygenetic predisposi-
tion, epigenetics, region-specific gene expression and the implications
for hierarchical inference in the brain. Such studies are now starting to
appear; e.g., (Mukai et al., 2015; Sigurdsson et al., 2010; Tamura et al.,
2016) and one might hope that a complete picture of schizophrenia
(or the schizophrenias) will emerge over the next decade or so.
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