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This note describes a Bayesian model selection or optimization procedure for post hoc inferences about
reduced versions of a full model. The scheme provides the evidence (marginal likelihood) for any reduced
model as a function of the posterior density over the parameters of the full model. It rests upon specifying
models through priors on their parameters, under the assumption that the likelihood remains the same for all
models considered. This provides a quick and efficient scheme for scoring arbitrarily large numbers of models,
after inverting a single (full) model. In turn, this enables the selection among discrete models that are
distinguished by the presence or absence of free parameters, where free parameters are effectively removed
from the model using very precise shrinkage priors. An alternative application of this post hocmodel selection
considers continuous model spaces, defined in terms of hyperparameters (sufficient statistics) of the prior
density over model parameters. In this instance, the prior (model) can be optimized with respect to its
evidence. The expressions for model evidence become remarkably simple under the Laplace (Gaussian)
approximation to the posterior density. Special cases of this scheme include Savage–Dickey density ratio tests
for reducedmodels and automatic relevance determination inmodel optimization.We illustrate the approach
using general linear models and a more complicated nonlinear state-space model.

© 2011 Elsevier Inc. All rights reserved.

Introduction

This paper is about optimizing or selecting among a large number
of models using their Bayesian model evidence. It addresses the class
of problems, under which differentmodels can be formed by changing
prior beliefs about their parameters; for example, by switching off
various parameters or by changing their prior variance. The main
point made in this paper is that it is only necessary to fit or invert a full
model to access the model evidence or marginal likelihood (and the
posterior density on the parameters) of any reduced model. This can
greatly finesse the scoring of models, when exploring large model
spaces in a post hoc fashion.

Conceptually, this treatment of model evidence highlights the
connection between Bayesianmodel selection and the optimization of
a (full) model, in terms of its priors. In both cases, one is maximizing
model evidence by changing hyperparameters that encode the prior
density over the parameters of a likelihood function. Operationally
this is a form of empirical Bayes, in the sense that the priors are
optimized using observed data. As such, it rests upon an implicit or
explicit hierarchical structure in the form of the prior. This perspective
unifies a number of model optimization and selection schemes,

including parametric empirical Bayes (Efron and Morris, 1973; Kass
and Steffey, 1989), automatic relevance determination (Mackay and
Takeuchi, 1996; Tipping, 2001) and Bayesian model comparison (Kass
and Raftery, 1995; Penny et al., 2004). We will try to illustrate this
perspective with a few toy examples. A real world application of this
scheme can be found in the context of network discovery, using
dynamic causal modeling in Friston et al (2010a).

In classical parametric statistics, it is standard practice to invert or
optimize the parameters of a generative (observation) model and
then interrogate reduced forms (e.g., using the extra sum of squares
principle and post hoc t-tests) to test a series of null hypotheses
entailed by model reduction. Generally, it is not necessary to re-fit
the parameters for each inference about a reduced model (null
hypothesis) in relation to a full model (alternate hypothesis). In what
follows, we describe the same sort of procedure for Bayesian model
inversion and ensuing inference on models. The underlying theory
is simple and follows from well known results; here, we highlight
its potential to finesse the computational burden associated with
scoring large numbers of models. This search over models is
becoming an increasingly important problem in data-mining and
causal modeling in the biological sciences. The sorts of models we
have in mind here are those in which priors are required to resolve ill-
posed inverse problems (for example the electromagnetic inverse
problem in source reconstruction of electrical signals from the brain)
and generalized convolution or state-space models used to explain
biological time-series. In many instances, one is interested in
eliminating redundant or irrelevant model parameters to find an
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efficient and parsimonious explanation for how data are generated.
In a Bayesian context, this usually appeals to maximizing model
evidence, which subsumes both accuracy and complexity. This
evidence maximization emerges in a number of guises; for example
automatic model selection (Friston et al., 2007) and relevance
determination (Mackay and Takeuchi, 1996; Tipping 2001), which
aim to switch off or suppress irrelevant model parameters. Crucially,
this suppression or elimination can be formulated in terms of priors
on the free parameters of a model, where increasing the precision
(inverse variance) of appropriate shrinkage priors effectively sets
these parameters to zero. However, this is just a special instance of
optimizing the priors of a model, in relation to model evidence.
We exploit this by noting that the evidence per se can be derived
relatively simply from the posterior density over model parameters,
under uninformative priors.

This note comprises two sections: In the first, we present the
assumptions and derivations that motivate the scheme. We start with
some general assumptions about the existence of a full model, which
shares the same likelihoodwith a set of reducedmodels with different
prior densities. Under these assumptions, it is simple to derive the
evidence of any reducedmodel as a function of the posterior and prior
densities of the full model (to within an additive constant). In the
limiting case, when a subset of parameters is fixed at zero, we recover
the well known Savage–Dickey density ratio (Dickey, 1971; Verdinelli
andWasserman, 1995). Our particular focus will be on the expression
for model evidence under Gaussian assumptions about the form of
the posterior over model parameters. This Laplace assumption is
particularly relevant for variational or ensemble learning schemes,
which predominate in many practical modeling applications (Beal
and Ghahramani, 2003; Friston et al., 2007). In this context, the model
evidence and posterior density over its parameters reduces to a
simple analytic function of the means and precisions of the full
prior and posterior. In the second section, we illustrate the use of this
expression when optimizing priors or selecting among models
defined in terms of their priors. We will use three examples of
increasing complexity. The first uses a simple general linear model
and looks at optimizing the priors on precision parameters, to high-
light the potential usefulness of this approach in model optimization.
The second example turns to model selection and focuses on
optimizing shrinkage priors on unknown parameters, to identify key
combinations of explanatory variables and eliminate redundant
parameters. Finally, we consider a more complicated simulation
using a nonlinear state-space model to illustrate both model selection
and optimization.

