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This paper considers goal-directed decision-making in terms of embodied or

active inference. We associate bounded rationality with approximate Bayesian

inference that optimizes a free energy bound on model evidence. Several con-

structs such as expected utility, exploration or novelty bonuses, softmax choice

rules and optimism bias emerge as natural consequences of free energy mini-

mization. Previous accounts of active inference have focused on predictive
coding. In this paper, we consider variational Bayes as a scheme that the brain

might use for approximate Bayesian inference. This scheme provides formal

constraints on the computational anatomy of inference and action, which

appear to be remarkably consistent with neuroanatomy. Active inference con-

textualizes optimal decision theory within embodied inference, where goals

become prior beliefs. For example, expected utility theory emerges as a special

case of free energy minimization, where the sensitivity or inverse temperature

(associated with softmax functions and quantal response equilibria) has a

unique and Bayes-optimal solution. Crucially, this sensitivity corresponds

to the precision of beliefs about behaviour. The changes in precision during

variational updates are remarkably reminiscent of empirical dopaminergic

responses—and they may provide a new perspective on the role of dopamine

in assimilating reward prediction errors to optimize decision-making.
1. Introduction
This paper considers decision-making and action selection as variational Bayesian

inference. It tries to place heuristics in decision theory (in psychology) and

expected utility theory (in economics) within the setting of embodied or active

inference. In brief, we treat the problem of selecting behavioural sequences or pol-

icies as an inference problem. We assume that policies are selected under the prior

belief that they minimize the difference (relative entropy) between a probability

distribution over states that can be reached and states that agents believe they

should occupy. In other words, choices are based upon beliefs about alternative

policies, where the most likely policy minimizes the difference between attainable

and desired outcomes. By formulating the problem in this way, three important

aspects of optimal decision-making emerge.

First, because relative entropy can always be decomposed into entropy

and expected utility, the ensuing choices necessarily maximize both expected util-

ity and the entropy over final states. This is closely related to maximizing extrinsic

and intrinsic rewards in embodied cognition and artificial intelligence. In this

setting, utility or extrinsic reward is supplemented with intrinsic reward to ensure

some efficient information gain, exploratory behaviour or control over outcomes.

Important examples here include artificial curiosity [1], empowerment [2],

information to go [3], computational complexity [4] and self-organization in

non-equilibrium systems [5]. In the current setting, a policy that maximizes the

entropy over final states is intrinsically rewarding because it keeps ‘options open’.
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Second, because choices are based upon beliefs about pol-

icies, these beliefs must be associated with a confidence or

precision—that is itself optimized. This furnishes a unique

and Bayes-optimal sensitivity or inverse temperature of the

sort associated with softmax choice rules and quantal

response equilibria (QRE) [6].

Third, because beliefs about policies depend upon beliefs

about the current state of the world, and vice versa, there is

an inevitable optimism bias [7] in which inferences about

ambiguous states are biased towards those that support an

optimal policy [8].

We motivate the premises that underlie this formulation

and unpack its implications using formal arguments and simu-

lations. These simulations are described in detail in a technical

companion paper [8]. The novel contribution of this work is the

notion that the brain might use variational Bayes for approxi-

mate Bayesian inference—and that this variational scheme

provides constraints on the computational anatomy of infer-

ence and action. In particular, variational Bayes specifies a

unique and optimal precision, where Bayesian updates of

expected precision (or confidence about desired outcomes)

look very much like dopaminergic responses—providing a

new interpretation of dopamine that goes beyond reporting

reward prediction errors.

The basic idea behind active inference is that behaviour

can be understood in terms of inference: in other words,

action and perception are integral parts of the same inferen-

tial process and one can only be understood in light of the

other. It is fairly straightforward to show that self-organizing

systems are necessarily inferential in nature [9]. This notion

dates back to Helmholtz and Ashby [10–12] and has been

formalized recently as minimizing a variational free energy

bound on Bayesian model evidence [13,14]. A corollary of

this active inference scheme is that agents must perform

some form of Bayesian inference. Bayesian inference can be

approximate or exact, where exact inference is rendered tract-

able by making plausible assumptions about the approximate

form of probabilistic representations—representations that

are used to predict responses to changes in the sensorium.

The key question, from this perspective, is how do agents per-

form approximate Bayesian inference? This contrasts with

utilitarian and normative accounts of behaviour, which ask

how agents maximize some expected value or utility function

of their states [15–17].

Normative approaches assume that perfectly rational agents

maximize value [18], without considering the cost of optimiz-

ing behaviour [19]. By contrast, bounded rational agents consider

processing costs and do not necessarily choose the most

valuable option [20]. Most attempts to formalize bounded

rationality focus on the Boltzmann distribution, where optimal

behaviour involves choosing states with a high value or low

energy [4,21]. For example, QRE models assume that choice

probabilities are prescribed by a Boltzmann distribution and

that rationality is determined by a temperature parameter

[6,22]. Related stochastic choice rules have a long history in

psychology and economics, particularly in the form of logit

choice models [23,24]. These choice rules are known as softmax
rules and are used to describe stochastic sampling of actions,

particularly in the context of the exploration–exploitation

dilemma [25,26]. In this setting, the temperature models

the sensitivity of stochastic choices to value, where perfect

rationality corresponds to a very high sensitivity (low tempera-

ture). The purpose of this paper is to suggest that sensitivity
can itself be optimized and corresponds to the confidence

or precision associated with beliefs about the consequences

of choices.

