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There is a growing appreciation of the importance of
nonlinearities in evoked responses in fMRI, particularly
with the advent of event-related fMRI. These nonlineari-
ties are commonly expressed as interactions among
stimuli that can lead to the suppression and increased
latency of responses to a stimulus that are incurred by a
preceding stimulus. We have presented previously a
model-free characterization of these effects using ge-
neric techniques from nonlinear system identification,
namely a Volterra series formulation. At the same time
Buxton et al. (1998) described a plausible and compelling
dynamical model of hemodynamic signal transduction
in fMRI. Subsequent work by Mandeville et al. (1999)
provided important theoretical and empirical con-
straints on the form of the dynamic relationship be-
tween blood flow and volume that underpins the evolu-
tion of the fMRI signal. In this paper we combine these
system identification and model-based approaches and
ask whether the Balloon model is sufficient to account
for the nonlinear behaviors observed in real time series.
We conclude that it can, and furthermore the model
parameters that ensue are biologically plausible. This
conclusion is based on the observation that the Balloon
model can produce Volterra kernels that emulate empir-
ical kernels. To enable this evaluation we had to embed
the Balloon model in a hemodynamic input-state-output
model that included the dynamics of perfusion changes
that are contingent on underlying synaptic activation.
This paper presents (i) the full hemodynamic model (ii),
how its associated Volterra kernels can be derived, and
(iii) addresses the model’s validity in relation to empir-
ical nonlinear characterisations of evoked responses in
fMRI and other neurophysiological constraints. © 2000
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INTRODUCTION

This paper is about the nonlinear aspects of evoked
responses in functional neuroimaging and represents a
dynamical approach to modeling and characterizing
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event-related signals in fMRI. It aims to: (i) show that
the Balloon/Windkessel model (Buxton and Frank,
1997; Buxton et al., 1998; Mandeville et al., 1999) is
sufficient to account for nonlinearities in event-related
responses that are seen empirically and (ii) describe a
nonlinear dynamical model that couples changes in
synaptic activity to fMRI signals. This hemodynamic
model obtains by combining the Balloon/Windkessel
model (henceforth Balloon model) with a model of how
synaptic activity causes changes in regional flow. Sub-
sequent communications will use this model to explore
the dependence of fMRI signals on various parameters
pertaining to experimental design and the dynamics of
the underlying neuronal response.

In Friston et al. (1994) we presented a linear model
of hemodynamic responses in fMRI time-series,
wherein underlying neuronal activity (inferred on the
basis of changing stimulus or task conditions) is con-
volved, or smoothed with a hemodynamic response
function. In Friston et al. (1998) we extended this
model to cover nonlinear responses using a Volterra
series expansion. At the same time Buxton and col-
leagues developed a mechanistically compelling model
of how evoked changes in blood flow were transformed
into a blood oxygenation level dependent (BOLD) sig-
nal (Buxton et al., 1998). A component of the Balloon
model, namely the relationship between blood flow and
volume, was then elaborated in the context of standard
windkessel theory by Mandeville et al. (1999). The
Volterra approach, in contradistinction to other nonlin-
ear characterizations of hemodynamic responses (c.f.
Vazquez and Noll, 1996), is model-independent, in the
sense that Volterra series can model the behavior of
any nonlinear time-invariant dynamical system.1 The

1 In principle Volterra series can represent any dynamical input-
state-output system and in this sense a characterisation in terms of
Volterra kernels is model independent. However, by using basis
functions to constrain the solution space, constraints are imposed on
the form of the kernels and, implicitly, the underlying dynamical
system (i.e., state-space representation). The characterization is
therefore only assumption free to the extent the basis set is suffi-
ciently comprehensive.
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principal aim of this work was to see if the theoretically
motivated Balloon model would be sufficient to explain
the nonlinearities embodied in a purely empirical Vol-
terra characterisation.

Volterra Series

Volterra series express the output of a system, in this
case the BOLD signal from a particular voxel, as a
function of some input, here the assumed synaptic
activity that is changed experimentally. This series is a
function of the input over its recent history and is
expressed in terms of generalised convolution kernels.
Volterra series are often referred to as nonlinear con-
volutions or polynomial expansions with memory. They
are simply Taylor expansions extended to cover dy-
namical input-state-output systems by considering the
effect of the input now and at all times in the recent
past. The zero-order kernel is simply a constant about
which the response varies. The first order kernel rep-
resents the weighting applied to a sum of inputs over
the recent past (c.f. the hemodynamic response func-
tion) and can be thought of as the change in output for
a change in the input at each time point. Similarly, the
second order coefficients represent interactions that
are simply the effect of the input at one point in time on
its contribution at another. The second order kernel
comprises coefficients that are applied to interactions
among (i.e., products of) inputs, at different times in
the past, to predict the response.