Theoretical background

In this section, we outline the overall approach in terms of the
assumptions that define the problem we are interested in. We try to
relate the results to established procedures such as those based upon
the Savage–Dickey density ratio. In the subsequent section, we apply
these results to toy examples to illustrate their usefulness. We address
the problem of scoring large numbers (thousands or millions) of mod-
els or exploring continuous model spaces. This problem is addressed
by exploiting situations in which each model can be formed from a
full model by changing the priors over its parameters. In brief, this
means we can compute the evidence and posterior density over the
parameters of anyreducedmodel that is nestedwithina fullmodel, given
the evidence and posterior of a full model. This rests on the following
arguments:

Let a generative modelmi ∈M specify a joint density on the some
data γ ∈ ℝ and their causes ϑ ∈ ℝ (model parameters), in terms of a
likelihood and prior:

p y;ϑ jmið Þ = p y jϑ;mið Þp ϑ jmið Þ ð1Þ

Where p(ϑ|mi)≜pmi
(ϑ) denotes a family of distributions over

models. We assume the existence of a full modelmF ∈ M that satisfies
the following conditions for all models considered

mi≺mF ⇔
p y jϑ;mið Þ = p y jϑ;mFð Þ
Ωi ⊂ΩF : p ϑ∈Ωi jmið Þ N 0

�
ð2Þ

Here, Ωi denotes the support of the prior of the i-th model and ∀i:
mi≺mF are reduced versionsof the fullmodel. Note that allmodels share
the same likelihood but differ in their priors. The second condition just
ensures the existenceof thedensity ratiosusedbelow.A simpleexample
may clarify what reduced means in this context: Let mi ∈ M denote
the class of general linear models and let ϑ range over values of
variances of noise terms and linear coefficients.We say thatmi≺mj if, for
every coefficient ϑk, we have p(ϑk|mi)=0 when p(ϑk|mj)=0 (but not
conversely) and that the probability of the data is the same under both
models for any assignment of values to the parameters.

Eq. (2) is not saying anything very deep; it is just defining a set or
space of reduced models that can be formed from a full model by
collapsing the prior density over one or more parameters. This
effectively converts free-parameters into known (reduced) parame-
ters that usually have a prior mean of zero. Note that the number or
dimensionality of the parameters is the same for all models: What
distinguishes models is whether their priors allow specific parameters
to take non trivial values. This definition of a reduced model means
that model optimization (selection) can be cast as optimizing the
priors over the parameters of the full model, where the optimum prior
(model) maximizes the marginal likelihood or evidence:

p y jmið Þ = ∫p y jϑ;mið Þp ϑ jmið Þdϑ

= p y jmFð Þ∫p ϑ jy;mFð Þ p ϑ jmið Þ
p ϑ jmFð Þdϑ

ð3Þ

Here, we have used Bayes rule and the fact that the likelihoods of
the reduced and full model are the same. Crucially, the marginal
likelihood or evidence under the reduced model is just the evidence
under the full model times the posterior expectation of the prior
density ratio. This means the quantities required to evaluate the
evidence of any reduced model are furnished by the inversion of the
full model (namely its evidence p(y|mF) and posterior density p(ϑ|y,
mF)).

The equivalence of the likelihood in Eq. (2) also allows us express
the posterior under the reducedmodel in terms of the posterior under
the full model

p ϑ jy;mið Þ = p ϑ jy;mFð Þ p ϑ jmið Þ
p ϑ jmFð Þ

p y jmFð Þ
p y jmið Þ ð4Þ

In fact, Eq. (3) obtains from Eq. (4) by integrating both sides over
the parameters. In general, this marginalization only needs to be over
the subset of (reduced) parameters ϑi⊂ϑ for which the priors differ.
Given a bipartition ϑ={ϑi, ϑ\i} where p(ϑ\i|mi)=p(ϑ\i|mF), we can
write Eq. (3) as a Bayes factor (Kass and Raftery 1995):

p y jmið Þ
p y jmFð Þ = ∬p ϑ5i jϑi; y;mFð Þp ϑi jy;mFð Þ p ϑi jmið Þ

p ϑi jmFð Þdϑ5 idϑi

= ∫p ϑi jy;mFð Þ p ϑi jmið Þ
p ϑi jmFð Þdϑi

ð5Þ

This expression only involves integrating over the marginal den-
sities of the reduced parameters. Note that Eq. (5) does not make any
assumptions about the form of the prior densities, provided they
satisfy Eq. (2). We can further simplify things when the reduced prior
is a point mass, (delta function) p(ϑi|mi)=δ(θi) that fixes a subset of
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parameters to a particular value, θi. In this case, Eq. (5) reduces to the
well-known Savage–Dickey density ratio (usually considered when
θi=0)

p y jmið Þ
p y jmFð Þ =

p ϑi = θi jy;mFð Þ
p ϑi = θi jmFð Þ ð6Þ

In other words, the Savage–Dickey density ratio is a special case of
the reduced evidence ratio that obtains when the reduced prior shrinks
to a point mass. Eq. (6) is sensible, in that a conditional density on the
reduced parameters that is far from its prior expectation indicates the
reduced parameters are needed to explain the data and the reduced
model has relatively low evidence.

