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This paper presents an approach to characterizing evoked 
hemodynamic responses in fMRl based on nonlinear system 
identification, in particular the use of Volterra series. The 
approach employed enables one to estimate Volterra kernels 
that describe the relationship between stimulus presentation 
and the hemodynamic responses that ensue. Volterra series 
are essentially high-order extensions of linear convolution or 
“smoothing.” These kernels, therefore, represent a nonlinear 
characterization of the hemodynamic response function that 
can model the responses to stimuli in different contexts (in 
this work, different rates of word presentation) and interac- 
tions among stimuli. The nonlinear components of the re- 
sponses were shown to be statistically significant, and the 
kernel estimates were validated using an independent event- 
related fMRl experiment. One important manifestation of 
these nonlinear effects is a modulation of stimulus-specific 
responses by preceding stimuli that are proximate in time. 
This means that responses at high-stimulus presentation 
rates saturate and, in some instances, show an inverted U 
behavior. This behavior appears to be specific to BOLD ef- 
fects (as distinct from evoked changes in cerebral blood flow) 
and may represent a hemodynamic “refractoriness.” The aim 
of this paper is to describe the theory and techniques upon 
which these conclusions were based and to discuss the im- 
plications for experimental design and analysis. 
Key words: nonlinear system identification; functional neuro- 
imaging; fMRI; hemodynamic response function; Volterra se- 
ries. 

INTRODUCTION 

This paper is about evoked hemodynamic responses in 
functional magnetic resonance imaging (fMRI) and how 
the measured blood oxygen level dependent (BOLD) ef- 
fects can be related to underlying neuronal activity. In 
particular we investigate the nonlinear nature of this 
response, the significance of the nonlinear components, 
and how they affect the design and interpretation of fMRI 
experiments. 

In Friston et al. (I), we presented a model of observed 
hemodynamic responses, in fMRI time series, that obtain 
when the underlying neuronal activity (inferred on the 
basis of changing task conditions) is convolved or 
smoothed with a hemodynamic response function. This 
model was subsequently elaborated in the context of the 
general linear model (2-4). The general linear model is 
variously employed in linear system identification, from 
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a signal-processing perspective, or multiple linear regres- 
sion or AnCova in statistics. These approaches to mod- 
eling and characterizing fMRI time series are predicated 
on the assumption that the relationship between evoked 
neuronal activity and the ensuing hemodynamic re- 
sponse can be approximated by a linear convolution 
using a fixed and time-invariant hemodynamic response 
function (1, 5). This assumption has been evaluated by 
comparing estimates of the hemodynamic response func- 
tion using different stimuli (6) and linear system identi- 
fication. In this paper, we present a nonlinear character- 
ization of the hemodynamic response function using 
nonlinear system identification and explicitly assess 
both the significance and behavior of the nonlinear com- 
ponents (where they exist). 

We have employed a parametric experimental design 
using evoked responses to words presented aurally at 
varying frequencies. This variation allowed us to exam- 
ine the “stability” of the hemodynamic response to single 
words and the interactions among stimuli when pre- 
sented close together. These interactions represent non- 
linear effects that we were able to estimate and make 
statistical inferences about. The importance of this work 
relates to understanding the nonlinear relationship be- 
tween evoked responses and sensory or behavioral pa- 
rameters (such as presentation rate) and the implied con- 
straints imposed upon experimental design and analysis. 
For example, we were able to resolve the apparent dis- 
crepancy between linear increases in blood flow in re- 
sponse to increasing word presentation rates (7) and the 
nonlinear dependency of the BOLD signal (8). From a 
data analysis perspective, the framework described in 
this paper can be seen as a generalization of linear ap- 
proaches that characterize hemodynamic responses, 
evoked by single events, in terms of basis functions of 
peri-stimulus time (9). 

This paper is divided into three sections. The first 
section describes the theoretical background to analyzing 
nonlinear or dynamic systems using Volterra series as a 
general model relating changes in neuronal activity (or 
stimuli) to hemodynamic responses. By using a second- 
order expansion, we were able to reformulate the prob- 
lem in terms of the general linear model and therein 
provide for both parameter estimation and statistical in- 
ference about the effects observed. The second section 
uses the results of the first section to analyze two fMRI 
experiments, comprising two single-subject aural-stimu- 
lation paradigms. In the first, epoch-related experiment 
blocks, or epochs, of words were presented at different 
rates. On the basis of this experiment, we were able to 
estimate a high-order or nonlinear hemodynamic re- 
sponse function and use it to predict the response that 
would have been evoked by a single word. In the second, 
event-related experiment, words were presented in iso- 
lation. This allowed us to validate the estimated re- 
sponses to single words from the first study in terms of 
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empirically determined event-related responses from the 
second. The third section uses the nonlinear model of 
evoked responses of the previous sections to look in 
detail at the nonlinear interactions. By performing “vir- 
tual” experiments on the model, we show that these 
interactions can be thought of in terms of a hemodynamic 
“refractoriness” in which a prior stimulus modulates the 
response to a subsequent stimulus, if it occurs within a 
second or so. This modulation represents an interaction, 
over time, between the responses to successive stimuli 
and results in reduced responsiveness at high-stimulus 
frequencies. 