In short the output can be considered a nonlinear
convolution of the input where nonlinear behaviours
are captured by high order kernels. For example, the
presence of a stimulus can be shown to attenuate the
magnitude of, and induce a longer latency in, the re-
sponse to a second stimulus that occurs within a second
or so. The example shown in Fig. 1 comes from our
previous analysis (Friston et al., 1998) and shows how
a preceding stimulus can modify the response to a
subsequent stimulus. This sort of effect led to the no-
tion of hemodynamic refractoriness and is an important
example of nonlinearity in fMRI time-series.

The important thing about Volterra series is that
they do not refer to all the hidden state variables that
mediate between the input and output (e.g., blood flow,
venous volume, oxygenation, the dynamics of endothe-
lium derived relaxing factor, kinetics of cerebral me-
tabolism etc.). This renders them very powerful be-
cause they provide for a complete specification of the
dynamical behaviour of a system without ever having
to measure the state variables or making any assump-
tions about how these variables interact to produce a
response. On the other hand the Volterra formulation
is impoverished because it yields no mechanistic in-
sight into how the response is mediated. The alterna-
tive is to posit some model of interacting state vari-

ables and establish the validity of that model in T
relation to observed input-output behaviors and the
dynamics of the state variables themselves. This in-
volves specifying a series of differential equations that
express the change in one state variable as a function
of the others and the input. Once these equations are
specified the equivalent Volterra representation can be
derived analytically (see the Appendix for details). The
Balloon model is a comprehensive example of such a
model.

The Balloon Model

The Balloon model (Buxton and Frank, 1997; Buxton
et al., 1998) is an input-state-output model with two-
state variables volume (v) and deoxyhemoglobin con-
tent (q). The input to the system is blood flow ( fin) and
the output is the BOLD signal (y). The BOLD signal is
partitioned into an extra and intravascular component,
weighted by their respective volumes. These signal
components depend on the deoxyhemoglobin content
and render the signal a nonlinear function of v and q.

FIG. 1. Top panel: Simulated responses to a pair of words (bars)
one second apart, presented together (solid line) and separately
(broken lines) based on the kernels shown in Fig. 4. Lower panel: The
response to the second word when presented alone (broken line as
above) and when preceded by the first (solid line). The latter obtains
by subtracting the response to the first word from the response to
both. The difference reflects the effect of the first word on the re-
sponse to the second.
he effect of flow on v and q (see below) determines the
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output and it is these effects that are the essence of the
Balloon model: Increases in flow effectively inflate a
venous “balloon” such that deoxygenated blood is di-
luted and expelled at a greater rate. The clearance of
deoxyhemoglobin reduces intravoxel dephasing and
engenders an increase in signal. Before the balloon has
inflated sufficiently the expulsion and dilution may be
insufficient to counteract the increased delivery of de-
oxygenated blood to the venous compartment and an
“early dip” in signal may be expressed. After the flow
has peaked, and the balloon has relaxed again, reduced
clearance and dilution contribute to the poststimulus
undershoot commonly observed. This is a simple and
plausible model that is predicated on a minimal set of
assumptions and relates closely to the windkessel for-
mulation of Mandeville et al. (1999). Furthermore the
predictions of the Balloon model concur with the
steady-state models of Hoge and colleagues, and their
elegant studies of the relationship between blood flow
and oxygen consumption in human visual cortex (e.g.,
Hoge et al., 1999).

The Balloon model is inherently nonlinear and may
account for the sorts of nonlinear interactions revealed
by the Volterra formulation. One simple test of this
hypothesis is to see if the Volterra kernels associated
with the Balloon model compare with those derived
empirically. The Volterra kernels estimated in Friston
et al. (1998) clearly did not use flow as input because
flow is not measurable with BOLD fMRI. The input
comprised a stimulus function as an index of synaptic
activity. In order to evaluate the Balloon model in
terms of these Volterra kernels it has to be extended to
accommodate the dynamics of how flow is coupled to
synaptic activity encoded in the stimulus function.
This paper presents one such extension.