Model optimization under the Laplace assumption

Verdinelli and Wasserman (1995) consider generalized Savage–
Dickey density ratios using the above arguments from point of view of
sampling approximations. Here, we consider Eq. (3) under the Laplace
approximation to the posterior. This is a useful and generic approxima-
tion exploited in variational Bayes and related free-energy schemes
(Beal, 1998; Beal and Ghahramani 2003; Friston et al., 2007). In these
schemes, a variational density q(ϑ|mF) is optimized with respect to a
free-energy bound on the log-evidence:

Fðy; qÞ = ln p y jmð Þ−Dðq ϑ jmð Þ j jp ϑ jy;mð Þ
= ∫q ϑ jmð Þ lnp y jϑ;mð Þdϑ−D q ϑ jmð Þ j jp ϑ jmð Þð Þ ð7Þ

Here, D denotes Kullback–Leibler divergence. Maximizing free-
energy makes it an approximation to the log-evidence and makes
the variational density an approximate posterior. The second equality
expresses free-energy as a mixture of accuracy (expected log-
likelihood) and complexity (divergence between the posterior and
prior). This means themodel with the greatest free-energy is themost
parsimonious but accurate explanation for the data; see Penny et al.
(2004). There are numerous schemes that use this approach. We use
it extensively under the Laplace assumption, with log-normal forms
for non-negative scale parameters (e.g., Friston et al., 2003; Friston
et al., 2007).

Our focus here is not on these variational schemes but on how to
exploit their outputs; namely, the (approximate) log-evidenceF(y,q)≈
ln p(y|m) and (approximate) posterior q(ϑ|m)≈p(ϑ|y, m) of a model.
From now on, we will assume the posterior and prior are Gaussian
densities (this is known as Variational Laplace)

q ϑ jmið Þ = N μ i; Cið Þ : Ci = P−1
i

p ϑ jmið Þ = N ηi;Σið Þ : Σi = Π−1
i

ð8Þ

In this context, we have remarkably simple expressions for the log-
evidence and posterior for any reduced model in terms of the suf-
ficient statistics of a full model

p y jmið Þ
p y jmFð Þ = ∫p ϑ jmið Þ q ϑ jmFð Þ

p ϑ jmFð Þdϑ

⇒

F i =
1
2
ln

Πij j PFj j
Pij j ΠFj j−

1
2

μT
FPFμF+ηT

i Πiηi−ηT
FΠFηF−μT

i Piμ i

� �
+F F

q ϑ jmið Þ = N μ i;Cið Þ

Pi = PF + Πi−ΠF

μ i = Ci PFμF + Πiηi−ΠFηFð Þ
ð9Þ

Eq. (9) says that the posterior precision of the reduced model is
the posterior precision of the full model minus the difference between
the full and reduced precisions. The posterior expectation is a mixture
of precision-weighted expectations. Note that when a parameter is
removed from the model, by shrinking its prior variance to zero, the
prior and posterior moments become the same and the parameter no
longer contributes to the reduced free-energy.

Crucially, we can now compare two models in terms of their log-
evidence, F i−F j. This is a log-Bayes factor and is usually considered
significant if it exceeds three (i.e., an odds ratio of about twenty to
one). Alternatively,we canoptimize the prior (and associatedposterior)
explicitly, with respect to the log-evidence in Eq. (9). Furthermore,
we can consider any hyperparameterization of the prior p(ϑ|m(λ))=
N(η(λ), ∑(λ))) that induces a model. Here the hyperparameters
λ control the prior mean ηi≜η(λ) and precisionΠi≜Π(λ) to produce
a log-evidence, F i≜F λð Þ. This perspective takes us away from the
notion of discrete modelsmi : i∈ℕ and into amodel space supported
by the hyperparameters, m(λ): λ ∈ ℝ. In this context, the optimum
model and posterior are:

λ� = arg max
λ

F λð Þ

q ϑ jm�� �
= Nðμ�

;C�Þ

P� = P F + Πðλ�Þ−ΠF

μ� = C�ðPFμF + Πðλ�Þηðλ�Þ−ΠFηFÞ

ð10Þ

In what follows, we will illustrate both perspectives; namely,
model selection, i� =arg maxi F i and optimization, λ� =arg maxλ
F(λ) and try to connect these to automatic relevance determination
(ARD) and related schemes.

Some examples

In this section, we use some simulated examples to illustrate the
use of the scoring method described in the previous section. This
section illustrates model optimization, in terms of optimizing the
sufficient statistics or hyperparameters of prior densities, and model
selection, by searching over large model spaces.

Model optimization

We start with a very simple example; namely the optimization of
the priors on the precision parameters of a general linear model. To
illustrate this, we formed simulated data (response variables) by
adding four regressors sampled from the normal distribution.

y = Xβ + ε

X ∈R64�4 : Xij eN 0;1ð Þ

β∈R4�1 : βj = 1 : j = 1;…;4

ε∈R64�1 : εi eNð0; expð−γjÞÞ : j = 1;2

ð11Þ

After adding random noise with a log-precision of two to the first
half of the data and a log-precision of one to the second half, we then
estimated the noise precision, allowing for different precisions over
the first and second half of the observations. This model has six
parameters, four regression parameters β⊂ϑ and two log-precision
γ⊂ϑ parameters. These parameters were estimated using a standard
variational EM scheme (Dempster et al., 1977), as described in Friston
et al. (2007). Crucially, the posterior density on all parameters was
assumed to be Gaussian. As is usual in these Variational Laplace
schemes, we assumed the posterior density over the log-precisions is
Gaussian (i.e., posterior precisions have a log-normal form). In short,
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we estimated the regression coefficients and log-precisions to
provide a Gaussian posterior. The priors on the parameters were
uninformative Gaussian shrinkage priors with a mean of zero and
variance of 32.