In active inference, there is no value function—free energy

is the only quantity that is optimized. In this context, bounded

rationality is an emergent feature of free energy minimiza-

tion and the value of a state is a consequence of behaviour

producing that state, not its cause. In other words, the con-

sequences of minimizing free energy are that some states are

occupied more frequently than others—and these states

are valuable. Crucially, in active inference, parameters like sen-

sitivity or inverse temperature must themselves minimize free

energy. This means that sensitivity ceases to be a free para-

meter that is adjusted to describe observed behaviour and

becomes diagnostic of the underlying (approximate) Bayesian

inference scheme. We will see that sensitivity corresponds to

the precision of beliefs about the future and behaves in a way

that is remarkably similar to the firing of dopaminergic cells

in the brain. Furthermore, QRE, logit choice models and soft-

max rules can be derived as formal consequences of free

energy minimization, using variational Bayes.

Variational Bayes or ensemble learning is a general and

widely used scheme for approximate Bayesian inference [27].

It rests on a partition of probabilistic representations (approxi-

mate posterior probability distributions) that renders Bayesian

inference tractable. A simple example would be estimating the

mean and precision (inverse variance) of some data, under the

approximating assumption that uncertainty about the mean

does not depend upon uncertainty about the variance and

vice versa. This enables a straightforward computation of

descriptive statistics that would otherwise be extremely diffi-

cult (see [28] for details). Neurobiologically, a partition into

conditionally independent representations is nothing more

than functional segregation—in which specialized neuronal

systems can be regarded as performing variational Bayesian

updates by passing messages to each other. This paper tries

to relate variational Bayes to the functional anatomy of inference

and action selection in the brain. This provides a functional

account of neuronal representations and functional integration

(message passing) among different systems. A particularly

important example will be the exchange of signals among

systems encoding posterior beliefs about precision with sys-

tems representing hidden states of the world and action,

respectively—an exchange we associate with the convergent

control of dopaminergic firing and its divergent influence on

Bayesian updates in the prefrontal cortex and striatum.

Although variational Bayes uses discrete updates, varia-

tional updates still possess a dynamics that can be compared

to neuronal responses, particularly dopaminergic responses.

We focus on this comparison because understanding the com-

putational role of dopamine is important for understanding the

psychopathology and pathophysiology of conditions such as

Parkinson’s disease, schizophrenia and autism. Traditionally,

dopamine has been associated with the reporting of reward

prediction errors [29]. However, this may provide an incom-

plete account of dopamine, because it fails to account for its

putative role in action (e.g. the bradykinesia of Parkinson’s dis-

ease) and perception (e.g. hallucinations and delusions in

schizophrenia). Much of current thinking in computational

psychiatry points to dopamine as mediating a representation

of uncertainty or precision that can account for both false infer-

ence [30–33] and impoverished action [34]. In what follows, we

will see how precision relates to value and thereby resolves the

http://rstb.royalsocietypublishing.org/
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dialectic between the role of dopamine in reporting reward pre-

diction errors and as a neuromodulator of action and

attentional selection [35,36].

This paper comprises three sections: §2 introduces active

inference and describes a general model of control or

agency, in which purposeful behaviour rests on prior beliefs

that agents will minimize the (relative) entropy of their final

states. This leads naturally to expected utility theory and

exploration bonuses. §3 considers the inversion of the genera-

tive model using variational Bayes, with a special focus on

belief updates and message passing. §4 considers the impli-

cations for the functional anatomy of inference and decision-

making, namely reciprocal message passing between systems

supporting perceptual inference, action selection and the

encoding of uncertainty or precision.
Soc.B
369:20130481
2. Active inference
This section introduces active inference, in which beliefs about

(hidden or fictive) states of the world maximize model evi-

dence or the marginal likelihood of observations. In contrast

to classic formulations, active inference makes a distinction

between action that is a physical state of the real world and

beliefs about action that we will refer to as control states. This

changes the problem fundamentally from selecting an optimal

action to making optimal inference about control. In other

words, under the assumption that action is sampled from pos-

terior beliefs about control, we can treat decision-making and

action selection as a pure inference problem that necessarily

entails optimizing beliefs about behaviour and its conse-

quences. Sampling actions from posterior beliefs is known

as Thompson sampling [37,38]; see [38] which is especially

relevant as it provides a free energy derivation.

The following summarizes the material in ref. [8]. We use

bold-italic typeface to indicate true states of the world and

italic typeface for hidden or fictive states assumed by an

agent. The parameters (expectations) of categorical distri-

butions over discrete states s [ {1, . . . , J} are denoted by J � 1

vectors s_ [ [0, 1], while the � notation denotes sequences of

variables over time.

Definition. Active inference rests on the tuple (V, S, A, P,

P, Q, R, S, U)

— A finite set of observations V.

— A finite set of true states and actions S � A.

— A finite set of fictive or hidden states S � U.

— A generative process over observations, states and action

R(~o, s̃, ~a) ¼ Pr ({o0, . . . , ot} ¼ ~o, {s0, . . . , st} ¼ s̃,

{a0, . . . , at} ¼ ~a).

— A generative model over observations and hidden states

P(~o, ~s, ~ujm) ¼ Pr ({o0, . . . , ot} ¼ ~o, {s0, . . . , st} ¼ ~s,

{ut, . . . , uT} ¼ ~u).

