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Commissariat à l’Energie Atomique - Direction des Sciences du Vivant, Gif sur Yvette, France, 3 Department of Neurobiology, Weizmann Institute of Science, Rehovot,

Israel, 4 International Max Planck Research School of Neural and Behavioural Sciences, University of Tübingen, Tübingen, Germany, 5 Wellcome Trust Centre for
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Abstract

Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we
report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging
(fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination
of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second
experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We
analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas
(extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a
specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of
identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with
predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas
reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se.
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Introduction

The notion that perception involves inference dates back for

centuries and has been refined using mathematical models,

grounded mostly in a Bayesian framework [1]. Yet, contemporary

models of perceptual decisions differ in terms of neuronal

implementation, and the neurophysiological evidence garnered

in their support [2,3]. In some accounts, cortical activity reflects

sensory evidence that is accumulated to a critical level to yield a

perceptual decision. This family of diffusion or race models can be

regarded as dynamic extensions of signal detection theory [4]. In

these models, the implicit neuronal code is a log-probability or

likelihood-ratio code. In other hierarchical models, cortical activity

encodes top-down predictions and bottom-up prediction error

[5,6]. The error signal is accumulated and used to optimise

predictions and suppress prediction error or free-energy. In this

case, inference rests on predictions that serve to explain away the

difference between predicted and incoming sensory information.

Both views are supported by studies of evoked cortical responses

during perceptual decisions [7,8,9]. However, it is difficult to say

which model better explains empirical observations, because both

can be formulated to give similar predictions. Recently, it has been

shown that ongoing cortical activity, prior to sensory stimulation,

can predict subsequent perceptual decisions [10,11,12,13]. As

ongoing activity fluctuates between trials, so does the perception of

identical stimuli. Critically, the two theoretical accounts make

qualitatively different predictions about the relationship between

ongoing activity and perception. Put simply, under evidence

accumulation models, activity increases with the evidence for a

stimulus, whereas under predictive coding it reflects the precision

of the prediction error [14]. Therefore, in evidence accumulation

models, high ongoing activity will bias inference to detection with

(true hits) or without (false alarms) an appropriate stimulus.

Conversely, under predictive coding, ongoing activity levels in

sensory cortex reflect the precision (inverse variance) of sensory

noise. When sensory noise is low prediction errors are amplified. If

sensory noise is high, this induces self-inhibition among units

coding prediction error and leads to a relative increase in the

influence of top-down predictions [14]. In this setting, false alarms

are emitted when the precision is too low to counter top-down

predictions for which there is no sensory evidence.

In short, accumulation models suggest high ongoing activity will

bias towards stimulus detection (true hits or false alarms). Conversely,

the predictive coding or free-energy formulation suggests that high

ongoing activity (i.e., precise prediction errors) will bias towards

correct inference (hits or correct rejections). This means we can

adjudicate between the two models by examining pre-stimulus

activity for hits, correct rejections, false alarms and misses.
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Here, we report functional magnetic resonance imaging findings

related to false alarms in two perceptual paradigms. Findings from

both experiments have been reported previously but only with

respect to hits and misses (where we had greater trial numbers)

[12,13]. However, these two conditions alone do not permit any

conclusion regarding the nature of the signal, prediction error or

sensory evidence. We therefore conducted a new analysis that

included those subjects in the two experiments with a sufficient

number of false alarms for statistical analysis. We obtained small

but significant effects that were consistent across both experiments

and that suggest that neural activity in sensory areas codes the

precision of prediction error.

Results

The first experiment involved detecting motion coherence in

random dot kinematograms with coherent motion at threshold

(periliminal) in most trials and above or below threshold (supra-

and subliminal) in a smaller number of trials [12]. We measured

cortical activity, prior to evoked responses (grey ellipse in Fig. 1), in

the human visual motion complex V5/hMT+. According to

accumulation models we should observe pre-stimulus activity

levels for: hits and false alarms . misses and correct rejections.

And, according to predictive coding: correct rejections and hits .

misses and false alarms. Our empirical observations confirmed the

latter (Fig. 1).