THEORETICAL BACKGROUND 
Nonlinear System Identification 

Neuronal and neurophysiological dynamics are inher- 
ently nonlinear and lend themselves to modeling by non- 
linear dynamic systems. However, due to the complexity 
of biological systems, it is difficult to find analytic equa- 
tions that describe them adequately [although see 
Vazquez and No11 (10) for a compelling example]. An 
alternative is to take a very general model and obtain the 
specific parameters that enable the model to describe the 
system in question (11). A common example of this func- 
tional approach to system identification is the use of 
Volterra series. The Volterra series is an extension of the 
Taylor series representation to cover dynamic systems 
and has the general form 

y( t )  = ho 

+ . . . and s o o n  

f i t )  is the output, in this case the hemodynamic response 
or fh4RI signal, and u( t )  the input, in this case neuronal 
activity as indexed by the stimulus rate employed in our 
experiments. hl’(T1,. . . . 7,) is the nth order Volterra ker- 
nel. It can be shown that these series can represent any 
analytic time-invariant system (1 1). The Volterra series 
has been described as a “power series with memory” [see 
Chapters 2 and 3 of Bendat (12) for a fuller discussion]. 
The problem of characterizing the relationship between 
the stimulus function or neuronal activity u( t )  and the 
hemodynamic response f i t )  reduces to estimating the 
kernel coefficients h”. For long time series, with rela- 
tively noiseless data, a number of approaches could be 

tried. Wray and Green (11) describe a technique using 
time-delay neuronal networks. In our experience, the 
nature of fMRI data does not permit t.he use of such 
techniques, so we have adopted a standard least squares 
approach. This has the advantage of providing for statis- 
tical inference using the general linear model (see be- 
low). To do this, one must first linearize the problem. 
Consider the second-order approximation to the above 
expansion with finite “memory” T: 

y( t )  = ha 

h2(T1,T2)’ U ( t  - T1) * U ( t  - 7 2 )  * dTldT2 
+ II; 

Note that the integrals start at zero. This reflects the fact 
that our system is “causal” in the sense that neuronal 
changes precede hemodynamic responses. In this formu- 
lation, the first-order coefficients hl(t) correspond to the 
[linear] hemodynamic response function as described in 
Friston et al. (1). The new terms depend on the second- 
order coefficients h2 and are the primary focus of this 
paper. 

The second step in making the estimates of ho, hl, and 
h2 more tractable, for noisy data like fMRI, is to expand 
the kernels in terms of a small number P of temporal 
basis functions This allows us to estimate the 
coefficients of this expansion using standard least 
squares: 97). 

P P  

Now define a new set of response variables x,(t)  that 
represent the original time series u(t) convolved with the 
ith basis function 

xi ( t )  = b i ( ~ , )  - u ( t  ~ T ~ ) ~ T ~  I 
Substituting this expression into Eq. [I] and including an 
explicit error term e(t) gives 

P P P  

This is simply a general linear model with response 
variable fit), the observed time series, and explanatory 
variables 1, xj ( t ) ,  and xi( t ) .xj( t )  at the [discrete] times at 
which they are observed. These explanatory variables 
(convolved time series of neuronal activity or stimulus 
presentation rate) constitute the columns of the design 
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matrix. The unknown parameters are 8, g', and 8 from 
which the kernel coefficients ho, hl ,  and h2 are derived, 
using Eq. [2]. Having reformulated the problem in this 
way, we can now use standard analysis procedures de- 
veloped for serially correlated fMRI time series that em- 
ploy the general linear model (2,  4). These procedures 
provide parameter estimates (i.e., estimates of the basis 
function coefficients and, implicitly, the kernels them- 
selves) and statistical parametric maps (SPMs) testing the 
significance of a hemodynamic response at each and 
every voxel. In this paper, we will use SPMs of the F 
statistic (SPM{FJ) that test the joint contribution of effects 
considered of interest (the remaining effects, or columns 
of the design matrix, are called confounds). Below we 
will present SPM{FJs testing for the significance of the 
first- and second-order coefficients hl and h2 and 
SPM{F]s that test for the nonlinear effects h2 alone by 
treating the first-order effects hl as confounds. These 
analyses involve using design matrices with and without 
the effects of interest and assessing the reduction in error 
with the F statistic. 

In this work, we used only three basis functions, i.e., 
P = 3 (Fig. 1). These were gamma density functions 
peaking during the early, intermediate, and late compo- 
nents of the anticipated hemodynamic response. The 
choice of these functions was motivated by prior knowl- 
edge about the form of the [linear] hernodynamic re- 
sponse function. This form is usually well approximated 
by a linear combination of two or more gamma density 
functions. A special case of this is the Poisson form 
adopted in Friston et al. (1) that corresponds to a single 
gamma density with equal mean and variance. Clearly 
the choice of basis functions is dictated by the nature of 
the data and the amount of temporal detail that one 
wants to model. In some instances (e.g., multislice acqui- 
sition), there are differences in the times that one voxel 
time series is acquired in relation to another. To accom- 
modate these slight shifts in time, we often supplement 
the basis functions with their temporal derivatives (Fig. 
1). The role of these derivatives can be seen intuitively by 

basis functions 
0.25, I 

i 
-0.1 ' I 

0 5 10 15 20 25 30 
time (seconds) 

FIG. 1. Basis functions b,(t) (solid lines) and their derivatives (bro- 
ken lines) used in the expansion of the Volterra kernels h'(7,) and 
h2(7,, 7.J. These are gamma density functions with mean and 
variance 2' (i = 2, 3, and 4). These gamma density functions can 
be thought of as a set of time-scaled Poisson functions because 
their mean and variance are equal. 

noting that adding (or subtracting) the temporal deriva- 
tive shifts the basis function backwards (or forwards) in 
time. In this paper, derivatives were only used in the 
analysis of the event-related study where temporal ef- 
fects were more acute. 