— An approximate posterior probability over hidden states with

expectations m [ Rd such that Q(~s, ~ujm)¼Pr ({s0, . . . , st}¼~s,

{ut, . . . , uT} ¼ ~u).
Remarks. In this set-up, the generative process describes tran-

sitions among real states of the world that depend upon

action and generate outcomes. This process models the

environment that the agent samples through action. Actions
are sampled from approximate posterior beliefs based on a

model of the generative process. In the generative model,

actions A are replaced by control states U. The generative

model is embodied by an agent (denoted by m) that is coupled

to the environment through observations (sampled from the

generative process) and actions (sampled from its posterior

beliefs). Finally, approximate posterior beliefs about hidden

states S � U are encoded by expectations m [ Rd.

As it stands, this definition does not describe a process.

This is because the dependencies among real states and

expectations are not specified. In other words, the agent’s

generative model of observations P(~o, ~s, ~ujm) and its approxi-

mate posterior distribution over their causes Q(~s, ~ujm) does

not refer to the process of eliciting outcomes through action

R(~o, s̃, ~a). To couple the agent to its environment, we have

to specify how its expectations depend upon observations

and how its action depends upon expectations. In active

inference, the expectations minimize free energy and the

ensuing beliefs about control states prescribe action

mt ¼ arg minm F(~o, m)

Pr (at ¼ ut) ¼ Q(utjmt)

F(~o, m) ¼ DKL[Q(~s, ~ujm)jjP(~s, ~uj~o)]� ln P(~ojm):

9>=
>; (2:1)

In summary, the environment is characterized as a distri-

bution R(~o, s̃, ~a) over observations, true states and action,

whereas the agent is characterized by two distributions: a

generative model P(~o, ~s, ~ujm) that connects observations to

hidden states and posterior beliefs about those states

Q(~s, ~ujm) parametrized by its expectations. True states control

environmental responses but are never observed directly.

Instead, the agent infers hidden states based on its obser-

vations. Crucially, these hidden states include control states

that prescribe action. Here, the generative model plays a dual

role—it is a predictive model over observations and encodes

optimal policies (in terms of prior beliefs about control

states). The agent and the environment interact in cycles. In

each cycle, the agent first figures out which hidden states are

most likely by optimizing its expectations with respect to the

free energy of observations. After optimizing its posterior

beliefs, an action is sampled from the posterior marginal over

control states. The environment then picks up this action,

generates a new observation and a new cycle starts.

The optimization above is that usually portrayed in terms of

perception (inference about hidden states) and action (a choice

model in which action is a function of inferred states). Action

and perception couple the agent to the environment; where

expectations depend upon observations—through perception,

whereas observations depend upon expectations—through

action. Usually, expectations are associated with neuronal

activity or connection strengths and action is associated with

the state of effectors. In brief, expectations about the state

of the world minimize free energy, while action is selected

from the ensuing posterior beliefs about control states.

The expression for free energy above shows that it upper

bounds the negative logarithm of Bayesian model evidence

� ln P(~ojm) or surprise. This is because the relative entropy or

Kullback–Leibler (KL) divergence term cannot be less than

zero [27]. This means minimizing free energy corresponds to

minimizing the divergence between the approximate and

true posterior. This formalizes the notion of unconscious

http://rstb.royalsocietypublishing.org/
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Figure 1. Upper panel: a schematic of a hierarchical generative model with discrete states. The key feature of this model is that it entertains a subset of hidden
states called control states. The transitions among one subset depend upon the state occupied in the other. Lower panels: this provides an example of a particular
model with two control states; reject (stay) or accept (shift). The control state determines transitions among hidden states that comprise a low offer ( first state), a
high offer (second state), a no-offer state (third state) and absorbing states that are entered whenever a low (fourth state) or high (fifth state) offer is accepted. The
probability of moving from one state to another is unity, unless otherwise specified by the transition probabilities shown in the middle row. The (hazard rate)
parameter r controls the rate of offer withdrawal. Note that absorbing states—that re-enter themselves with unit probability—render this Markovian process
irreversible. We will use this example in later simulations of choice behaviour.
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inference in perception [10,39,13] and, under some simplifying

assumptions, reduces to predictive coding [40].

In summary, minimizing free energy corresponds to

approximate Bayesian inference and, in active inference,

choosing the least surprising outcomes. However, if

agents model their environment, they have to entertain pos-

terior beliefs about the control of state transitions producing

outcomes. This means that we have moved beyond classical

formulations—in which deterministic actions are selected—

and have to consider posterior beliefs about putative

choices. In §2a, we consider the optimization of posterior

beliefs and the confidence or precision with which these

beliefs are held.
(a) A generative model of goal-directed agency
Surprise or model evidence is an attribute of a generative

model. This model comprises prior beliefs that determine

the states an agent frequents. It is these beliefs that specify

the attracting states (goals) that action will seek out—to

avoid surprise. We now consider how prior beliefs can be

understood in terms of expected utility.

The models we consider rest on transitions among hidden

states that are coupled to transitions among control states. This

coupling is illustrated in the upper panel of figure 1. Here, con-

trol states modify the transition probabilities among hidden
states, while hidden states modify the transitions among con-

trol states (as denoted by the connections ending with

circles). This form of model allows context-sensitive-state tran-

sitions among states generating outcomes—that themselves

can induce changes in the control states providing that context.

The lower panels of figure 1 depict a particular example that we

will use later.