After model inversion (using the Variational Laplace scheme
described in Friston et al., 2007), we evaluated the model evidence
under different priors on the log-precisions P(γj|m(λ))=N (λ1, λ2).
Fig. 1 (upper left panel) shows the log-evidence profile over the range of
prior expectations and variances (λ1, λ2) we considered. It can be seen
that themodel evidence is greatest with a prior mean of just below two
and a variance of about a quarter. This is shown more clearly in the
upper right panel, which plots the model evidence (the normalized
exponential of the free-energy approximation) as a function of prior
variance for the optimum prior mean. If we now examine the implicit
posterior fromamodelwith these optimized priors (Eq. 10), one can see
a characteristic shrinkage (increased precision) of the posterior to the
optimized prior mean. The lower panel of Fig. 1 shows the posterior
distribution over the first precision parameter for the full model and the
optimized (reduced)model. In this example, the ensuing shrinkage has
improved the posterior expectation, in relation to the true value
(vertical line). Although this is not a very useful application of model
optimization in a practical sense, it illustrates the notion of optimizing
models through their priors and, implicitly, optimizing a posterior.
There are two further points this example highlights:

First, the inversion scheme used to fit this model used amean-field
approximation that is ubiquitous in variational schemes. This assumes
that the posterior over various subsets of parameters can be fac-
torized. In this case, the factorization was between the regression
and log-precision parameters; q(β, γ|m)=q(β|m)q(γ|m). Clearly this
renders the posterior density an approximate density; however, it
does not confound automatic model optimization. This is because
the optimization of the priors on the log-precisions does not depend
upon the posterior density over the regression parameters or pos-
terior dependencies between the regression and log-precision param-
eters. This follows from Eq. (5), which shows that the model evidence
depends only on themarginal densities of those subsets of parameters
that are being optimized; in this instance, the log-precision pa-
rameters. This point holds true generally and may be of particular
relevance for the large number of schemes that rest upon on a mean-
field (conditional independence) assumption.

The second point is that this scheme allows one to optimize priors
under any hyperparameterization. Indeed, it is the form of this
hyperparameterization and the implicit constraints on the priors that
make the optimization meaningful. This is meant in the sense that
optimized priors are empirical priors, which benefit from formal
constraints on the generative model. These constraints are implicit in
the way the priors are hyperparameterized. This effectively adds a
hierarchical level to the model, enabling further optimization of

Fig. 1. Model evidence and posterior densities on the precision parameters of a general linear model. Upper left: the (exponential of the) free-energy bound on log-evidence as a
function of prior mean and variance of the log-precision parameters of a general linear model. Lighter areas denote higher evidence. The dashed line represents the optimum prior
mean that maximizes evidence. Upper right panel: this shows the model evidence as a function of prior variance at the optimum prior mean. Lower panel: this shows the posterior
density on the first of two precision parameters. The solid line shows the (optimized) posterior, based upon the optimum priors, using Eq. (10) in the main text. The broken line
represents the same quantity but under the full priors. The vertical doted line corresponds to the value (precision) of observation noise used to generate the data.

2092 K. Friston, W. Penny / NeuroImage 56 (2011) 2089–2099



Author's personal copy

the model in relation to its evidence. In the example above, this
hierarchical constraint was that, a priori, we believe that the two log-
precisions are the same. In the absence of any constraints on the
hyperparameterization of the priors, they would collapse to a point
mass over their maximum likelihood value. This is intuitive, in the
sense that empirical priors are informed by data and, in the absence of
constraints, the best empirical estimate is the maximum likelihood.
More formally, it is obvious from Eq. (7) that if there are no restric-
tionson the formof the optimumprior, itminimizes complexitywhen p
(ϑ|m)=q(ϑ|m), leaving q(ϑ|m) free to maximize accuracy: accuracy
is maximized when q(ϑ|m) has a point mass over the maximum
likelihood. We will return to this in the discussion. In short, in the
absence of constraints the best empirical prior is a point mass over the
maximum likelihood value. This would have been the case had we
hyperparameterized the prior on both log-precisions separately (results
not shown). This selective collapse of prior densities is exactly the sort
of behavior harnessed in model selection, which we turn to next.

Model selection

Here, we focus on selecting among a number of discrete models
using exactly the same approach as above but using a formally
different hyperparameterization of the prior density. In the example
below, prior variances can only take one of two values; zero or a fixed
prior variance. One could regard this as a hyperparameterization
of the prior covariance with switched variables along the leading
diagonal.

p β jm λð Þð Þ = N 0;Π λð Þð Þ

Π λð Þ = daig γλð Þ : λi∈ 0;1f g
ð12Þ

Here, γ is the fixed prior variance. The objective here is to find the
best permutation of zero and non-zero hyperparameters λ ∈ {0,1}
that furnishes the greatest model evidence.Wewill illustrate this with
another simple general linear model.

In this example, we formed data by taking the sum of four
regressors X ∈ ℝ16×4 drawn from the unit normal distribution as
above and adding noise with a precision of two. We then inverted
the model as above. Crucially, we added a further eight random
regressors to the model before inversion. Effectively, this means we
have to find a small number of relevant regressors (with non-zero
regression parameters, β ∈ ℝ12×1) in a larger number. We do not
known how many “needles” there are in this haystack but can use
automatic model selection to find the optimum combination, in the
hope of recovering the original four regressors. In this example, there
are 4096 permutations of the hyperparameters, each corresponding to
a different model. Although a large number, these models can be
scored in under a second with an exhaustive post hoc search using
Equation 9. The resulting log-evidences over all permutations of
prior variances is shown in the upper left panel of Fig. 2, using γ=8.
The irregular profile of this scoring suggests that some regression
parameters are more relevant than others. Crucially, there is a
reasonably clear optimum model. This can be seen by reformulating
the log-evidence in terms of model-evidence, shown on the upper
right. Happily, the model selected was the true model in which the
(first) four regression parameters had a non-zero prior variance,
while the remaining (irrelevant) regressors were subject to very
precise shrinkage priors. In terms of the posterior probability over
models (under flat priors on models per se) we can be more than 50%
confident that this is the most likely model. The lower panel of Fig. 2
shows the 12 regression parameter estimates in terms of their
posterior mean for the full model, the reduced model and their true
values. One can see immediately the benefit of model selection, in
that the eight irrelevant parameters have been effectively switched off
by very precise shrinkage priors. Interestingly, the four relevant

parameters also improved, in terms of their distance from the true
values. This reflects the fact that the optimized priors suppress irrel-
evant conditional dependencies among the posterior estimators.