In summary the Balloon model deals with the link
between flow and BOLD signal. By extending the
model to cover the dynamic coupling of synaptic activ-
ity and flow a complete model, relating experimentally
induced changes in neuronal activity to BOLD signal,

FIG. 2. Schematic illustrating the organization of the hemodyna
state model with four state variables s, fin, v, and q. The form and mot
re described in the main text.
obtains. The input–output behavior of this model can
be compared to the real brain in terms of their respec-
tive Volterra kernels.

Overview

The remainder of this paper is divided into three
sections. In the next section we present a hemody-
namic model of the coupling between synaptic activity
and BOLD response that builds upon the Balloon
model. The second section presents an empirical eval-
uation of this model by comparing its Volterra kernels
with those obtained using real fMRI data. This is not a
trivial exercise because: (i) there is no guarantee that
the Balloon model could produce the complicated forms
of the kernels seen empirically, and (ii) even if it could,
the parameters needed to do so may be biologically
implausible. This section provides estimates of these
parameters, which allow some comment on the face
validity of the model, in relation to known physiology.
The final section presents a discussion of the results in
relation to known biophysics and neurophysiology.

This paper is concerned with the validation and eval-
uation of the Balloon model, in relation to the Volterra
characterisations, and the hemodynamic model pre-
sented below in relation to real hemodynamics. Subse-
quent papers will use the model to address some im-
portant issues related to experimental design and the
sorts of neuronal dynamics that BOLD signals are
most sensitive to.

THE HEMODYNAMIC MODEL

In this section we describe a hemodynamic model
that mediates between synaptic activity and measured
BOLD responses. This model essentially combines the
Balloon model and a simple linear dynamical model of
changes in regional cerebral blood flow (rCBF) caused
by neuronal activity. The model architecture is sum-
marized in Fig. 2. To motivate the model components
more clearly we will start at the output and work

model. This is a fully nonlinear single input u(t), single output y(t)
tion for the changes in each state variable, as functions of the others,
mic
iva
toward the input.
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The Balloon Component

This component links rCBF and the BOLD signal as
described in Buxton et al. (1998). All variables are
expressed in normalized form, relative to resting val-
ues. The BOLD signal y(t) 5 l(v, q, E0) is taken to be a
static nonlinear function of normalized venous volume
(v), normalized total deoxyhemoglobin voxel content (q)
and resting net oxygen extraction fraction by the cap-
illary bed (E0)

y~t! 5 l~v, q, E0! 5 V0~k1~1 2 q!

1 k2~1 2 q/v! 1 k3~1 2 v!)

k1 5 7E0 (1)

k2 5 2

k3 5 2E0 2 0.2,

where V0 is resting blood volume fraction. This signal
comprises a volume-weighted sum of extra- and intra-
vascular signals that are functions of volume and de-
oxyhemoglobin content. The latter are the state vari-
ables whose dynamics need specifying. The rate of
change of volume is simply

t0v̇ 5 fin 2 fout~v!. (2)

See Mandeville et al. (1999) for an excellent discussion
of this equation in relation to windkessel theory. Equa-
tion (2) says that volume changes reflect the difference
between inflow fin and outflow fout from the venous
compartment with a time constant t0. This constant
epresents the mean transit time (i.e., the average time
t takes to traverse the venous compartment or for that
ompartment to be replenished) and is V0/F0, where F0

is resting flow. The physiology of the relationship be-
tween flow and volume is determined by the evolution
of the transit time. Mandeville et al. (1999) reformu-
lated the temporal evolution of transit time into a
description of the dynamics of resistance and capaci-
tance of the balloon using windkessel theory (“wind-
kessel” means leather bag). This enabled them to posit
a form for the temporal evolution of a downstream
elastic response to arteriolar vasomotor changes and
estimate mean transit times using measurements of
volume and flow, in rats, using fMRI and laser-Doppler
flowmetry. We will compare these estimates to our
empirical estimates in the next section.

Note that outflow is a function of volume. This func-
tion models the balloon-like capacity of the venous
compartment to expel blood at a greater rate when
distended. We model it with a single parameter a
based on the windkessel model

1/a
fout~v! 5 v , (3) u
where 1/a 5 g 1 b (c.f. Eq. (6) in Mandeville et al.,
1999). g 5 2 represents laminar flow. b . 1 models
diminished volume reserve at high pressures and can
be thought of as the ratio of the balloon’s capacitance to
its compliance. At steady state empirical results from
PET suggest a ' 0.38 (Grubb et al., 1974). However,
when flow and volume are changing dynamically, this
value is smaller. Mandeville et al. (1999) were the first
to measure the dynamic flow–volume relationship and
estimated a ' 0.18, after 6 s of stimulation, with a
projected asymptotic (steady-state) value of 0.36.