The generative model used to model these (finite horizon

Markovian) processes can be expressed in terms of the fol-

lowing likelihood and prior distributions over observations

and hidden states to time t [ (0, . . . , T) and subsequent

control states (omitting normalization constants)

P(~o,~s, ~u, gj~a, m)¼P(~oj~s)P(~s, ~ujg, ~a)P(gjm)

P(~oj~s)¼P(o0js0)P(o1js1) . . .P(otjst)

P(~s, ~ujg, ~a)¼P(~ujst, g)P(stjst�1, at�1) . . .P(s1js0, a0)P(s0jm)

lnP(~ujst, g)¼ g �Q
Q(~ujst)¼�DKL[P(sT jst, ~u)jjP(sT jm)]:

9>>>>>>=
>>>>>>;

(2:2)

The first equality expresses the generative model in terms of

the likelihood of observations given the hidden states

(first term), while subsequent terms represent empirical prior

beliefs. Empirical priors are just probability distributions over

unknown variables that depend on other unknown variables.

The likelihood says that observations depend on, and only on,

http://rstb.royalsocietypublishing.org/
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concurrent hidden states. The third equality expresses beliefs

about state transitions that embody Markovian dependen-

cies among successive hidden states. For simplicity, we have

assumed that the agent knows its past actions by observing

them. The important part of this generative model lies in the

last equalities—describing prior beliefs about control sequences

or policies that determine which action is selected next.

These beliefs take the form of a Boltzmann distribution,

where the policy with the largest prior probability minimizes

the relative entropy or divergence between the distribution

over final states—given the current state and policy—and

the marginal distribution over final states. This marginal

distribution defines the agent’s goals in terms of (desired)

states the agent believes it should end up in. One can inter-

pret the negative divergence Q(~ujst) as the value of policies

available from the current state. In other words, a valu-

able policy minimizes divergence between expected and

desired states. We use Q(~ujst) in analogy with action-value

in Q-learning [41].

Crucially, the precision of beliefs about policies is deter-

mined by a hidden variable g [ Rþ that has to be inferred.

We will see in §3 that the expected precision minimizes vari-

ational free energy in exactly the same way as expectations

about hidden states. There is nothing mysterious about this:

we estimate the precision of estimators—by minimizing vari-

ational free energy or marginal likelihood—in everyday data

analysis when estimating their standard error. In our setting,

the expected precision reflects the confidence that goals can

be reached from current state. In other words, it encodes

the confidence placed in beliefs about optimal outcomes,

given observations to date. Note that expected precision is

context sensitive and, unlike classical sensitivity parameters,

changes with each observation. In summary, this model rep-

resents past hidden states and future choices, under the belief

that controlled transitions from the current state will mini-

mize the divergence between the distribution over final

states and desired states.
(b) Prior beliefs, entropy and expected utility
Basing beliefs about choices on relative entropy is formally

related to KL optimization; particularly, risk sensitive control

(e.g. [42]). This is also a cornerstone of utility-based free

energy treatments of bounded rationality [4,21]. These schemes

consider optimal agents to minimize the KL divergence

between controlled and desired outcomes. All we have done

here is to equip agents with prior beliefs that they are KL opti-

mal. These beliefs are then enacted through active inference.

The advantage of doing this is that the precision of beliefs

about control (i.e. sensitivity to value) can now be opti-

mized—because we have cast optimal control as an inference

problem. These arguments may seem a bit abstract but, hap-

pily, familiar notions like exploration, exploitation and

expected utility emerge as straightforward consequences.

The KL divergence can be thought of as a prediction

error—not between expected and observed outcomes—but

between the final outcomes predicted with and without con-

sidering the current state. In other words, the difference

between what can be attained from the current state and the

goals encoded by prior beliefs. Unlike classic reward prediction

errors, this prediction error is a divergence between probability

distributions over states, as opposed to a scalar function of

states. Value is the complement of this divergence, which
means that the value of the current state decreases when a pre-

viously predicted reward can no longer be reached from the

current state.

Mathematically, value can be decomposed into two terms

that have an important interpretation

Q(~ujst) ¼ H[P(sT jst, ~u)]|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
exploration bonus

þ
X

sT

P(sT jst, ~u)c(sT jm)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
expected utility

: (2:3)

The first is the entropy (intrinsic reward) of the distribution over

final states, given the current state and policy. The second is the

expected utility of the final state, where utility (extrinsic reward)

or negative cost is the log probability of the final state under the

priors encoding goals: c(sT jm) ¼ ln P(sT jm).

This decomposition means that agents (believe they) will

maximize the entropy of their final states while, at the same

time, maximizing expected utility. The relative contribution of

entropy and expected utility depends upon the relative utility

of different states. If prior goals are very precise (informative),

they will dominate and the agent will (believe it will) maxi-

mize expected utility. Conversely, with imprecise (flat)

priors—that all final states are equally likely—the agent

will keep its options open and maximize the entropy over

those states: in other words, it will explore, according to the

maximum entropy principle [43]. This provides a simple

account of exploration–exploitation that is consistent with

expected utility theory. The entropy term implies that (beliefs

about) choices are driven not just to maximize expected value

but to explore options in a way that confers an exploratory

aspect on behaviour. In the absence of (or change in) beliefs

about ultimate states, there will be a bias towards visiting all

(low cost) states with equal probability. Similarly, the novelty
bonus [44] of a new state is, in this formulation, conferred by

the opportunity to access states that were previously unavail-

able—thereby increasing the entropy over final states. This

means that the value of a choice comprises an exploration

bonus and an expected utility, where the former depends

upon the current state and the latter does not.