Again, this is a rather trivial example that starts to get more in-
teresting when considering ill-posed problems that call for some reg-
ularization or shrinkage priors. Although this example used 16 data-
points and 12 regressors, exactly the same sorts of results obtain with
underdetermined problems (results not shown). Because the scoring of
each model is so quick, one can consider exhaustive searches of up to
thousands or millions of discrete models.

It is interesting to relate the automatic detection of relevant model
parameters above to automatic relevance determination (ARD). Fig. 3
illustrates the basis of this ARD or switching off behavior in terms of
the dependency of the evidence on the shrinkage priors of relevant
and irrelevant parameters. The key thing to take from Fig. 3 is that the
log-evidence for relevant parameters (here the first parameter) has a
maxima at non-zero values. Conversely, the equivalent function for
irrelevant parameters continues to increase as the prior variance
approaches zero. This qualitative change in the points of inflexion
induces a thresholding like behavior in the automatic model optimiza-
tion,which explains the switchingoff of certain (irrelevant) parameters,
when the maximum disappears. This behavior turns model optimiza-
tion into categoricalmodel selection. The irrelevant parameter herewas
the 8th regression parameter.

Automatic relevance determination (Mackay and Takeuchi, 1996;
Tipping, 2001) is based on exactly the same model evidence
maximization approach used above but calls upon particular forms
for the prior densities that lead to sparse conditional means. Here, we
were able to reproduce this automatic determination under the
Laplace assumption, with a simple hyperparameterization of the
priors on the model parameters. The reason that this works is because
of the formal prior or constraint implied by the hyperparameteriza-
tion; in which prior variances can only take one of two values. This
gives the optimization of the hyperparameters the look and feel of a
model selection procedure, as opposed to the optimization of
continuous hyperparameters. The examples above highlight the
deep connection between the optimization of the parameters of
hierarchical generative models and the hyperparameters of non
hierarchical models used here for model optimization and selection.
In essence, all these procedures are trying to maximize the evidence
for a model through placing formal constraints of a hierarchical sort
on the model. In the final example, we will pursue both the model
selection and optimization perspectives, in the context of a problem
that has a growing and pragmatic appeal.

Network discovery and automatic model selection

In this final example, we turn to a much more complicated
generative model and a more specific sort of problem. The model that
we use to generate data here is used as a generative model for brain
imaging time series recorded from different parts of the brain. The
problem that we are interested in is trying to discover the network of
connections (i.e., an underlying dependency graph) that is responsi-
ble for observed brain responses. The details of the model we used
(Friston et al., 2003) and the scheme we used to invert this model
(Friston et al., 2010b) are not important here, because our focus is on
how to use the posterior of a full model to discover the underlying
network in terms of its adjacency matrix (the presence or absence of
connections among observed brain regions). In brief, the model has
a series of hidden neuronal and physiological states for each region x
(t)⊂ϑ, whose dependencies are modeled using nonlinear random
differential equations ẋ tð Þ = f x;ϑð Þ + ω. These equations of motion
mimic real physiological and neuronal processes in the brain and
accommodate random or endogenous fluctuations ω̃ eN 0;Σ ϑð Þð Þ on
these states (ω̃ = ω;ω′;ω″;…

� �T denotes states in generalized
coordinates of motion). The parameters of this model govern the
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dynamics intrinsic to each brain region and, crucially, the coupling
between regions. These (extrinsic) between-region couplings are
parameterized by a parameter matrix A⊂ϑ that can be viewed as a
coupling matrix. This matrix plays the same role as a weighted
adjacency matrix in graph theory, where a zero entry denotes no
connection. The objective is to find the optimum adjacency matrix
that specifies the underlying functional architecture; i.e., discover
the network that explains the observed responses best. This example
is used to show that automatic model selection works using a simpli-
fying Laplace assumption, even with a highly nonlinear and dynamic
(state-space) model with thousands of parameters (note the parame-
ters include the generalized motions of all hidden states at each point
in time).

We generated synthetic brain responses by driving each of
four nodes or regions with smooth random fluctuations (with a log-
precision of six). The resulting neuronal fluctuations cause changes
in hidden physiological states, both within each region and in other
regions to produce observed (hemodynamic) signals of the sort
measured in fMRI experiments. This signal is effectively a generalized
convolution of the underlying neuronal activity, where the charac-
teristic time constant of the implicit convolution kernel is about four
seconds. Examples of these fluctuating inputs and the resulting signals
are shown in Fig. 4. In addition, Fig. 4 (upper right panel) shows the
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Fig. 2.Model evidence and posteriors on the parameters of a linear model. Upper left panel: this shows the log-evidence over several thousand models that are distinguished by the
permutation of priors on their regression parameters. These priors could take the value of zero or eight. Given there were twelve free regression parameters, this gives 212=4096
models. Upper right: the same data as on the left but expressed in terms of evidence (the exponential of free-energy, normalized to a sum of one). Lower panel: the conditional
means of the twelve parameters of this linear model. The black bars show the posterior means under the full model, the grey bars under a reducedmodel and the white bars show the
true values. The key thing to note here is that (redundant) parameters have shrunk to zero, under the priors selected by automatic model selection.
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Fig. 3. Model evidence as a function of prior variance for relevant and irrelevant
parameters. This example comes from the inversion described in the previous figure
and highlights the qualitative difference in the dependency of model evidence on prior
variance. The important thing here is that only relevant parameters (that were used in
generating data) have a maximum at a non-zero variance (marked with an arrow).
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hidden neuronal and physiological states that mediate between the
hidden causes (fluctuating inputs) and signal (outputs). To generate
these data, we used a simple (bidirectional) connectivity structure,
where four regions (nodes) were coupled reciprocally in a chain
(lower right insert). Data were generated over 256 time bins (each
corresponding to 3.22 seconds of simulated time) and the model used
to generate these data was inverted using Generalized Filtering
and the usual Gaussian priors (see Friston et al., 2003). Generalized
Filtering is a Bayesian filtering scheme in generalized coordinates of
motion that retains the Laplace assumption but dispenses with
mean field approximations (see Friston et al., 2010b). Further details
about the generation and treatment of these sorts of synthetic data
can be found in Friston et al. (2010a). Model inversion (Generalized
Filtering) provided the posterior or conditional means and covari-
ances for the coupling parameters, which entered Eq. (9) to furnish
the free-energy and conditional moments of all reduced models.