The change in deoxyhemoglobin q̇ reflects the deliv-
ery of deoxyhemoglobin into the venous compartment
minus that expelled (outflow times concentration)

t0q̇ 5 fin

E~fin, E0!

E0
2 fout~v!q/v, (4)

where E( fin, E0) is the fraction of oxygen extracted from
the inflowing blood. This is assumed to depend on
oxygen delivery and is consequently flow-dependent. A
reasonable approximation for a wide range of transport
conditions is (Buxton et al., 1998).

E~fin, E0! 5 1 2 ~1 2 E0!
1/fin (5)

The second term in Eq. (4) represents an important
nonlinearity: The effect of flow on signal is largely
determined by the inflation of the balloon, resulting in
an increase of fout(v) and clearance of deoxyhemoglobin.
This effect depends upon the concentration of deoxyhe-
moglobin such that the clearance attained by the out-
flow will be severely attenuated when the concentra-
tion is low (e.g., during the peak response to a prior
stimulus). The implications of this will be illustrated in
the next section.

This concludes the Balloon model component, where
there are only three unknown parameters that deter-
mine the dynamics E0, t0, and a, namely resting oxygen
extraction fraction (E0), mean transit time (t0), and a
tiffness exponent (a) specifying the flow–volume rela-
ionship of the venous balloon. The only thing required,
o specify the BOLD response, is inflow.

CBF Component

It is generally accepted that, over normal ranges,
lood flow and synaptic activity are linearly related. A
ecent empirical verification of this assumption can be
ound in Miller et al. (2000), who used MRI perfusion
maging to address this issue in visual and motor cor-
ices. After modeling neuronal adaptation they were
ble to conclude, “Both rCBF responses are consistent
ith a linear transformation of a simple nonlinear
eural response model.” Furthermore our own work

sing PET and fMRI replications of the same experi-
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470 FRISTON ET AL.
ments suggests that the observed nonlinearities enter
into the translation of rCBF into a BOLD response (as
opposed to a nonlinear relationship between synaptic
activity and rCBF) in the auditory cortices (see Friston
et al., 1998). Under the constraint that the dynamical
system linking synaptic activity and rCBF is linear we
have chosen the most parsimonious model

ḟin 5 s, (6)

where s is some flow inducing signal defined, opera-
tionally, in units corresponding to the rate of change of
normalised flow (i.e., s21). Although it may seem more
natural to express the effect of this signal directly on
vascular resistance (r), for example ṙ 5 2s, Eq. (6) has
the more plausible form. This is because the effect of
signal (s) is much smaller when r is small (when the
rterioles are fully dilated signals such as endotheli-
m-derived relaxing factor or nitric oxide will cause
elatively small decrements in resistance). This can be
een by noting Eq. (6) is equivalent to ṙ 5 2r2s, where

fin 5 1/r.
The signal is assumed to subsume many neurogenic

nd diffusive signal subcomponents and is generated
y neuronal activity u(t)

ṡ 5 eu~t! 2 s/ts 2 ~fin 2 1!/tf. (7)

, ts, and tf are the three unknown parameters that
etermine the dynamics of this component of the he-
odynamic model. They represent the efficacy with
hich neuronal activity causes an increase in signal,

he time-constant for signal decay or elimination, and
he time-constant for autoregulatory feedback from
lood flow. The existence of this feedback term can be
nferred from: (i) poststimulus undershoots in rCBF
e.g., Irikura et al., 1994) and (ii) the well-characterized

vasomotor signal in optical imaging (Mayhew et al.,
998). The critical aspect of the latter oscillatory (;0.1

Hz) component of intrinsic signals is that it shows
variable phase relationships from region to region, sup-
porting strongly the notion of local closed-loop feedback
mechanisms as modelled in Eq. (6) and Eq. (7).