The greatest difference in pre-stimulus activity was between the

correct rejections and false alarms (solid blue and red lines,

respectively). This is clear evidence that pre-stimulus activity

reflects the precision (predictive coding) of the subsequent percept

not its content (evidence accumulation). More formally, an

ANOVA of the differences across activity at time points 0 and

1.5 s showed a main effect of accuracy, correct vs. incorrect

(p,.022, consistent with predictive coding), but no main effect of

percept, coherent vs. incoherent (predicted by accumulation). In

post-hoc t-tests, pre-stimulus activity in subsequent hit-trials

was significantly greater than misses; and activity in false alarms

were significantly less than in correct rejects (p = .048 and p = .031,

respectively, unpaired one-sided t-tests; on a qualitative level,

‘‘hit.miss’’ in 8/9 subjects and ‘‘correct rejection.false alarm’’ in

6/9). The use of one-sided post-hoc t-tests was justified by the

directed assumptions of the two models that we considered;

accumulation vs. prediction. It should be pointed out that these

effects were not significant when just testing activity in a single

epoch (0 or 1.5 s) as in our previous analyses of hits and misses

alone. This observation indicates a loss of statistical power

relative to previous analyses that included a greater number of

subjects [12].

To determine the topographic specificity of the observed effects,

we analyzed BOLD time courses in a set of control regions that

were robustly activated or deactivated by the motion task. These

regions included areas involved in early visual motion processing

(V1/V2), as well as attention and perceptual decision making

(right IPL, right and left FEF, right IFG, and ACC). No region

showed the ‘‘hit.miss’’ or ‘‘correct rejection.false alarm’’ effects

in the pre-stimulus baseline, and subsequent voxel-based whole

brain analyses were also negative.

In the second experiment, we studied detection of auditory

signals presented at threshold against ongoing scanner noise [13].

This detection paradigm can be reconciled with the form of the

previous experiment by regarding it as a continuous discrimina-

tion, with two alternatives of stimulus ‘present’ or ‘absent’.

However, this free-response paradigm does not furnish correct

rejection trials (i.e., subjects are not required to indicate the

stimulus is absent). We expected the difference between hits and

false alarms to be even more pronounced than in the first

experiment. This is because in the auditory fMRI experiment

ongoing sensory noise levels were higher due to scanner noise than

in the visual experiment, where inter-stimulus intervals contained

a stationary dot pattern. Under predictive coding, this higher

sensory noise should suppress the gain of error units and reduce

activity levels, accentuating the effect of endogenous fluctuations.

As before, the predictions of the two theoretical accounts differ:

Evidence accumulation would expect hits and false alarms (i.e., an

auditory percept) to follow higher baseline levels, relative to misses

(no percept). Conversely, the predictive coding account suggests

that (incorrect) misses and false alarms are foreshadowed by

significantly lower activity than (correct) hits. Our findings in this

experiment supported the latter prediction (Fig. 2). False inference

(false alarms - red solid lines, and misses - blue dashed lines) were

preceded by significantly lower levels of activity in auditory cortex

than veridical hits (red dashed line, p = .021 and p = .018,

respectively, in unpaired one-sided t-tests; on a qualitative level,

‘‘hit.miss’’ in 7/9 subjects and ‘‘hit.false alarm’’ in 7/9). There

was no significant difference in activity preceding misses vs. false

alarms. This low activity prior to false alarms is consistent with a

scheme that under-weights sensory evidence via an inhibition of

error units and thus fails to constrain top-down predictions. The

profound activity dip in the 3 s preceding a false alarm could

indicate a critical level of ongoing activity that is necessary for the

endogenous generation of a percept, in the absence of the stimulus.

Conversely, in the case of misses, it is the dwindling of a prediction

(or the toggling to the alternative prediction) and the associated

Figure 1. Peristimulus fMRI signal time-courses from the visual
motion experiment. Data were normalized to grand mean and
averaged across 9 subjects (bars represent standard error of the mean)
performing a motion coherence judgment task. The insert specifies the
conditions as a function of stimulus and percept. The inflated right
hemisphere rendering of the group result shows the right hMT+ region
of interest, which was identified subject by subject in a localizer
procedure employing coherent motion stimuli vs. static displays. The
grey ellipse covers the pre-stimulus period submitted to statistical
testing (see main text).
doi:10.1371/journal.pone.0009926.g001
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increase in the noise estimation for top down influences that via

self-inhibition down-regulates the local fMRI signal such that

despite sensory input no percept is reported.

In contrast to our local findings in the motion experiment, the pre-

stimulus effects in the auditory experiment appeared to be much less

spatially confined. Similar to the original publication–where we

report distributed ‘‘hit.miss’’ and ‘‘miss.hit’’ effects -, maps (at

t = 0 s) of ‘‘hit.false alarm’’ show a number of regions outside of

auditory cortex, including mid-cingulate cortex, polar and ventro-

medial prefrontal cortex and early visual cortex (cluster-level

p,0.05, corrected, after auxiliary p,0.005, uncorrected). The

reverse contrast ‘‘false alarm.hit’’ yielded no significant foci

(p,0.05, uncorrected). Note that such a difference between the

experiments was to be expected because the auditory paradigm

involved detection of near-threshold stimuli in a free-response setting

instead of two-alternative forced choice decisions on ambiguous but

clearly notable stimulation in the motion experiment.