Fig. 5 shows the results of Generalized Filtering and subsequent
model selection. The upper right panel shows the posterior density
and true values of the (sixteen) connections among the four simulated
brain regions. The right hand panels show the profile of log-evidences
and evidences (i.e., the posterior probability of each model under flat
model priors). It can be seen immediately that one model has been
selected with nearly 100% posterior confidence. The model space here
was created by considering all permutations of the prior variances on
connections that could take values of zero or two. In the full model, all
connections had a prior variance of two. There were only 64 such

models because we included the additional constraint that if a
connection existed in one direction, it should (a priori) exist in the
other direction. This is a structural constraint that respects the known
neuroanatomy of extrinsic connections in the brain. The real model
had three bidirectional connections and, happily, was the model
selected automatically. This example highlights the bilateral sensitiv-
ity of evidence to accuracy and complexity. The lower left panel of
Fig. 5 shows the log-evidence of each of the 64 models grouped
according to the number of connections (free coupling parameters).
This is equivalent to graph size. It can be seen that, in general, as the
number of parameters increases so does the evidence. This reflects the
fact that the accuracy of the fit improves with the degrees of freedom
that are endowed by additional coupling parameters. However, this
increase in accuracy comes at a cost of complexity. Within each subset
of models the most likely model (of graph size three or more used to
generate the data) becomes unnecessarily complex when redundant
connections are added and its evidence falls.

Finally, to illustrate model optimization, we simply optimized the
prior variance of each connection using Eq. (10) and a Gauss-Newton
Scheme (as implemented in spm_argmax; http://www.fil.ion.ucl.ac.uk/
spm). As anticipated, the prior variance collapsed to zero on connections
that were absent, such that the optimized prior variance (organized as a
weighted adjacencymatrix) reflects the true connectivity structure (see
Fig. 6). Note that in this hyperparameterization of the prior covariance,
there was no formal constraint on reciprocal connections and yet a
reciprocal connectivity has been selected automatically. In other words,

Fig. 4. Example of synthetic data used for network discovery. Upper left panel: the simulated data over 256 (3.22 s) time bins comprising signal (solid lines) and correlated
observation noise (broken lines). These simulated data were selected from two regions and were generated as a nonlinear function of region-specific hidden states shown on the
upper left. These hidden states evolve dynamically according to equations of motion that model a physiological transduction of neuronal activity into measurable blood flow
(hemodynamic) changes in the brain. The original perturbation to these dynamics arises from the hidden causes shown on the lower left. These were simply smooth random
fluctuations sampled from a Gaussian distribution with a log-precision of eight. Examples of two hidden causes shown here correspond to the two colored regions in the graph
(insert on the lower right). This graph depicts four nodes (brain regions) and all possible edges (putative connections). Hidden causes drive each of the four nodes to produce data.
Crucially, the neuronal dynamics simulated in each node are communicated to other nodes through bidirectional connections (double headed arrows). When generating synthetic
data we chose three out of a maximum of six connections. These are shown as solid arrows.
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we see automatic model selection emerging from optimization of
hyperparameters that define a continuumofmodels (i.e., model space).

Conclusion

In conclusion, we hope to have described an efficient post hoc
scoring scheme based upon Bayesian model evidence. In essence, this
scheme can be regarded as an add-on to any inversion scheme that

can handle models with large numbers of unknown states and
parameters. A particularly efficient version of post hocmodel selection
(optimization) obtains under the Laplace assumption. This is useful
because the Laplace assumption is commonplace in many variational
schemes of the sort illustrated above. Although not pursued here,
post hoc model optimization provides an internal validation of the
approximations implicit in variational schemes. This is because one
can invert reduced models and ensure that the free-energy bound on
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Fig. 5. Results of model inversion and automated selection. Upper left panel: this shows the conditional means following inversion of the full model. The posterior means (grey bars)
and 90% confidence intervals (red bars) are superimposed on the true values (black bars). It can be seen in most instances the true values fall within 90% confidence intervals. We
have only shown the connections between brain regions in this figure; six of which were zero. Upper left: profile of log-evidences (or log-posterior of each model under flat model
priors) over 64 models corresponding to different combinations of connections among the four nodes. Lower left: the same data but plotted as a function of graph size (number of
bidirectional connections). The red dot corresponds to the model with the highest evidence, which was also the true model used to generate the data. Lower right: this portrays the
same data as in the corresponding upper panel but here it is shown as a model posterior.

Fig. 6. Adjacency matrices defining the connections between the four nodes in the simulated data of the previous figure. Left panel: this adjacency matrix defines a serially coupled
chain with bidirectional connections and describes the connectivity used to generate data. Right panel: the optimized prior variance on each of the coupling parameters. This shows
that the optimization of prior variance has identified the correct sparsity structure of connections and has assigned roughly equal prior variance to existing connections that were
actually present. The gray scale is arbitrary.
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log-evidence (and the approximate posterior densities) are roughly the
same as those anticipated by inversion of a full model. We pursue this
and empirical applications elsewhere, with a special focus on network
discovery in the context of Dynamic Causal Modeling (Friston et al.,
2010a). Another (practical) issue we have not pursued here is the
pooling of evidence over units or subjects in group studies. The post hoc
estimate of log-evidence (free-energy) in Eq. (9) can be treated in
exactly the same way as in standard Bayesian model averaging or
selection over subjects. For example, when treating models as fixed
effects over subjects, the log-evidence inherent in multi-subject data is
just the sum of log-evidences over subjects (under the assumption that
subject-specific data are conditionally independent). This means that
one can optimize models based on the summed log-evidence over
subjects, following inversion of each subject's full model.