There are three unknown parameters for each of the
two components of the hemodynamic model above (see
also Fig. 2 for a schematic summary). Figure 3 illus-
trates the behavior of the hemodynamic model for typ-
ical values of the six parameters (e 5 0.5, ts 5 0.8, tf 5
0.4, t0 5 1, a 5 0.2, E0 5 0.8, and assuming V0 5 0.02
here and throughout). We have used a very high value
for oxygen extraction to accentuate the early dip (see
Discussion). Following a short-lived neuronal transient
a substantial amount of signal is created and starts to
decay immediately. This signal induces an increase in
flow that itself augments signal decay, to the extent the

signal is suppressed below resting levels (see the upper
left panel in Fig. 3). This behavior is homologous to a
very dampened oscillator. Increases in flow (lower left
panel) dilate the venous balloon which responds by
ejecting deoxyhemoglobin. In the first few hundred
milliseconds the net deoxyhemoglobin (q) increases
with an accelerating inflow-dependent delivery. It is
then cleared by volume-dependent outflow expressing
a negative peak a second or so after the positive volume
(v) peak (the broken and solid lines in the upper right
panel correspond to q and v, respectively). This results
in an early dip in the BOLD signal followed by a pro-
nounced positive peak at about 4 s (lower right panel)
that reflects the combined effects of reduced net deoxy-
hemoglobin, increased venous volume and consequent
dilution of deoxyhemoglobin. Note that the rise and
peak in volume (solid line in the upper right panel) lags
flow by about a second. This is very similar to the
predictions of the windkessel formulation and the em-
pirical results presented in Mandeville et al. (1999)
(see their Fig. 2). After about 8 s the inflow experiences
a rebound due to its suppression of the perfusion sig-
nal. The reduced venous volume and ensuing outflow
permit a reaccumulation of deoxyhemoglobin and a
consequent undershoot in the BOLD signal.

The rCBF component of the hemodynamic model is a
linear dynamical system and as such has only zeroth

FIG. 3. Dynamics of the hemodynamic model. Upper left panel:
The time-dependent changes in the neuronally induced perfusion
signal that causes an increase in blood flow. Lower left panel: The
resulting changes in normalised blood flow ( f ). Upper right panel:
The concomitant changes in normalized venous volume (v) (solid
line) and normalized deoxyhemoglobin content (q) (broken line).
Lower right panel: The percentage change in BOLD signal that is
contingent on v and q. The broken line is inflow normalized to the
ame maximum as the BOLD signal. This highlights the fact that
OLD signal lags the rCBF signal by about a second.
and first order kernels. This means it cannot account
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for the hemodynamic refractoriness and nonlinearities
observed in BOLD responses. Although the rCBF com-
ponent may facilitate the Balloon component’s capacity
to model nonlinearities (by providing appropriate in-
put), the rCBF component alone cannot generate sec-
ond order kernels. The question addressed in this pa-
per is whether the Balloon component can produce
second order kernels that are realistic and do so with
physiologically plausible parameters.

MODEL PARAMETER ESTIMATION

In this section we describe the data used to estimate
the Volterra kernels. The six unknown parameters of
the hemodynamic model that best reproduce these em-
pirical kernels are then identified. By minimizing the
difference between the model kernels and the empiri-
cal kernels the optimal parameters for any voxel can be
determined. The critical questions this section ad-
dresses are (i) “can the hemodynamic model account for
the form of empirical kernels up to second order?” and
(ii) “are the model parameters required to do this phys-
iologically plausible?”

Empirical Analyses

The data and Volterra kernel estimation are de-
scribed in detail in Friston et al. (1998). In brief we
obtained fMRI time-series from a single subject at 2
Tesla using a Magnetom VISION (Siemens, Erlangen)
whole body MRI system, equipped with a head volume
coil. Contiguous multi-slice T*2-weighted fMRI images
were obtained with a gradient echoplanar sequence
using an axial slice orientation (TE 5 40 ms, TR 5
.7 s, 64 3 64 3 16 voxels). After discarding initial
cans (to allow for magnetic saturation effects) each
ime-series comprised 1200 vol images with 3-mm iso-
ropic voxels. The subject listened to monosyllabic or
isyllabic concrete nouns (i.e., “dog,” “radio,” “moun-
ain,” “gate”) presented at five different rates (10, 15,
0, 60, and 90 words per minute) for epochs of 34 s,
ntercalated with periods of rest. The five presentation
ates were successively repeated according to a Latin
quare design.
The data were processed within SPM (Wellcome De-

artment of Cognitive Neurology, http://www.fil.ion.
cl.ac.uk/spm). The time-series were realigned, cor-
ected for movement-related effects, and spatially
ormalized into the standard space of Talairach and
ournoux (1988). The data were smoothed spatially
ith a 5-mm isotropic Gaussian kernel. Volterra ker-
els were estimated by expanding the kernels in terms
f temporal basis functions and estimating the kernel
oefficients up to second order using a generalised lin-
ar model (Worsley and Friston, 1995). The basis set
omprised three gamma varieties of increasing disper-
ion and their temporal derivatives (as described in

riston et al., 1998). c
The stimulus function u(t), the supposed neuronal
ctivity, was simply the word presentation rate at
hich the scan was acquired. We selected voxels that

howed a robust response to stimulation from two su-
erior temporal regions in both hemispheres (see Fig.
). These were the 128 voxels showing the most signif-
cant response when testing for the null hypothesis
hat the first and second order kernels were jointly
ero. Selecting these voxels ensured that the kernel
stimates had minimal variance.