In summary, if agents occupy a limited set of attracting

states, their generative models must be equipped with prior

beliefs that controlled state transitions will minimize the

divergence between a distribution over attainable states and

a distribution that specifies states as attractive. These prior

beliefs can be expressed in terms of a KL divergence that

defines the value of policies. This value is the same objective

function in KL control schemes that grandfather conventional

utility-based schemes [4,45]. The value of a policy can be

decomposed into its expected utility and an exploration or

novelty bonus that corresponds to the entropy over final

states. In this setting, notions like value, expected utility

and exploration bonus are consequences of the underlying

imperative to minimize (relative) entropy. The balance

between exploration (entropy) and exploitation (expected

value) is uniquely determined by the relative utility of

future states—not by inverse temperature: the sensitivity or

precision applies to both exploratory and utilitarian behav-

iour. In other words, explorative behaviour is not just a

random version of exploitative behaviour but can itself

be very precise, with a clearly defined objective (to maxi-

mize the entropy of final outcomes). We will see in §4c that

precision plays a different and fundamental role in moderat-

ing an optimism bias when forming beliefs about hidden states
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of the world [7]. First, we need to consider the form of the

generative model and its inversion.
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3. Variational Bayesian inversion
This section illustrates active inference using the genera-

tive model in §2 and its variational Bayesian inversion. To

simplify notation, we represent allowable policies with

p [ {1, . . . , K}, where each policy prescribes a sequence of

control states (~ujp) ¼ (ut, . . . , uT jp). The model considered

here is parametrized as follows (omitting constants):

P(ot¼ ijst¼ j, A)¼Aij

P(stþ1¼ ijst¼ j,p, B)¼B(utjp)ij

lnP(p¼ ijst¼ j,g, Q)¼g �Qij

P(sT¼ ijc)¼ ci

P(s0¼ ijd)¼di

P(gjm)¼G(a,b)

P(sT¼ ijst¼ j,p, c)¼T(p)ij

T(p)¼B(utjp)B(utþ1jp) . . .B(uT jp)

Qij¼ lncT �T(p¼ i)j� lnT(p¼ i)T
j �T(p¼ i)j:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(3:1)

The categorical distributions over observations, given

the hidden states, are parametrized by the matrix A that

maps from hidden states to outcomes. Similarly, the tran-

sition matrices B(utjp) encode transition probabilities from

one state to the next under the current policy. The vectors c

and d encode the prior distribution over the last and

first states, respectively. The former specify utility

c(sT jm) ¼ ln P(sT jm) ¼ ln c. The prior over precision has a

standard g-distribution with shape and rate parameters (in

this paper) a ¼ 8 and b ¼ 1. The matrix Q contains the

values of the ith policy from the jth hidden state and T(p)

encodes the probability of transition from the current state

to a final state, under a particular policy. This is simply the

iterated composition of the appropriate transition matrices

from the present time until the end of the game.

(a) Approximate Bayesian inference
Having specified the generative model, we now need to

find the expectations that minimize free energy. Vari-

ational Bayes provides a generic scheme for approximate

Bayesian inference that finesses the combinatoric and analytic

intractability of exact inference [27,46]. Variational Bayes rests

on a factorization of approximate posterior beliefs that greatly

reduces the number of expectations required to encode it. The

particular factorization we focus on exploits the Markovian

nature of the generative model and has the following form

(see [8] for details).

Q(~s, ~u, gjm) ¼ Q(s0js_0) . . . Q(stjs_t)Q(ut, . . . , uT jp_)Q(gjg_)

Q(gjg_) ¼ G(a, b
_

)

b
_ ¼ a

g
_

:

9>>>>=
>>>>;

(3:2)

This assumes a factorization over (past) hidden states,

(future) control states and precision. The details of the

mean field assumption above are not terribly important.
The main point is that the formalism of variational Bayes

allows one to specify constraints on the form of the approxi-

mate posterior that makes prior assumptions or beliefs about

choices explicit. For example, in ref. [47], we used a mean

field assumption where every choice could be made at

every time point. Equation (3.2) assumes that the approxi-

mate marginal over precision is, like its conjugate prior, a

g-distribution—where the rate parameter is optimized.

This rate parameter b
_ ¼ a=g_ corresponds to temperature in

classic formulations. However, it is no longer a free parameter

but a sufficient statistic of the unknown precision of beliefs

about policies.

Given the generative model in equation (3.1) and the

mean field assumption in equation (3.2), the expectations

can be expressed as functions of themselves [8] to produce

the following remarkably simple variational updates, where

s(�) is a softmax function

s_t ¼ s( ln AT � ot þ ln B(at�1) � s_t�1 þ g
_ �QT � p_)

p
_ ¼ s(g

_ �Q � s_t)

g
_ ¼ a

b� p
_T �Q � s_t

:

9>>>=
>>>;

(3:3)

By iterating these equalities until convergence, one obtains a

solution that minimizes free energy and provides Bayesian

estimates of the hidden variables. This means the expec-

tations change over two timescales—a fast timescale that

updates posterior beliefs given the current observations—

and a slow timescale that updates posterior beliefs as new

observations arrive and action is taken. We have speculated

[47] that these updates may be related to nested electro-

physiological oscillations, such as phase coupling between

g- and u-oscillations in prefrontal–hippocampal interactions

[48]. This speaks to biological implementations of variational

Bayes, which we now consider in terms of neuronal and

cognitive processing.
4. The functional anatomy of decision-making
The computational form of variational Bayes resembles many

aspects of neuronal processing in the brain: if we assume that

neuronal activity encodes expectations, then the variational

update scheme could provide a metaphor for functional segre-
gation—the segregation of representations, and functional
integration—the recursive (reciprocal) exchange of expec-

tations during approximate Bayesian inference. In terms of

the updates themselves, the expectations of hidden states

and policies are softmax functions of (mixtures of) the

other expectations. This is remarkable because these updates

are derived from basic variational principles and yet have

exactly the form of neural networks that use, integrate and

fire neurons. Furthermore, the softmax functions are of

linear mixtures of expectations (neuronal activity) with one

key exception—the modulation by precision when updat-

ing beliefs about the current state and selecting the next

action. It is tempting to equate this modulation with the

neuromodulation by dopaminergic systems that send projec-

tions to (prefrontal) systems involved in working memory

[49,50] and striatal systems involved in action selection

[51,52]. We now consider the variational updates from a

cognitive and neuroanatomical perspective (see figure 2 for

a summary):
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(a) Perception
The first updates beliefs about the state of the world using

observations and beliefs about the preceding state and action.