Although, in principle, post hoc model selection with the reduced
free-energy finesses the computational problems of inverting large
numbers of models, it still leaves open the problematic issue of
searching over very large model spaces. For example, a dynamic causal
model with eight nodes or sources has 28×8=1.84×1019 permutations
of connections that can be turned on or off. In our current implemen-
tation of post hocmodel selection, we use a greedy search for very large
model spaces. This entails identifying a subset of parameters, with
the least evidence and searching over all reduced models within that
subset. Redundant parameters and then removed and the procedure
repeated until all model parameters have been considered or no further
parameters can be removed. The appendix describes some of the
pragmatic details, in terms of software notes for some of the key routines
in SPM8.

The aim of this paper was to highlight the pragmatic utility of
some simple results that follow from Bayes rule and show that the
same sort of post hoc statistical model comparisons performed
routinely in classical inference can be reproduced in a Bayesian setting.
However, it struck us that the resulting scheme also provides a nice
perspective on Bayesianmodel, optimization and selection: To reiterate
our introductory comments; in both cases, one is maximizing the
evidence by changing the hyperparameters of the prior density over the
parameters of a likelihood function. Furthermore, as noted above, when
there are no restrictions on the form of the empirical prior, it becomes
the maximum likelihood (see Eq. (7)). In other words, this limiting
case of model optimization is simply model inversion. This perspective
unifies model inversion, optimization and selection schemes; including
classical random effects modeling, parametric empirical Bayes (Efron
and Morris, 1973; Kass and Steffey, 1989), automatic relevance
determination (Mackay and Takeuchi, 1996; Tipping, 2001) and
Bayesian model comparison (Kass and Raftery, 1995; Penny et al.,
2004). The basic idea here is to recast any generative model in terms of
parameters and hyperparameters and regard all model inversion,
optimization and selection as maximizing the evidence with respect
to the hyperparameters.

λ� = arg max
λ

p y jm λð Þð Þ
p y;ϑ jm λð Þð Þ = p y jϑ;mð Þp ϑ jλ;mð Þ

ð13Þ

Here, the parameters can be thought of as the sufficient statistics of
the likelihood function, while the hyperparameters become sufficient
statistics of the prior on the parameters. Nearly all generative models
and their optimization can be framed in this way. For example, take
the hierarchical linear model underlying parametric empirical Bayes:

y = X 1ð Þβ 1ð Þ + ε 1ð Þ

β 1ð Þ = X 2ð Þβ 2ð Þ + ε 2ð Þ

⋮
β n−1ð Þ = X 2ð Þβ nð Þ + ε nð Þ

ε ið Þ eNð0;Σðγ ið ÞÞ

ð14Þ

Here, X(i) β(i) are linear mixtures of parameters that specify the
formof the generativemodel. Eq. (14) canbewritten in termsof Eq. (13)
as follows

p y jϑ;mð Þ = N X ̃ nð Þβ nð Þ
;Σ̃ nð Þ� �

p ϑ jλ;mð Þ = p β jλ;mð Þp γ jλ;mð Þ

p β nð Þ jλ;m
� �

= N μ nð Þ
β λð Þ;Σ nð Þ

β λð Þ
� �

p γ ið Þ jλ;m
� �

= N μ ið Þ
γ λð Þ;Σ ið Þ

γ λð Þ
� �

X ̃
nð Þ

= ∏
n

i=1
X ið Þ

Σ̃
nð Þ

= ∑
n

i=1
X ̃ i−1ð ÞΣ γ ið Þ� �

X ̃ i−1ð ÞT : X ̃ 0ð Þ = I

ð15Þ

This form shows that one has the latitude to optimize the model in
terms of hyperparameters controlling the prior expectations μϑ

(i) (λ)
or covariances Σϑ

(i) (λ) of the regression β⊂ϑ or precision (covari-
ance) γ⊂ϑ parameters. For example, optimizing μβ

(n) (λ) with Σβ
(n)=0

simply returns the maximum likelihood estimate of the parameters,
while optimizing Σβ

(n)=(λ) with μβ
(n)=0 optimizes their shrinkage

priors (cf, ARD). Conversely, optimizing μγ
(i) (λ) with Σγ

(i)=0, returns
the restricted maximum likelihood (ReML) estimate of the covariance
of random effects (Harville, 1977). Indeed, the ReML objective
function is formally identical to the free-energy bound on log-
evidence in Eq. (7) (Friston et al., 2007). Table 1 summarizes these
and other examples. The point here is that, in principle, all these
schemes could be implemented using Eqs. (9) and (10), under the
Laplace assumption (following the inversion of a likelihood model
with uninformative priors). We will pursue this in subsequent work.

As with all modelling initiatives, even exhaustive searches of
model space will not disclose the optimum model, if the space does
not include that model. For example, there could be unmodeled
influences that, when included in the model, would increase its
evidence. The scoring procedure described in this paper does not
resolve the issue of how to define model spaces; it simply provides a
computationally efficient way of searching those spaces, once they
have been defined.

Evaluating the evidence for a model is the holy grail of most
statistical and modeling endeavors. In this sense, the procedures
described in this paper address an important problem. We have tried

Table 1
A brief summary of how various procedures can be cast as optimizing priors on model
parameters, with respect to hyperparameters (sufficient statists of the prior density).