stimating the Model Parameters

For each voxel we identified the six parameters of
he hemodynamic model of the previous section whose
ernels corresponded, in a least squares sense, to the
mpirical kernels for that voxel. To do this we used
onlinear function minimization as implemented in
ATLAB5 (MathWorks Inc., MA). The model’s kernels
ere computed, for a given parameter vector, as de-

cribed in the Appendix and entered, with the corre-
ponding empirical estimates, into the objective func-
ion that was minimized.

esults

The model-based and empirical kernels for the first
oxel are shown in Fig. 5. It can be seen that there is a
emarkable agreement both in terms of the first and
econd order kernels. This is important because it sug-
ests that the nonlinearities inherent in the Balloon
omponent of the hemodynamic model are sufficient to
ccount for the nonlinear responses observed in real
ime-series. The first-order kernel corresponds to the

FIG. 4. Voxels used to estimate the parameters of the hemody-
namic model shown in Fig. 2. This is a SPM{F} testing for the
significance of the first and second order kernel coefficients in the
empirical analysis and represents a maximum intensity projection of
a statistical process of the F ratio, following a multiple regression
analysis at each voxel. This regression analysis estimated the kernel
coefficients after expanding them in terms of a small number of
temporal basis functions [see Friston et al. (1998) for details]. The
format is standard and provides three orthogonal projections in the
standard space conforming to that described in Talairach and Tour-
noux (1988). The grey scale is arbitrary and the SPM{F} has been
thresholded to show the 128 most significant voxels.
onventional (first-order) hemodynamic response func-
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tion and shows the characteristic peak at about 4 s and
the poststimulus undershoot. The empirical under-
shoot appears more protracted than the model’s pre-
diction, suggesting that the model is not perfect in
every respect. The second order kernel has a pro-
nounced negativity on the upper left, flanked by two
smaller positivities. This negativity accounts for the
refractoriness seen when two stimuli are temporally
proximate, where this proximity is defined by the ra-
dius of the negative region. From the perspective of the
Balloon model the second stimulus is compromised, in
terms of elaborating a BOLD signal, because of the
venous pooling, and consequent dilution of deoxyhemo-
globin, incurred by the first stimulus. This means that
less deoxyhemoglobin can be cleared for a given in-
crease in flow. More interesting are the positive re-
gions, which suggest stimuli separated by about 8 s
should show super-additive effects. This can be attrib-
uted to the fact that, during the flow undershoot fol-
lowing the first stimulus, deoxyhemoglobin concentra-
tion is greater than normal (see the upper right panel
in Fig. 3), thereby facilitating clearance of deoxyhemo-
globin following the second stimulus.

Figure 6 shows the various functions implied by the

FIG. 5. The first and second order Volterra kernels based on
parameter estimates from a voxel in the left superior temporal gyrus
at 256, 228, 12 mm. These kernels can be thought of as a second
order hemodynamic response function. The first order kernels (upper
panels) represent the (first order) component usually presented in
linear analyses. The second order kernels (lower panels) are pre-
sented in image format. The color scale is arbitrary; white is positive
and black is negative. The left-hand panels are kernels based on
parameter estimates from the analysis described in the legend of Fig.
4. The right hand panels are the kernels associated with the hemo-
dynamic model using parameter estimates that best match the em-
pirical kernels.
hemodynamic model parameters averaged over all vox-
els. These include outflow as a function of venous vol-
ume fout(n, a) and oxygen extraction fraction as a func-
tion of inflow. The solid line in the upper right panel is
extraction per se E( fin, E0) and the broken line is the
net normalized delivery of deoxyhemoglobin to the ve-
nous compartment finE( fin, E0)/E0. Note that although
the fraction of oxygen extracted decreases with flow the
net delivery of deoxygenated haemoglobin increases
with flow. In other words inflow increases per se actu-
ally reduce signal. It is only the secondary effects of
inflow on dilution and volume-dependent outflow that
cause an increase in BOLD signal. The lower panel
depicts the nonlinear function of volume and deoxyhe-
moglobin that represents BOLD signal y(t) 5 l(v, q,
E0). Here one observes that positive BOLD signals are
expressed only when deoxyhemoglobin is low. The ef-
fect of volume is much less marked and tends to affect
signal predominantly through dilution. This is consis-
tent with the fact that k2 . k3 [see Eq. (1)] for the value
of E0 estimated for these data.