However, there is a third term based upon the expected

value of each state, averaged over policies. This can be

regarded as an optimism bias in the sense that it biases percep-

tion towards high value states—much like dopamine [7].

Figure 2 ascribes these updates to the frontal cortex—assuming

neuronal populations here encode the current state. Figure 2

should not be taken too seriously: representations of the

current state could have been placed in working memory cir-

cuits in the dorsolateral prefrontal cortex [53], ventromedial

prefrontal cortex or the anterior cingulate cortex, depending

upon the task at hand (e.g. [54]).
(b) Action selection
The second variational update is a softmax function of the

expected value of competing choices under the current

state. Figure 2 places this update in the striatum, where the

expected value of a policy requires posterior beliefs about

the current state from prefrontal cortex and expected pre-

cision from the ventral tegmental area (VTA). Crucially, this

is the softmax choice rule that predominates in QRE and

other normative models [22]. Again, it is remarkable that

this utilitarian rule is mandated by the form of variational

updates. However, utilitarian theories overlook the sym-

metry between the expected value over states—that

provides the value of a choice, and the expected value over

choices—that provides the value of a state. In other words,

there are two expected values, one for action Q � s_ and one

for perception QT �
_
p. Finally, the expected value under

choices and states p_T �Q � s_t specifies the optimal precision
or inverse temperature. Neurobiologically, the softmax

policy updates would correspond to biased competition

among choices, where precision modulates the selection of

competing policies (c.f. [35,36,55]).
(c) Evaluating confidence
The final variational step estimates the precision of beliefs

about policies, using expectations about hidden states and

choices. We have associated expected precision with dopa-

minergic projections from the VTA (and substantia nigra

(SN)), which receive messages from the prefrontal cortex

and striatum.

The basic tenet of this scheme is that precision must be opti-

mized. So what would happen if (estimated) precision was too

high or low? If precision was zero, then perception would be

unbiased and represent a veridical representation of worldly

states. However, there would be a failure of action selection,

in that the value of all choices would be identical. One might

heuristically associate this with the pathophysiology of Parkin-

son’s disease—that involves a loss of dopaminergic cells and a

poverty of action selection. Conversely, if precision was too

high, there would be a predisposition to false perceptual infer-

ence—through an augmented optimism bias. This might be a

metaphor for the positive symptoms of schizophrenia, puta-

tively associated with hyper-dopaminergic states [31]. In

short, there is an optimal precision for any context and the

expected precision has to be evaluated carefully on the basis

of current beliefs about the state of the world.

In summary, increasing precision biases perceptual

inference towards those states that are consistent with prior

beliefs about future (choice-dependent) outcomes and

increases the precision of action selection. Crucially, the
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update for expected precision is an increasing function of

value, expected under current beliefs about states and choices.

This means that the optimal precision depends upon the attain-

ability of goals: if a goal cannot be obtained from the current

state, then precision will be low—reducing confidence in pre-

dictions about behaviour. Conversely, if there is a clear and

precise path from the current state to a goal, then precision

will be high. In short, precision encodes the confidence that a

goal can be attained and reports the expected value—it plays

a dual role in biasing perceptual inference and action selection.

We will now look more closely at the neurobiology of precision

and can consider not just the role of precision but also how it

is controlled by the representations (posterior expectations)

it optimizes.

(d) Precision, dopamine and decision-making under
uncertainty

Figure 3 shows a simulation based on the transition probabil-

ities in figure 1 (see [8] for details). In this ‘limited offer’

game, the agent has to choose between a low offer—that

might be withdrawn at any time—and a high offer—that may

replace the low offer with some fixed probability. The problem

the agent has to solve is how long to wait. If it waits too long, the
low offer may be withdrawn and it will end up with nothing.

Conversely, if it chooses too soon, it may miss the opportunity

to accept a high offer. In this example, the low offer was

replaced with a high offer on the eleventh trial, which the

agent accepted. It accepts because this is most probable

choice, under its prior belief that it will have accepted the

higher offer by the end of the game. The expected probabilities

of staying or shifting are shown in the upper right panel (in

blue and green, respectively), as a function of time for each

trial (thin lines) and the final beliefs (thick lines). The interesting

thing here is that before the high offer, the agent believes that it

will accept the low offer three or four trials in the future. Fur-

thermore, the propensity to accept (in the future) increases

with time (see dotted lines). This means that it waits, patiently,

because it thinks it is more likely to accept an offer in the future

than to accept the current offer.