Hyperparameterization of prior Procedure Notes

p(β |λ, m)=N (λ, 0) Maximum
likelihood (ML)

λ a ℝN become ML
parameter estimates

p γ jλ;mð Þ = N ∑i λ ið ÞX ̃ i−1ð ÞX ̃ i−1ð ÞT
;0

� �
Restricted
maximum
likelihood
(ReML)

λ a ℝM become
restricted ML
covariance component
estimates

p(β |λ, m) = N (λ, Σβ) Maximum a
posteriori
(MAP)

λ a ℝN become MAP
estimators

p(β |λ, m) = N (0, diag (λ)) Automatic
relevance
determination
(ARD)

λ a ℝN optimize
shrinkage priors on
each parameter

p(β |λ, m) = N (0, diag (λ × Σβ)) Automatic
model
selection
(AMS)

λ a {0,1} switch off
parameter
combinations

These examples pertain to a generative model with β a ℝN and γ a ℝM parameters
(sufficient statistics) specifying the mean and covariance a Gaussian likelihood, p(γ|ϑ,
m) = N (μ (β), Σ(γ)). Here N (λ, 0)=δ(λ) denotes a point mass.
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to stress their generality, with a particular emphasis on optimizing the
priors of a model with respect to its reduced log-evidence or free-
energy. This optimization goes much further than conventional uses
of the underlying formalism, which are currently restricted to
comparing models with and without various parameters, (e.g., with
the Savage–Dickey density ratio). We have also emphasized the
simplicity and efficiency with which one can score models under the
Laplace assumption. However, this comes at a cost: for highly
nonlinear models the true posterior density will not be Gaussian.
This means that the free-energy will only bound log-evidence and
may not be an accurate approximation. This raises two issues: First,
is the free-energy a good approximation to the underlying log-
evidence? Second, is the reduced free-energy a good proxy for
the free-energy of reduced models? Clearly, these questions can
only be resolved with access to the true posteriors and evidences. This
is a focus of current work using Gibbs sampling. At present, our
experience with mildly nonlinear models (such as those used in
dynamic causal modeling of fMRI time series) suggests that the free-
energy provides a reasonable approximation. However, this has yet to
be established for more strongly nonlinear models. The second issue
raises an interesting question. If the reduced free energy is not the
same as the free energy of the reduced model, which is the best
approximation? One might conjecture that the reduced free-energy
may be a more reliable proxy for log-evidence because it is based on
the free-energy of the full model, which may be less prone to
reporting local minima. Clearly, to test this conjecture one needs
the true log-evidence, which again speaks to the use of sampling
approximations to the posterior densities. We are currently pursuing
this. Our early impressions are that the reduced free-energy and free-
energy of the reduced model are reasonably consistent for weakly
nonlinear models and that the free-energy provides better approx-
imations than other alternatives (such as the Akaike and Bayesian
information criteria).

Acknowledgments

The Wellcome Trust funded this work. We are very grateful to
Marcia Bennett for helping prepare this manuscript and to our two
reviewers for helpful guidance and ideas.

Appendix and software notes

This appendix describes the key routines used in post hoc model
selection and optimization currently available in our academic
freeware. These are available as MATLAB scripts from (http://www.
fil.ion.ucl.ac.uk/spm).

spm_dcm_post_hoc: Post hoc optimization (under Laplace
approximation).

This routine searches over all possible reduced models of a full
model (DCM) and uses post hoc model selection to select the best.
Reduced models mean all permutations of free parameters (param-
eters with a non-zero prior covariance), where models are defined in
terms of their prior covariance. The full model should be inverted
prior to post hoc optimization. If there are more than 16 free-
parameters, this routine will implement a greedy search: This entails
searching over all permutations of the 8 parameters whose removal
(shrinking the prior variance to zero) produces the smallest reduction
(greatest increase) in model evidence. This procedure is repeated
until all 8 parameters are retained in the best model or there are no
more parameters to consider. When several DCMs are optimized
together (as in group studies), they are checked to ensure the same
free parameters have been specified and the log-evidences are pooled
in a fixed effects fashion. The outputs of this routine are graphics
reporting the model reduction (optimization) and an optimized DCM

(for every input DCM) that contains reduced conditional parameters
estimates.

This application of post hoc optimization assumes the DCMs that
are optimized are the same model of different data. Normally, this
would be a full model, in the sense of having the maximum number of
free parameters, such that the set of reduced models is as large as
possible. In contrast spm_dcm_search operates on different DCMs of
the same data to identify the best model:

spm_dcm_search: Post hoc selection (under Laplace approximation)

spm_dcm_search operates on different DCMs of the same data to
identify the best model. It will invert the full model, whose free-
parameters are the union (superset) of all free parameters in each
model specified. The routine then uses post hoc selection to evaluate
the log-evidence (reduced free-energy) and conditional density
over free-parameters of each model specified. The DCM specified
does not need to be estimated: spm_dcm_search will invert the
requisite (full DCM) automatically. The outputs of this routine are
graphics reporting the model space search (optimization) and a
structure containing the fields:

DCM.P—character/cell array of DCM filenames
DCM.PF—their associated (reduced) free-energies
DCM.PP—and posterior (model) probabilities

In addition, the reduced free-energies and posterior estimates of
each model in DCM.P are saved for subsequent searches over different
partitions of model space.

spm_dcm_optimise: Optimizes the priors of a model (under Laplace
approximation)

This routine optimizes the prior covariance on the free parameters
of anymodel (DCM) under the Laplace approximation. In otherwords,
it assumes that the prior means are fixed and will maximize model
evidence with respect to the hyperparameters of a function that
returns the prior covariance. This optimization uses the reduced free-
energy, based upon the posterior and prior densities of the full model
supplied. If the prior covariance function is not specified, this routine
will assume a simple diagonal form with a single hyperparameter. In
principle, this routine can be used in a flexible and powerful way to
emulate hierarchical modeling by using suitable prior covariance
functions with unknown hyperparameters. The outputs are the prior
moments (mean and covariance) of the optimum model.
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