THE fMRl EXPERIMENTS 
Experimental Design and Data Acquisition 

In this section, we apply the theory presented above to 
fMRI time series obtained from a single normal male 
subject during passive listening to words presented alone 
or continuously at different rates. The data were acquired 
at 2 Tesla using a Magnetom VISION (Siemens, Erlangen) 
whole body MRI system, equipped with a head volume 
coil. Contiguous multislice T,*-weighted fMRI images 
were obtained with a gradient echo-planar sequence us- 
ing an axial slice orientation (TE = 40 ms, TR = 1.7 s, 
64 X 64 X 16 voxels [19.2 X 19.2 X 4.8 cm]). After 
discarding initial scans (to allow for magnetic saturation 
effects), each time series comprised 1200 (first study) and 
1000 (second study) volume images with 3-mm isotropic 
voxels. In the first, epoch- or rate-related experiment, the 
subject listened to monosyllabic or bisyllabic concrete 
nouns (i.e., dog, radio, mountain, gate) presented at five 
different rates (10, 15, 30, 60, and 90 worddmin) for 
epochs of 34 s (20 scans), intercalated with periods of 
rest. The five presentation rates were successively re- 
peated according to a Latin Square design. In the second, 
event-related study, the subject listened to (nonrepeat- 
ing) nouns presented once every 34 s. 

Data Preprocessing 

The data were analyzed with SPM96 (Wellcome Depart- 
ment of Cognitive Neurology, http://www.fil.ion. 
ucl.ac.uk/spm). The time series were realigned, corrected 
for movement-related effects, and spatially normalized 
into the standard space of Talairach and Tournoux (13) 
using the subject's coregistered structural Tl scan (14, 
15). The data were spatially smoothed with a 5-mm iso- 
tropic Gaussian kernel and temporally smoothed with a 
,8 -s Gaussian kernel. Because we also smoothed the de- 
sign matrix, the temporal smoothing does not affect the 
kernel or response function estimates (2). 

Epoch-Related Responses 

The data were analyzed using a design matrix that in- 
cluded the explanatory variables (convolved time series) 
in Eq. [3]. The basis functions employed in this analysis 
were a series of gamma density functions as shown in 
Fig. 1 (solid lines). The stimulus function u(t) ,  the sup- 
posed neuronal activity, was simply the word presenta- 
tion rate at which the scan was acquired. We also used 
more comprehensive forms for u(t)  that involved model- 
ing each word individually, but the results were very 
similar to the simpler snalysis presented here. The re- 
sulting SPM(FJ, reflecting the significance of an evoked 
response (or more formally, testing the null hypothesis 
that all h1 and h2 were jointly zero), is shown in Fig. 2 
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along with the design matrix 
used. The left-hand side of the 
upper design matrix com- 
prises the explanatory variable 
xi(t) and xi(t).xi(t). The remain- 
ing columns contain the con- 
stant (used to estimate go) and 
other effects designated as 
confounds (low-frequency ar- 
tifacts, global effects, and so 
on). This SPM(F} has been 
thresholded [ F  = 32, P < 0.001 
corrected for multiple compar- 
isons (IS)] and shows wide- 
spread responses in bilateral 
temporal regions with the 
most significant effects evi- 
dent in the periauditory re- 
gions. 

The estimated kernels ho, 
h’, and h2 for a voxel in the 
left superior temporal gyrus 
(-56, -28,12 mm) are shown in 
Fig. 3. As might be expected, 
the first-order kernel resem- 
bles the hemodynamic re- 
sponse functions identified 
using linear analyses such as 
least squares deconvolution 
[e.g., Fig. 6 in Ref. (l)] or linear 
regression [ e.g., Fig. 5 in Boyn- 
ton et al. (6)]. Of note is the 
protracted undershoot that 
lasts for about 16 s. The sec- 
ond-order kernel is shown be- 
low and is remarkable for the 
pronounced negativity on the 
lower left, flanked by smaller 
positive lobes. This negativity 
suggests that if neuronal activ- 
ity has been high in the past 
few seconds, then the hemo- 