The expected precision of these posterior beliefs is shown

in the lower left panel and declines gently until the high offer

is made. At this point, the expected precision increases mark-

edly, and then remains high. This reflects the fact that the final

outcome is assured with a high degree of confidence. These

precisions are the expected precisions after convergence of

the variational iterations. The equivalent dynamics in the

lower right panel show the expected precision over all updates
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in terms of simulated dopamine responses. These are a least-

squares deconvolution of the variational updates, using an

exponentially decaying kernel. In other words, these (simu-

lated) dopamine responses reproduce the fluctuations in

expected precision when convolved with an exponential

kernel (with a time constant of eight iterations). This accounts

for the postsynaptic effects of dopamine that, we imagine,

decay after its release. The resulting updates show phasic

responses to the arrival of new sensory information that

converge to tonic values, which minimize free energy.

Many readers will have noted a similarity between the

dynamics of precision and the firing of dopaminergic cells.

In fact, nearly every anatomical and physiological feature

of dopaminergic neurotransmission can be found in these

precision updates:

— expected precision modulates the contribution of expected

value during the optimization of posterior beliefs about the

state of the world and action selection. This fits comfortably

with the broadcasting of dopaminergic signals from the

VTA and SN to the cortex (for perception) by the meso-

cortical system—and to the ventral striatum (for action)

via nigrostriatal projections. Crucially, the mean field

effects implicit in variational Bayes mandate this bi-

lateral (perception and action) dissemination of precision

(dopaminergic) signals;

— precision is updated by posterior expectations from the

representations it modulates. This is consistent with the

projections that control dopaminergic firing in the VTA/

SN that are reciprocated by the targets of the ascending

dopaminergic system. In other words, nearly every

system receiving projections from the VTA projects back

to it [56]. Similarly, the main input to the pars reticulata

of the SN derives from medium spiny cells in the striatum

via the direct and indirect pathways. These pathways orig-

inate in tightly intermingled striatal cells that express

different dopamine receptors [57];

— the effect of precision is to modulate the effect of posterior

expectations about the current state on control and vice

versa. This modulation is exactly congruent with the post-

synaptic effects of dopamine: at a synaptic level,

dopamine activates G-protein-coupled receptors to modu-

late the cAMP second messenger system and modify the

sensitivity of postsynaptic responses to presynaptic inputs;

— the modulatory role of (expected) precision effectively

increases signal to noise during the competition among

posterior beliefs about the state of the world (implicit in

the softmax function), while doing the same for posterior

beliefs about policies. Similarly, dopamine has a dual role

in modulating prefrontal cortical responses in working

memory circuits [58,53], while at the same time playing

a key role in action selection [35,36]. This dialectic may

also be reflected by the role of dopamine in schizophrenia

and Parkinson’s disease [33];

— precision increases monotonically with expected value,

where value is composed of an exploration bonus and

expected value. Similarly, dopamine is traditionally

thought to report novelty, particularly in relation to

action [59] and expected value in the same setting [60];

— precision shows phasic (variational update) dynamics in

response to new sensory information, which converge to

the expected precision. Similarly, dopamine shows

characteristic phasic responses to sensory cues that predict
rewards, which return to tonic firing levels that may

encode uncertainty or predictability [60,61];

— precision increases whenever a predictable path to a goal

is signified by sensory input. For example, the appearance

of a high offer in figure 3 elicits a greater increase in pre-

cision than receipt of the offer per se—or its subsequent

retention. Similarly, dopamine responses are elicited by

sensory cues that, in higher order operant conditioning

paradigms, lead to reward but thereafter ‘remain unin-

fluenced by events that are as good as predicted’ [62].

Indeed, it was the transfer of dopamine responses—

from early to late conditioned stimuli—that motivated

normative theories of reinforcement learning based

upon temporal difference models [29]; and

— precision decreases with the withdrawal of an opportu-

nity to fulfil prior beliefs (shown in [8]). Similarly,

dopamine firing decreases in the absence of an expected

reward [62].

For people familiar with discussions of dopamine in the

context of active inference, the correspondence between pre-

cision and dopaminergic neurotransmission will come as no

surprise—exactly the same conclusions have been reached

when examining predictive coding schemes [34] and hierarch-

ical inference using volatility models [63]. ‘In brief, the

emergent role of dopamine is to report the precision or salience

of perceptual cues that portend a predictable sequence of sen-

sorimotor events. In this sense, it mediates the affordance of

cues that elicit motor behaviour; in much the same way that

attention mediates the salience of cues in the perceptual

domain.’ [34, p. 1].
5. Conclusion
The arguments in this paper can be summarized as follows:

— optimal behaviour can be cast as a pure inference prob-

lem, in which valuable outcomes are defined in terms of

prior beliefs about future states;

— exact Bayesian inference (perfect rationality) cannot be real-

ized physically, which means that optimal behaviour rests

on approximate Bayesian inference (bounded rationality);

— variational free energy provides a bound on Bayesian

model evidence (marginal likelihood) that is optimized

by bounded rational behaviour;

— bounded rational behaviour requires (approximate

Bayesian) inference on both hidden states of the world

and (future) control states. This mandates beliefs about

action (control) that are distinct from action per se—beliefs

that entail a precision;

— these beliefs can be cast in terms of minimizing the rela-

tive entropy or divergence between prior beliefs about

goals and posterior beliefs, given the current state of the

world and future choices;

— value can be equated with negative divergence and com-

prises entropy (exploration or novelty bonus) and

expected utility (utilitarian) terms that account for

exploratory and exploitative behaviour, respectively;

— variational Bayes provides a formal account of how pos-

terior expectations about hidden states of the world,

control states and precision depend upon each other; and

may provide a metaphor for message passing in the brain;
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— beliefs about the state of the world depend upon expected

value over choices, whereas beliefs about choices depend

upon expected value over states. Beliefs about precision

depend upon expected value under both states and choices;

— precision has to be optimized to balance prior beliefs

about choices and sensory evidence for hidden states. In

other words, precision nuances an inherent optimism

bias when inferring the current state of the world;

— variational Bayes induces distinct probabilistic represen-

tations (functional segregation) of hidden states, control

states and precision—and highlights the role of reciprocal

message passing. This may be particularly important for

expected precision that is required for optimal inference

about hidden states (perception) and control states

(action selection); and

— the dynamics of precision updates, and their compu-

tational architecture, are consistent with the physiology

and anatomy of the dopaminergic system—providing an

account of (mesocortical) projections that encode the pre-

cision of valuable states—and (nigrostriatal) projections

that encode the precision of valuable actions.