In both experiments, we found no relationship between the

duration of the prior SOA and behavioural outcome. In the motion

experiment, the SOAs were 29.260.8 s for hits, 30.360.9 s for

misses, 29.661.3 s for correct rejections, and 30.163.2 s for false

alarms (mean 6 sd). In the auditory experiment, the SOAs were

30.660.2 s for hits, and 30.460.4 s for misses. False alarms

occurred 17.861.1 s after the preceding stimulus, i.e. approximate-

ly in the middle between two auditory stimuli.

Discussion

Both experiments support an interpretation of neural activity

(indexed by fMRI signal) in specialized sensory cortical regions as

coding prediction error and not evidence or log-probability (cf.

classical signal detection theory). Our analyses were conducted

using the responses of brain regions that are specialised for the

sensory information required for the subjects’ perceptual decisions.

Our findings therefore cannot be compared with those obtained in

higher order (polymodal) cortex like the lateral intra-parietal and

premotor areas. However, our findings can be compared to studies

of sensory cortex, where baseline variations were removed [7].

In terms of neuronal computation, the free-energy principle

encompasses evidence accumulation schemes as a special case that

is manifest at higher levels in the sensory hierarchies, as prediction

error is accumulated to optimise high-level representations and the

ensuing top-down predictions of sensory input [15]. The evidence

we present here in favour of the free-energy principle comes from

sensory regions and from the analysis of perceptual outcome as a

function of activity prior to stimulation. Our analysis was

constrained to pre-stimulus windows, because this avoids the

confounding effect of evoked signal changes (e.g., differences in

sensory stimulus properties and their frequency as well as their

perception and behavioural consequences). Yet, the same principle

is likely to hold throughout the entire time series of neural activity.

For instance, the evoked responses in the first experiment show a

main effect of stimulus type with greater responses to incoherent

motion stimuli. Again, this argues against a coding of sensory

evidence and in favour of a coding of the greater ‘‘surprise’’

associated with the less frequent incoherent motion stimuli,

compared to the more frequent periliminal coherent motion

stimuli. It is also obvious from our findings that widely applied

analysis features such as baseline normalisation to pre-stimulus

signal may distort effects observed in the evoked responses.

Our study departs from usual treatments of neuroimaging

results in terms of predictive coding [16] because we did not look

for the correlates of prediction error; we tried to disambiguate

between evidence accumulation and predictive coding schemes.

This means we had to dissociate the effects of precision and

prediction error per se (which are conflated during the expression of

precision-weighted prediction error). We therefore focussed on

pre-stimulus activity levels, which can only reflect putative changes

in the precision that is conferred on prediction errors, when they

are later induced by a stimulus.

An important limitation of our analyses is that functional

neuroimaging, while useful in recording population synaptic activity,

does not resolve the fast dynamics underpinning perceptual decisions.

This limitation is tempered by previous functional neuroimaging

studies, where fluctuations in ongoing activity can predict subsequent

percepts on a trial by trial basis [11,12,13]. In other words, we can

exploit fluctuations in neuronal activity and subsequent perceptual

processing to establish causal relationships through temporal

precedence, even with slow hemodynamic signals. As in previous

studies, we analysed time segments of the signal that are as close to the

upcoming stimulus as possible without including stimulus-driven

responses We refer to the peri-stimulus fMRI responses until stimulus

onset as ‘pre-stimulus’. However, because the hemodynamic response

delays and disperses underlying neuronal activity, some ‘pre-stimulus’

neuronal activity will actually appear after stimulus onset in the fMRI

time-series. Happily, the converse situation (post-stimulus neuronal

activity confounding pre-stimulus fMRI data) cannot occur. We

suppose that the fluctuations in baseline activity we recorded with

fMRI reflect endogenous (ongoing) fluctuations in fast neuronal

activity. Indeed, computational studies suggest that fast synchronised

activity fluctuates in power with the characteristic ultra-slow

frequencies seen in fMRI [17]. Furthermore, the general picture

from combined EEG and fMRI studies [18] suggests that increases in

fast oscillatory activity elevate BOLD signals. These slow modulations

Figure 2. Peristimulus fMRI signal time-courses from the
auditory experiment. Data were estimated under a finite response
model and averaged across 9 subjects (bars represent standard error of
the mean) performing an auditory stimulus detection task. Data are
plotted for conditions specified by an insert. The inflated right hemisphere
rendering of the group result shows the location of the region of interest,
which includes early auditory cortex with parts of Heschl’s gyrus
(identified bilaterally subject by subject). The grey ellipse covers the
pre-stimulus period submitted to statistical testing (see main text).
doi:10.1371/journal.pone.0009926.g002

Neuronal Fluctuations

PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9926



of fast activity are, we presume, mediated by neuromodulatory effects

at a synaptic level. These effects underlie changes in post-synaptic gain

of the sort associated with attention [19] and perceptual precision (i.e.,

signal to noise) [20].