20 40 60 dynamic response will be sup- 

FIG. 2. Top left: SPM{F} testing for the significance of the first- and second-order kernel coeffi- 
cients (b’ and b2) in the first (rate) experiment. This is a maximum intensity projection of a statistical 
process of the F ratio, following a multiple regression analysis at each voxel. The format is standard 
and provides three orthogonal projections in the standard space conforming to that described in 
Talairach and Tournoux (13). The grey scale is arbitrary, and the SPM{F) has been thresholded at 
32 (f < 0.001 corrected). Top right: The design matrix used in the analysis. The design matrix 
comprises the explanatory variables in the general linear model. It has one row for each of the 1200 
scans and one column for each explanatory variable or effect modeled. The left-hand columns 
contain the explanatory variables of interest x,(t) and x,(t).x,(t), where x,(t) is word presentation rate 
u(t) convolved with t h e  basis functions b,(t) in Fig. 1. The remaining columns contain covariates or 
effects of no interest designated as confounds. These include (left to right) a constant term (b’), 
periodic (discrete cosine set) functions of time, to remove low-frequency artifacts and drifts, global 
or whole brain activity G(t), and interactions between global effects and those of interest G(t).x,(t) 
and G(t).x,(t).x,(t). The latter confounds remove effects that have no regional specificity. Lower left: 
SPM{F) as above but for the second event-related experiment. This SPM{F} has been thresholded 
at F = 16 (f < 0.001 corrected). Note the similarity between the two SPM{F}s, despite the fact that 
they derive from different experimental designs and completely independent data. Lower right: The 
design matrix employed. The effects of interest are the first-order terms x,(t) derived by convolving 
u(t) with all six functions in Fig. 1.  u(t) was in this instance one when a single word was presented 
and zero elsewhere. The confounds are as described above. 

pressed. The positive lobes 
suggest that this suppression 
is ameliorated if the underly- 
ing neuronal activity is sus- 
tained, i.e., is high in the re- 
cent (4 s) and more distant 
past (8 s). There are two fur- 
ther important points to note. 
First, the second-order kernel 
is symmetrical. This will al- 
ways be the case because the 
contribution of u ( t  - T l ) . u ( f  - T ~ )  

to the response is exactly the 
same as u( t  - T ~ ) . u ( ~  - T ~ ) .  The 
second unpredicted and more 
intriguing observation is that 
the second-order kernel is very 
similar to the “product” of the 
first-order kernel times itself 
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FIG. 3. The Volterra kernels ho, h’, and h2 based on parameter 
estimates from a voxel in the left superior temporal gyrus at -56, 
-28, 12 mm. These kernels can be thought of as a characterization 
of the second-order hemodynamic response function. The first- 
order kernel (upper panel) represents the (first-order) component 
usually presented in linear analyses. The second-order kernel 
(lower panel) is presented in image format. The color scale is 
arbitrary; white is positive and black is negative. The insert on the 
right represents [-h1(T,).h1(T2)], the second-order kernel that would 
be predicted by a simple model that involved convolution with h1 
and then some nonlinear scalar function. 

(insert in Fig. 3 ) .  In other words, h2(~l,~2) is roughly 
proportional to hl(i-J.hl(~J. We return to the implica- 
tions of this in a subsequent section. 

The basic form of the second-order kernel estimates 
was very similar for all the voxels in the periauditory 
region. The nature of these nonlinear effects will be dem- 
onstrated more intuitively in the final section of this 
paper. Using these kernel estimates, we can estimate 
responses to any temporal pattern of words presented by 
using Eq. [I] and any suitable function u( t ) .  In the first 
instance, we present the estimated responses to the stim- 
uli actually used: The predicted and observed responses 
for the first 17 min of the time series are shown in Fig. 4 
(upper panel). Predicted responses to 34-s epochs at two 
presentation rates (30 and 60 words/min) and the ad- 
justed responses observed are shown in the lower panel 
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of Fig. 4 (adjusted data is simply the original data after 
the confounding effects have been removed). The agree- 
ment is evident. 

Event-Related Responses 

By specifying a stimulus function u(t)  that models the 
occurrence of a single word, we can use Eq. [I] and the 
kernel estimates in Fig. 3 to simulate the hemodynamic 
response of this brain region to single word. This simu- 
lated event-related response is shown in Fig. 5 (upper 
panel). One observes a peak at about 4 s followed by a 
protracted undershoot lasting for about 16 s. This re- 
sponse is “simulated” using a model whose parameters 
were determined without ever presenting single words in 
isolation (i.e,, the Volterra series model based on the rate 
experiment). A validation of the model can be effected in 
terms of the empirically determined event-related re- 
sponse to actual single words using the second experi- 
ment. 

The same analysis described above was applied to the 
event-related, single word experiment. In this instance, 
by virtue of the fact that the words were presented very 
sparsely, there is no opportunity for the responses to 

fitted and observed response 

I 
143 

0 200 400 600 aoo 
time (seconds) 

responses at 30 and 60 wpm 

143 i 
0 10 20 30 40 50 60 
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FIG. 4. Top panel: Fitted or predicted (broken line) and observed 
(solid line) responses at the same voxel as in Fig. 3, over the first 
1024 s. The observed responses here are adjusted such that those 
effects that can be modeled by the confounds have been re- 
moved. Lower panel: Predicted and observed responses for ep- 
ochs of 30 (light grey) and 60 (dark grey) wordshin (wpm) super- 
imposed upon each other. 
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simulated response to a single stimulus 
2 7 ’  I 

-0 5 
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time (seconds) 

empirical response 
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FIG. 5. Top panel: Hemodynamic response to a single word (bar 
at 0 s) modeled using the Volterra kernel estimates of Fig. 3. Lower 
panel: The empirical event-related response in the same region 
based on the second experiment. The solid line is the fitted re- 
sponse using the first-order kernel estimates and the dots repre- 
sent the adjusted responses. 