The distributions of the parameters over voxels are
shown in Fig. 7 with their mean in brackets at the top
of each panel. It should be noted that the data from
which these estimates came were not independent.
However, given they came from four different brain

FIG. 6. Functions implied by the [mean] hemodynamic model
parameters over the voxels shown in Fig. 4. Upper left panel: Out-
flow as a function of venous volume fout(v, a). Upper right panel:
oxygen extraction as a function of inflow. The solid line is extraction
per se E( fin, E0) and the broken line is the net normalised delivery of
deoxyhemoglobin to the venous compartment finE( fin, E0)/E0. Lower
panel: This is a plot of the nonlinear function of volume and deoxy-

hemoglobin that represents BOLD signal y(t) 5 l(v, q, E0).
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regions they are remarkably consistent. In the next
section we will discuss each of these parameters and
the effect it exerts on the BOLD response.

DISCUSSION

The main point to be made here is that the Balloon
model, suitably extended to incorporate the dynamics
of rCBF induction by synaptic activity, is sufficient to
reproduce the same form of Volterra kernels that are
seen empirically. As such the Balloon model is suffi-
cient to account for the more important nonlinearities
observed in evoked fMRI responses. The remainder of
this section deals with the validity of the hemodynamic
model in terms of the plausibility of the parameter
estimates from the previous section. The role of each
parameter, in shaping the hemodynamic response, is
illustrated in the associated panel in Fig. 8 and is

FIG. 7. Histograms of the distribution of the six free parameters
of the hemodynamic model estimated over the voxels shown in Fig. 3.
The number in brackets at the top of each histogram is the mean
value for the parameters in question: neuronal efficacy is e, signal
decay is ts, autoregulation is tf, transit time is t0, stiffness is a, and
oxygen extraction is E0.
discussed in the following subsections.
The Neuronal Efficacy (e)

This represents the increase in perfusion signal elic-
ited by neuronal activity, expressed in terms of event
density (i.e., number of evoked transients per second).
From a biophysical perspective it is not exceedingly
interesting because it reflects both the potency of the
stimulus in eliciting a neuronal response and the effi-
cacy of the ensuing synaptic activity to induce the
signal. It is interesting to note, however, that one word
per second invokes an increase in normalised rCBF of
unity (i.e., in the absence of regulatory effects, a dou-
bling of blood flow over a second). As might be expected
changes in this parameter simply modulate the evoked
hemodynamic responses (see the first panel in Fig. 8).

Signal Decay (ts)

This parameter reflects signal decay or elimination.
Transduction of neuronal activity into perfusion

FIG. 8. The effects of changing the model parameters on the
evoked BOLD response. The number in brackets at the top of each
graph is the factor applied to the parameter in question. Solid lines
correspond to the response after changing the parameter and the
broken line is the response for the original parameter values (the
mean values given in Fig. 7): neuronal efficacy is e, signal decay is ts,
autoregulation is tf, transit time is t0, stiffness is a, and oxygen

extraction is E0.
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changes, over a few hundred micrometers, has a sub-
stantial neurogenic component (that may be aug-
mented by electrical conduction up the vascular endo-
thelium). However, at spatial scales of several mm it is
likely that rapidly diffusing spatial signals mediate
increases in rCBF through relaxation of arteriolar
smooth muscle. There are a number of candidates for
this signal, nitric oxide (NO) being the primary one. It
has been shown that the rate of elimination is critical
in determining the effective time-constants of hemody-
namic transduction (Friston, 1995). Our decay param-
eter had a mean of about 1.54 s giving a half-life t1/2 5
ts ln 2 5 1067 ms. The half-life of NO is between 100
and 1000 ms (Paulson and Newman, 1987), whereas
that of K1 is about 5 s. Our results are therefore con-
sistent with spatial signalling with NO. It should be
remembered that the model signal subsumes all the
actual signalling mechanisms employed in the real
brain. Increases in this parameter dampen the rCBF
response to any input and will also suppress the un-
dershoot (see next subsection) because the feedback
mechanisms, that are largely responsible for the un-
dershoot, are selectively suppressed (relative to just
reducing neuronal efficacy during signal induction).