Our findings illustrate that pre-stimulus fMRI signals cannot be

interpreted as encoding sensory evidence but are consistent with

an alternative explanation that it reflects the level of attention.

Indeed, attention modulates cortical activity in sensory areas even

in the absence of input [21]. This interpretation is not at odds with

an account grounded in the free-energy principle, because the

increased precision that may be reflected in higher levels of

endogenous activity is thought to mediate the effects of directed

attention [15]. This means that the optimization of precision in

predictive coding and attention become the same thing. Whether

this necessarily applies to our observations is a complicated issue.

An effect of fluctuations on directed (endogenous) attention should

fulfil more criteria than mere modulation of local signal in a

sensory area. Among these are associated effects in higher order

attentional control centres, increased sensory response amplitudes

and shortened reaction times. No such evidence was found in our

first experiment [12] and only partial support in the second

experiment, where attention and awareness are not easily

dissociated in response amplitudes and where reaction times are

only available for hits [13]. Conversely, the insufficient evidence

for an attention account does not invalidate the interpretation

along the lines of the more general free-energy principle. In short,

whatever the neural or cognitive origin of endogenous fluctuations,

their impact on perceptual performance is captured by predictive

coding models. This is an important conclusion because the

functional role of such ongoing or endogenous activity fluctua-

tions, which have traditionally been neglected in many neuro-

physiological and theoretical investigations of perceptual inference

and decisions, is becoming increasingly evident [22,23,24,25].

Materials and Methods

Ethics Statement
Both studies received ethics committee approval by the

authorities responsible for our institution (INSERM-CEA, Neu-

roSpin). All subjects gave written informed consent.

Data acquisition and pre-processing
Details of both experiments have been published previously

[12,13]. Imaging data for both studies were acquired on a 3T MRI

scanner (Tim Trio, Siemens, Erlangen). Functional imaging used a

T2*-weighted gradient-echo, echo-planar imaging sequence (25

slices, TR = 1500 ms, TE = 30 ms, FOV 192, voxel size

36363 mm, inter-slice gap 20%). Anatomical imaging used a

T1-weighted MPRAGE sequence (160 slices, TR = 2300 ms,

TE = 2.98 ms, FOV 256, voxel size 1.061.061.1 mm for the

motion experiment, and 176 slices, TR = 2300 ms, TE = 4.18 ms,

FOV 256, voxel size 16161 mm for the auditory experiment). We

used SPM5 (http://www.fil.ion.ucl.ac.uk, Wellcome Trust Centre

for Neuroimaging, London, UK) for image pre-processing that

involved realignment, coregistration, normalization to MNI

stereotactic space, spatial smoothing with an isotropic Gaussian

kernel of 6 and 12 mm (motion experiment) or 5 and 6 mm

(auditory experiment) full-width-half-maximum for single subject

and group analyses, respectively and estimation of general linear

models.

Motion experiment
Twelve right-handed subjects with normal or corrected-to-

normal visual acuity (6 female, ages 19–30) participated in the

motion experiment. Stimuli were dynamic dot displays of 500

white squares (size 0.2u) randomly distributed on a dark grey

annulus (23u). Subjects were instructed to maintain gaze within a

central blue rectangle (1u) surrounded by a light grey circular

patch (3u) throughout the experimental sessions. For 355 ms

intervals, stimuli moved up- or downwards, at 14u/s and with

variable motion coherence. Subjects were asked to report as

quickly and accurately as possible by button presses after each

stimulus whether they had perceived coherent or random motion.

Prior to scanning we determined individual motion coherence

thresholds based on the method of constant stimuli (average

motion coherence threshold across subjects 13%, range 8 to 20%).

During fMRI scanning, three motion coherence levels were used:

subliminal (1% coherence, 20 trials), periliminal (individual

threshold, 60 trials), and supraliminal (30% coherence, 20 trials).

Stimuli were presented in two 25 minute runs with 50 trials each.