successive words to interact, and therefore a first-order 
model is sufficient to describe the response. In this case 
u(t)  was effectively a series of delta functions modeling 
the occurrence of each word. The basis functions were 
the gamma functions used above (solid lines in Fig. 1) 
and their derivatives (dotted lines in Fig. 1). The result- 
ing SPMIF}, testing for the significance of event-related 
responses to single words, is shown in the lower half of 
Fig. 2. This should be compared to the equivalent SPM{F} 
from the rate experiment (upper half). The similarity 
between these two SPM{F)s is remarkable given that they 
were obtained using completely different data and exper- 
imental designs (epoch- or rate-related and event-relat- 
ed). The fitted response, based on the estimate of hl, from 
the same region as above, is shown in Fig. 5 (lower panel) 
with the adjusted data. The striking similarity between 
the empirically observed event-related response and that 
predicted on the basis of the Volterra kernels ho, hl, and 
hZ obtaining from the rate experiment (upper panel) can 
be considered a validation of the estimation procedure 
and the underlying model. Interestingly the empirical 
response includes a slight initial “dip.” We will return to 
this below. 

NONLINEAR ASPECTS OF EVOKED RESPONSES 
Are They Significant? 

To assess the significance of the nonlinear response com- 
ponents (due to hZ),  over and above the first-order com- 
ponents, we repeated the analysis of the rate experiment, 
treating the first-order effects (i.e., the contributions de- 
termined by h’) as confounds. The resulting SPM(F} is 
shown in Fig. 6 and implicates both periauditory regions 
and the left posterior superior temporal region (Wer- 
nicke’s area), suggesting that nonlinear effects are not 
only prevalent but very significant (P < 0.001 corrected) 
in this experimental design. 

The Form of the Kernel Estimates and Implications for 
the  “Structure” of Nonlinear Effects 

As noted above and brought to our attention by one of our 
reviewers, the elements of the second-order kernel are 
roughly proportional to the product of the corresponding 
elements of the first-order kernel, i.e., ~ ‘ ( T ~ , T ~ )  

h1(7Jh1(7J. This can be seen by comparing the estimate 
of hZ with the insert corresponding to - h ’ ( ~ ~ ) . h ’ ( ~ ~ )  in 
Fig. 3. There are subtle differences in that the off-diago- 
nal positive lobes in h2 peak around a s, whereas they 
peak at 16 s in the insert (at these times the values of hZ 
are slightly negative). However, the overall form is very 
similar and this suggests a simple form for the underlying 
nonlinear model of evoked responses: 

where f(.) is a nonlinear scalar function. Expansion off(.) 
in a McLaurin series gives 

* u ( t  - T ~ )  * dT1dT2 

Eq. [4] demonstrates the formal similarity with Eq. [I] 
where ~ ’ ( T , , T , )  has been replaced by h ’ ( ~ ~ ) . h ~ ( ~ ~ ) .  This 
simpler model is equivalent to convolving the stimulus 
function with a first-order kernel (i.e., a linear “latent” 
hemodynamic response function) and then taking some 
nonlinear (e.g. , second-order polynomial) function of the 
result. The distinction between the general form implied 
by the Volterra series and this simpler form is depicted in 
Fig. 7. It is pleasing to note that this simple form was 
adopted by Vazquez and No11 (10) in their nonlinear 
characterization of evoked visual responses. These au- 
thors assumed a Gaussian form for the kernel, but still 
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SPM{F} - Nonlinear effects 
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FIG. 6. Left: SPM{F} testing for the significance of the second-order kernel coefficients (h2). In this 
instance, the explanatory variables pertaining to the first-order kernel have been moved over to the 
confound partition of the design matrix (shown on the right). The SPM{F} has been thresholded at 
F = 16 (P < 0.001 corrected). Note that this SPM{F} has been thresholded at half the value 
employed for the equivalent SPM{F} testing for the first- and second-order effects in Fig. 2. This 
is because the values in this SPM{F) were generally smaller, although still extremely significant. 

our results speak to the appropriateness of the general 
form for their model. 

From the perspective of the current analysis, the pa- 
rameter estimates suggest a specific form for the nonlin- 
ear relationship between input and measured output in 
fMRI, despite the fact that no constraints (other than the 
basis functions) were placed on the model. These sorts of 
insights may help to identify the biophysical level at 
which nonlinearities are expressed in fMRI. For example, 
if the nonlinear effects manifest after a temporal convo- 
lution of neuronal activity to give a hemodynamic re- 
sponse, then it may be that the measured fMRI signal is 
simply a saturating (nonlinear) function of hemodynamic 
changes. We return to this in the discussion. Simple 
nonlinear forms are also important from the point of view 
of system identification using optimization techniques, 
because there are fewer parameters to estimate (and their 
relationship to the system in question is often more ap- 
parent). However, it should be noted that the simplifica- 
tion implicit in Eq. [4] does not help in the context of 
framework adopted here. This is because to make Eq. [4] 
linear in the parameters, one comes back to Eq. [3]. 

Interactions Between Stimuli 

In this section, we examine how the nonlinear effects 
identified in the previous sections come to shape the 
responses to different stimuli. We have chosen to do this 
in terms of the effect that a preceding stimulus has on the 
response to a current stimulus. This captures the essence 
of nonlinear responses, in the sense that interesting non- 
linearities (above and beyond a simple nonlinear map- 
ping from neuronal input to hemodynamic response) 

involve interactions over time. 
The kernel estimates of the 
previous section can be used 
to specify a model that should 
reproduce the hemodynamic 
response to any arbitrary stim- 
ulus. This means that we can 
look in detail at responses to 
different sequences of events 
that would otherwise require a 
whole series of experiments. 
Of course, these simulated re- 
sponses are only predictions 
and suggest some interesting 
experiments for empirical ver- 
ification. Here, however, we 
use these predictions to con- 
vey, in a heuristic way, the im- 
plications of the second-order 
effects. 