One might ask why these conclusions do not follow from nor-

mative accounts of optimal behaviour. One reason is that

normative accounts do not distinguish between action and

beliefs about action (control). These beliefs entail both content

(expectations) and confidence (precision). This means that both

expectations about behaviour and the precision of these beliefs

have to be optimized. It is this optimization of precision that

provides a complete account of bounded rationality (approxi-

mate Bayesian inference) and a plausible account of the

control of dopaminergic firing (c.f. [64]).

Clearly, this account of dopamine does not address many

important issues in the neurobiology of dopamine and its mod-

elling. As with most free energy formulations, the objective

is not to replace existing accounts but to contextualize

them—usually by appealing to simpler and more fundamental

imperatives. For example, we have seen that minimizing sur-

prise (or its free energy bound) provides a principled account

of goal-directed behaviour that is not biologically implausible.

Furthermore, this account is consistent with many established

formulations, converging on softmax choice rules, reconciling

the contribution of intrinsic and extrinsic rewards and account-

ing for a range of anatomical and physiological properties of

dopaminergic projections. Having said this, it remains an out-

standing challenge to understand more detailed models of

dopaminergic function in terms of approximate Bayesian infer-

ence. For example, several models consider tonic dopamine

firing to influence action per se [65]. Others consider its effects

on performance and learning [66]. Many studies suggest that

the performance effects of dopamine can be explained in

terms of costs and benefits—such that high dopamine levels

allow an animal to ignore the costs of actions if the benefit is

sufficiently high.

Action costs in variational (Bayesian) formulations are

normally treated in terms of prior beliefs about control

[47]—such that a costly action is unlikely a priori. A differen-

tial effect of dopamine on costs (prior beliefs about control

states) and benefits (prior beliefs about hidden states)

speaks to the possibility that these beliefs are equipped

with their own precision—and the fact that dopaminergic

systems have a multitude of neuromodulatory mechanisms

(e.g. D1 versus D2 receptor targets, direct versus indirect
pathways, nigrostriatal versus mesocortical projections, etc.).

Perhaps the deeper question here is not about whether dopa-

mine mediates expected precision but which beliefs or

probabilistic representations are contextualized in terms of

their precision. For example, pathophysiology involving the

nigrostriatal system is likely to produce very different deficits

when compared with abnormal mesocortical dopaminergic

function. In short, the challenge may be to map the physio-

logical and anatomical diversity of dopaminergic projections

to the plurality of functions in which dopamine has been impli-

cated [61,34,67]. Much progress has been made along these

lines—and the encoding of precision may provide a common

computational role for dopamine that is consistent with its

(neuromodulatory) mechanism of action.

We have previously asserted that the values of states are

the consequence of behaviour, not its cause [68]. The current

formulation finesses this assertion because the value of an

action is both cause and consequence of behaviour. This is

self-evidently true by the circular causality implicit in the

action perception cycle [69] of embodied (active) inference.

This fits comfortably with the finding of action-value

coding in the brain prior to overt choice—for both positive

and negative action values [70,71]. Furthermore, optogenetic

studies show that stimulating distinct populations of striatal

neurons during choice can effectively add or subtract

action-value and bias behaviour to select or avoid an associ-

ated action [72]. Stimulating these populations during

outcome induces subsequent approach or avoidance [73].

These results again point to the plurality of postsynaptic

dopaminergic effects. In this instance, converse effects on

action selection depending upon whether (facilitatory) D1

receptors or (inhibitory) D2 receptors are activated. These

complementary effects of dopaminergic innervation are

potentially important in the context of encoding precision

in hierarchical models that may underlie action selection

[35]: in computational terms, a key determinant of posterior

expectations is the relative precision at different levels of hier-

archical representations. It may be the case that dopaminergic

projections mediate the relative precision or confidence in

representations [34]—in a way that relies upon the balanced

opposition of distinct pathways or receptor subtypes [67].

In conclusion, the account on offer considers dopamine to

report the precision of divergence or prediction errors (in

their nuanced sense) and partly resolves the dialectic between

dopamine as reporting reward prediction errors [29] and the

predictability of rewards [59,60,74]. The notion that dopa-

mine encodes precision is now receiving support from

several lines of evidence from theoretical treatments of hier-

archical Bayesian inference [63], theoretical neurobiology

[31,35,32,34] and empirical studies [75–78]. Having said

this, a proper validation of the active inference will require

careful model comparison using empirical choice behaviours

and a detailed mapping between putative model variables

and their neuronal correlates. The approach adopted in this

paper highlights the intimate relationship between inferring

states of the world and optimal behaviour [79,80], the confi-

dence or precision of that inference [81] and the functional

plurality of dopaminergic neuromodulation [61].
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