Between stimuli, the display was static for inter-stimulus intervals

(ISI) of 20 to 40 s that were randomly selected from a uniform

distribution.

Functional images for two 1000 volume experimental runs and

one 208 volume localizer run were acquired. Localizer fMRI runs

identified cortical regions sensitive to two types of coherent visual

motion, up- or downwards motion and an expanding ‘starfield’.

Continuous 16 s motion blocks were separated by 10 s stationary

periods, and each condition was repeated over 6 blocks in counter-

balanced order. Motion-sensitive areas were identified by mapping

for each subject the contrast ‘motion . stationary’ at p,0.001,

uncorrected. A local maximum near the ascending limb of the

inferior temporal sulcus was defined as hMT+ (see original

publication for coordinates). After removing session effects and

linear trends from the BOLD signal time series of the main

experiment, we extracted the percent signal change time courses of

all periliminal and subliminal trials from 4 scans (6 s) before to 12

scans (18 s) after target onset and sorted them according to hits

(perceiving periliminal stimuli as coherent), misses (periliminal

stimuli as random), correct rejections (subliminal stimuli as

random), and false alarms (subliminal stimuli as coherent). Here,

we only report data from those subjects who generated a sufficient

number of false alarms (n = 9 out of 12 subjects). Across subjects,

near-threshold stimuli generated 57% hits and 43% misses, and

subliminal stimuli 74% correct rejects and 26% false alarms.

Auditory experiment
Twelve right-handed normal hearing subjects (2 female; ages

19–30) participated in the auditory experiment. One subject

reported to have fallen asleep in one session and was thus excluded

from analysis. Subjects were exposed to sparse near-threshold

auditory stimuli and performed an auditory detection task. The

stimulus was a 500 ms noise burst with its frequency band

modulated at 2 Hz (from white noise to a narrower band of 0–

5 kHz and back to white noise). Subjects were blindfolded and

instructed to report as quickly and accurately as possible by a right

hand key press whenever they heard the target sound despite

scanner’s background noise. In a first 6.5 min fMRI run, which

was not analyzed, we determined each subject’s auditory threshold

using a simple staircase procedure with 25 trials and inter-stimulus

intervals randomized between 2.5 and 5 s. Next, each subject

performed 2 and some subjects 3 experimental runs of 20 min

duration. In each run, target stimuli were presented at individual

threshold (periliminal stimuli) on 36 trials and at a fixed supra-

threshold level on 4 ‘catch’ trials. ISIs ranged unpredictably from

20 to 40 s, with each specific ISI used only once. Before each run,

the target stimulus was played a few times at supra-threshold

volume for (re)memorization and subjects were informed that in

Neuronal Fluctuations
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most of the trials the target sound would be played at a barely

perceptible level. If within 1.5 s of stimulus onset a key was pressed

this trial was counted as a hit, if not as a miss. All other key presses

were classified as false alarms. Here, we restricted our analysis to

those subjects who generated at least 5 false alarms (n = 9 out of

11). These subjects detected 59617% of the near-threshold

stimuli.

Experimental runs consisted of 820 volumes. An additional

passive localizer run for defining auditory responsive brain regions

was acquired after the main experiment. This 81 volume run

consisted of three 20 s-blocks of repetitive stimulus presentation

with 0.5 s inter-stimulus intervals (ISI) at clearly audible volume

separated by 15 s baseline epochs. Voxels responding to the

auditory stimulus were defined on a subject-by subject basis in two

steps. First, at the group level the contrast periliminal stimuli (i.e.

hits and misses) . baseline (p,0.001) was masked by the passive

auditory localizer contrast at p,0.001. A spherical search space of

10 mm was defined around the peak of the peri-Heschl clusters

with the highest z-score. Next, for each subject’s corresponding

first-level contrast all voxels within this search space were selected

that passed a lenient threshold (p,0.05, uncorrected).

As false alarms occurred at unpredictable times and sometimes

prior to hemodynamic relaxation, we could not directly analyze

fMRI signal time courses as in the motion experiment. We hence

used a finite impulse response (FIR) model on the high-pass

filtered data with very low cutoff (1/1000 Hz) and no pre-

whitening to ensure linear drift removal while minimizing

interference with low frequency brain activity fluctuations. The

FIR model used 24 peristimulus stick functions (x 1.5 s bins) for

each of the four conditions, hits, misses, false alarms and catch

trials. For near-threshold stimuli (hits and misses) time-locking was

based on stimulus presentation; for false alarms it was based on

behavioural reports minus the subject’s average reaction time in

hit trials (7946109 ms).
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