Consider the response to a 
pair of stimuli, separated by a 
second, in relation to the re- 
sponses to each presented in 
isolation. Figure 8 shows these 
responses to the stimuli (up- 
per panel: together-solid line, 
and separately-broken lines). 
To assess the impact of the 

first stimulus on the response to the second, we can 
subtract the response to the first stimulus from the re- 
sponse to both. This gives the response to the second 
stimulus in the context of the first (solid line in the lower 
panel of Fig. 8). It can be seen that this response is 
attenuated markedly, with an augmented undershoot, in 
relation to the response obtained when the stimulus is 
presented in isolation (broken line). In short, the re- 
sponse to a stimulus is compromised or modulated by 
preceding stimuli to give a nonlinear “refractoriness” 
that depends on the interstimulus interval or rate. This 
effect is only one aspect of the nonlinear interactions 
embodied in the characterization, but it is an important 
one. The consequence of this effect is to progressively 
moderate the response to each word with increasing rates 
of presentation. Figure 9 (upper panel) shows the re- 
sponses, to epochs of words presented at different rates, 
predicted by the model. The responses here are simply 
the integral under the evoked response curve during 
word presentation. The empirical response (dots) are in- 
cluded for comparison. As expected [and consistent with 
the results of Binder et al. (8)], the response function 
deviates from a linear relationship at higher event fre- 
quencies. It is interesting that for the voxel we have been 
using, the nonlinear model predicts that the integrated 
response would fall off at very high rates or frequencies. 
This is not an artifact. In some brain regions, this effect 
was observed empirically. The lower panel depicts the 
modeled and empirical integrated responses for a voxel 
more anteriorly in the superior temporal gyrus that 
shows an inverted U dependency on presentation rate, 
peaking at l /s .  The neurophysiological mechanisms that 
may contribute to this effect are discussed below. 
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time-delayed input 

u(t - T) i Model implied by 
Volterra series 

U(t - 1) linear combination 

U(t  - 2) 
Nt) 

. . . . . . . 

I u ( t : T )  Simple model 

FIG. 7. Schematic depicting the difference between the finite-mem- 
ory power series implied by the Volterra series model and the simpler 
model suggested by the parameter estimates. u(t) represents the 
input (in this case the stimulus function) and f(u,,uz,. . . . u,) some 
nonlinear function with n arguments. y(f) is the output (in this instance 
the hemodynamic response). 

Variation in Responses Over the Brain 

So far we have focussed on evoked responses at one point 
in the brain. In general, the kernel estimates for other 
brain regions were very similar in form. To characterize 
the variability in responses over different regions, we 
simulated the response to a single word at all voxels 
surviving an uncorrected F value corresponding to P = 
l op8  and then performed a principal component analysis 
of the resulting responses. The eigenvalue spectrum (Fig. 
10, upper panel) suggested that there were three main 
response forms or components that could largely account 
for the variation in responses. These first three principal 
components are shown in the lower panel. The first 
corresponds to the canonical hemodynamic response 
with a very quick onset and early peak at 3 s. The second 
can be interpreted in  terms of a late response, peaking at 
about 8 s. Interestingly, the second component shows a 
pronounced early “dip” and is almost exactly the same as 
the responses shown in Le and Hu (17). This early signal 
decrease has been attributed to increased oxygen extrac- 
tion (18) before compensatory increases in blood flow 
become established (19). The third component is a late 
component that covers most of the “undershoot.” The 
similarity between these principal components and the 
basis functions employed in the model is expected given 
that (i) the form of the response is constrained by the 
basis functions, and (ii) the basis functions were chosen 
to “cover” likely variations in the response profile. To 
indicate the spatial organization of the response varia- 
tion, Fig. 11 presents the positive and negative first prin- 
cipal components scores as maximum intensity projec- 
tions. As might be expected, the high positive scores are 

most evident in the auditory and periauditory regions 
(upper panel). The negative scores are most pronounced 
in posterior temporal, parietal, and extrastriate regions 
(lower panel). Negative expression of the first principal 
component corresponds to an evoked deQcfivQtion or 
reduction in signal. This is a real phenomenon and can 
be demonstrated as such by looking at the event-related 
responses in the posterior superior temporal region using 
independent data from the second study. Figure 12  
shows the form of this response that can be characterized 
as a deactivation, peaking at about 5 s followed by a more 
protracted positive rebound. This unusual biphasic re- 
sponse is not an artifact of global or whole brain normal- 
ization (because we removed global confounds using 
multiple linear regression as opposed to scaling the data) 
and speaks to the ability of fMRI to detect decreases in 
BOLD signal that endure far longer than the early tran- 
sients mentioned above. 

DISCUSSION 

We have presented a nonlinear approach to characteriz- 
ing evoked hemodynamic responses in fMRI that is based 

response to a pair of stimuli 
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effect of a prior stimulus 
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FIG. 8. Top panel: The simulated responses to a pair of words 
(bars) (1 s apart) presented together (solid line) and in isolation 
(broken line) based on the second-order hemodynamic response 
function in Fig. 3. Lower panel: The response to the second word 
when preceded by the first (broken line), obtained by subtracting 
the response to the first word from the response to both, and 
when presented alone (broken). The difference reflects the impact 
of the first word on the response to the second. 
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FIG. 9. Integrated (over the period of word presentation) re- 
sponses during epochs of words, lasting for 34 s, presented at 
increasing frequencies. The line represents the simulated re- 
sponses using the second-order hemodynamic response function 
in Fig. 3, and the dots correspond to the observed responses at 
the voxel in question. Lower panel: The same analysis but for a 
voxel more anterior in the superior temporal gyrus (-68, -16, 0 
mm). Note the nonlinear and inverted U relationship between 
integrated response and word presentation frequency. 

on nonlinear system identification, in particular the use 
of Volterra series. By reformulating the model, we were 
able to estimate the kernel coefficients that mediate be- 
tween underlying neuronal activity and the observed 
hemodynamic response and make statistical inferences 
about their significance. These kernel coefficients can be 
thought of as high-order or nonlinear extensions of linear 
convolution or “smoothing” functions and, therefore, rep- 
resent a nonlinear characterization of the hemodynamic 
response function. We have shown that the same nonlinear 
response function can model the responses to stimuli in 
different contexts (in this work, different rates of presenta- 
tion) and that the nonlinear component is not only very 
significant but also is quantitatively important. Its effect can 
be thought of in terms of interactions between successive 
stimuli, such that the responses to an extant stimulus are 
modulated by the preceding stimulus. This means that re- 
sponses at very high frequencies saturate and in some brain 
areas start to decline again. A number of techniques and 
observations have been presented in this paper, and we will 
now review and extend some of the more important issues. 

Nonlinear Modeling versus Linear Modeling 
What Are the Implications of this Work for 
Experimental Design and Analysis? 

The first thing to note is that there is a fundamental 
distinction between positing the same nonlinear hemo- 
dynamic response function that can account for varying 
responses to stimuli presented at different rates, and a 
series of rate-dependent, linear hemodynamic response 
functions. To make this distinction clear, consider the 
analysis presented in Fig. 13. In this analysis, we have 
discarded the second-order terms from the design matrix 
and have treated each presentation rate as a different 
stimulus type. This simply involves separating the first- 
order terms into a set of columns for each rate (Fig. 12,  
upper right). This represents an alternative, multiple lin- 
ear regression approach to the data and yields parameter 
estimates (up to first-order kernel coefficients ho and h*) 
for each rate. The resulting event-related responses 
(shown in the lower panel of Fig. 13)  are rate-specific 
and, as one might expect, show that responses to single 
words are progressively attenuated when these words are 
presented at high frequencies. The set of first-order he- 
modynamic response functions (Fig. 13)  and the single 
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FIG. 10. Principal component analysis of simulated responses to 
single words in different brain regions. Top panel: Normalized 
eigenvalue spectrum showing only three principal components 
have eigenvalues greater than unity. Lower panel: The first three 
principal components (solid line-first, broken line-second, and 
dotted line-third) reflecting the underlying forms of estimated he- 
modynamic responses to single words. 
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FIG. 11. Spatial distribution of component scores from Fig. 10. 
Top panel: Maximum intensity projection of the positive compo- 
nent scores showing that bitemporal, periauditory regions express 
the first principal component to a substantial degree. Lower panel: 
As above but for the negative scores associated with the first 
principal component of the response. 
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second-order hemodynamic response function (Fig. 3) 
are both trying to model the same thing, and yet they do 
so in a very distinct way. The first distinction is concep- 
tual; in the nonlinear analysis, we are explaining the 

142 
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responses in terms of the same response function that 
accommodates interactions between stimuli. In the linear 
analysis we relegate these interactions to formal differ- 
ences among the rate-specific response functions (and 
would normally try to characterize these differences post 
hoc). There is another more subtle difference between the 
two analyses: In the linear analysis, we have discounted 
second-order effects in the hope that a suitably shaped 
first-order response function can model all the nonlin- 
earities inherent in the real response. While this is justi- 
fiable for epochs of a fixed rate and length, it may not be 
for epochs that endure over different periods of time. 
This is because interactions over time (e.g., hemody- 
namic adaptation and refractoriness) may be significant, 
even for a fixed stimulus frequency. Only the nonlinear 
analysis would model these effects appropriately. Note 
that for a fixed form of event, or epoch, the second-order 
terms [e.g., xi(t).xj(t)] can be emulated, exactly, by (more 
complicated) first-order terms. In other words, with no 
parametric variation in the form of the underlying neu- 
ronal activity evoked, a first-order model is sufficient. 
This is the rationale behind dropping the second-order 
terms in the event-related study and in the linear analysis 
depicted in Fig. 13. 

Which Then is the Most Appropriate Anaiysis to Use? 

This question is only posed in parametric experimental 
designs (20) when some experimental parameter is var- 
ied (for example, rate of stimulus presentation, response 
rate, duration of task, etc.). The alternatives are then to 
model a nonlinear response in terms of a parametrically 
varying input u( t )  or to treat each level of the parameter 
manipulated as a separate condition (cf. the linear anal- 
ysis above). In some circumstances, only the nonlinear 
option may be viable, for example, if the parameter is 

. . . . .  . . .  
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FIG. 12. Event-related deactivation: The empirical event-related 
response based on the zeroth and first-order kernel estimates 
(solid line) for a voxel in the right superior temporal region at -42, 
-50, 18 mm. The dots correspond to adjusted data. 
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FIG. 13. A linear analysis of the rate experiment. Top left: SPM{F} testing for the significance of the 
first-order coefficients hi estimated separately (but simultaneously) for each presentation rate. This 
SPM{F} has been thresholded at F = 16 (f < 0.001, corrected). The similarity with the equivalent 
SPM{F)s in Fig. 2 is evident. Top right: Explanatory variables corresponding to xi(t) arranged to 
model each presentation rate independently (i.e., the design matrix partition of interest). The first 
five sets of columns represent the five presentation rates and the final two correspond to (short and 
long) periods of rest. Lower panel: Simulated hemodynamic responses to single words (bar) using 
the kernel estimates from the above design matrix, for the same voxel as in Fig. 3. These 
response-function estimates are rate-specific and show an attenuated response to single words 
when they are presented in the context of a high-frequency word stream. The numbers on the 
response functions denote the presentation rate in wordslmin. 

is possible to implement the 
nonlinear analysis above with 
existing tools (e.g., SPM96), 
the construction of the design 
matrices is complicated, and a 
simple linear analysis may be 
quite sufficient for most pur- 
poses. 

In terms of experimental de- 
sign, the nonlinear effects 
above mean that it is possible 
to drive the brain “too hard” 
with very high stimulus pre- 
sentation rates. The analyses 
of the present study suggest 
that the optimum presentation 
rate, for words, is about 11s.  

The SPM{F} 

One aspect of the techniques 
presented in this paper is the 
use of the SPM(FJ to make in- 
ferences about the significance 
of the response, in terms of the 
response kernel coefficients. 
This is an instance of the use- 
fulness of the SPM(F1 [see 
Buechel et al. (21) for another 
example] and has been facili- 
tated by recent advances in 
Gaussian field theory that al- 
low one to make corrections 
for multiple dependent com- 
parisons in F fields (16). The 
importance of the SPM(F), as 
opposed to SPM(t) or t maps 
(and related statistical pro- 
cesses), is that it reflects the 
significance of a whole set of 
parameter estimates, in this in- 
stance the collection of kernel 
coefficients that describe the 
hemodynamic response (h’, 
h’, and h’). We envisage that 
the SPM(F) will find an in- 
creasing role in fMRI, where 
the emphasis will shift from 
making statistical inferences 
about particular simple effects 
to quantifying their more com- 
plicated nature and form in 
terms of the parameter esti- 
mates. As the models of hemo- 
dynamic responses become 
more sophisticated, the number 
of parameter estimates involved 

changing continuously and does not conform to a series 
of discrete levels. In general, however, the results that 
obtain from the two approaches would be similar, and 
the question reduces to one of implementational expedi- 
ency and simplicity in describing the results. Although it 

will increase, and some device will be required to make an 
inference about these parameters en masse. The SPM(F] is 
one such device. It should be noted that the distribution of 
the F statistics based on temporally correlated fMRI data 
only approximate a true F distribution. Their use should 
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consequently be viewed in the same light as many other 
instances of inference in neuroimaging that are based on 
distributional approximations that are only exact in the 
limit of high thresholds or degrees of freedom. 

Neurobiological Mechanisms 

Throughout this paper, we have referred to the input u( t )  
as underlying neuronal activity and have assumed that 
this is equivalent to word presentation rate. This assump- 
tion allows one to assign all the nonlinearities observed 
in the response to the mapping between neuronal activity 
and hemodynamic response. It is, of course, possible that 
much of the implicit refractoriness can be explained 
directly in neuronal terms. There is no way of distin- 
guishing between these explanations using the present 
data. The reason we have assumed that neuronal activity 
(i.e., neuronal discharge rate) is proportional to word 
presentation rate is that previous observations (Ref. 7 and 
see below) show a proportional relationship between 
blood flow and word presentation rate, and blood flow is 
generally regarded as an index of presynaptic activity. 
Although neuronal adaptation, facilitation, and refracto- 
riness certainly contribute to our results, we can make 
the following (very heuristic) argument. If we assume 
that each stimulus, or event, evokes roughly the same 
degree of spike activity in a neuronal population (pro- 
viding that these events are at least several hundred ms 
apart), then spike activity and blood flow will increase in 
proportion to stimulus frequency. The demonstration of 
highly significant nonlinear components (h”) in the he- 
modynamic response based on BOLD effects, therefore, 
suggests a nonlinear relationship between flow and oxy- 
gen extraction fraction. This nonlinear flow-dependency 
is fully expected (22) and represents a sufficient expla- 
nation for the observed nonlinearities. We feel compelled 
to address this issue because we replicated the rate ex- 
periment exactly (using the same experimental design, 
the same subject, and reproducing the same acoustic 
conditions as those experienced in the fMRI setting) us- 
ing positron emission tomography. Blood flow, measured 
in the periauditory region, showed an almost exact linear 
dependency on rate. These data will be described in 
detail elsewhere. In short, the nonlinear components 
characterized by h2 may be specific to BOLD effects. 
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