Autoregulation (tf )

This parameter is the time-constant of the feedback
utoregulatory mechanism whose physiological nature
emains unspecified (but see Irikura et al., 1994). The
oupled differential equations Eq. (6) and Eq. (7) rep-
esent a damped oscillator with a resonance frequency
f v# 5 1/(2p=tf) ' 0.101 per second. This is exactly the

frequency of the vasomotor signal that typically has a
period of about 10 s. This is a pleasing result that
emerges spontaneously from the parameter estima-
tion. The nature of these oscillations can be revealed by
increasing the signal decay time constant (i.e., reduc-
ing the dampening) and presenting the model with
low-level random neuronal input (uncorrelated Gauss-
ian noise with a standard deviation of 1/64) as shown in
Fig. 9. The characteristic oscillatory dynamics are
readily expressed. The effect of increasing the feedback
time constant is to decrease the resonance frequency
and render the BOLD (and rCBF) response more en-
during with a reduction or elimination of the under-
shoot. The third panel in Fig. 8 shows the effect of
doubling tf.

Transit Time (t0 )

This is an important parameter that determines the
ynamics of the signal. It is effectively resting venous
olume divided by resting flow, and in our data is
stimated at about one second (0.98 s). The transit time
hrough the rat brain is roughly 1.4 seconds at rest
nd, according to the asymptotic projections for rCBF

nd volume, falls to 0.73 seconds during stimulation w
(Mandeville et al., 1999). In other words it takes about
a second for a blood cell to traverse the venous com-
partment. The effect of increasing mean transit time is
to slow down the dynamics of the BOLD signal with
respect to the flow changes. The shape of the response
remains the same but it is expressed more slowly. In
the fourth panel of Fig. 8 a doubling of the mean transit
time is seen to retard the peak BOLD response by
about a second and the undershoot by about 2 s.

Stiffness Parameter (a)

Under steady state conditions this would be about
0.38. The mean over voxels considered above was about
0.33. This discrepancy, in relation to steady state lev-
els, is anticipated by the windkessel formulation and is
attributable to the fact that volume and flow are in a
state of continuous flux during the evoked responses.
Recall from Eq. (3) that 1/a 5 g 1 b 5 3.03, in our data.
Under the assumption of laminar flow (g 5 2), b ' 1
which is less than Mandeville et al. (1999) found for
ats during forepaw stimulation but is certainly in a
lausible range. Increasing this parameter increases
he degree of nonlinearity in the flow-volume behavior
f the venous balloon that underpins the nonlinear
ehaviors we are trying to account for. However, its
irect effect on evoked responses to single stimuli is not
ery marked. The fifth panel of Fig. 8 shows the effects

FIG. 9. Simulated response to a noisy neuronal input (standard
deviation 1/64 and mean of 0) for a model with decreased signal
decay (i.e., less dampening). The model parameters were the same as
described in the legend of Fig. 3 with the exception of ts, which was
increased by a factor of 4. The characteristic 0.1 Hz oscillations are
very similar to the oscillatory vasomotor signal seen in optical im-
aging experiments.
hen a is decreased by 50%.
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Resting Oxygen Extraction (E0)

This is about 34% and the range observed in our data
fit exactly with known values for resting oxygen extrac-
tion fraction (between 20 and 55%). Oxygen extraction
fraction is a potentially important factor in determin-
ing the nature of evoked fMRI responses because it
may be sensitive to the nature of the baseline that
defines the resting state. Increases in this parameter
can have quite profound effects on the shape of the
response that bias it toward an early dip. In the exam-
ple shown (last panel in Fig. 8) the resting extraction
has been increased to 78%. This is a potentially impor-
tant observation that may explain why the initial dip
has been difficult to observe in all studies. According to
the results presented in Fig. 8 the initial dip is very
sensitive to resting oxygen extraction fraction, which
should be high before the dip is expressed. Extraction
fraction will be high in regions with very low blood
flow, or in tissue with endogenously high extraction. It
may be that cytochrome oxidase rich cortex, like the
visual cortices, may have a higher fraction and be more
like to evidence early dips.

In summary the parameters of the hemodynamic
model that best reproduce empirically derived Volterra
kernels are all biologically plausible and lend the
model a construct validity (in relation to the Volterra
formulation) and face validity (in relation to other
physiological characterisations of the cerebral hemody-
namics reviewed in this section). In this extended he-
modynamic model nonlinearities, inherent in the Bal-
loon model, have been related directly to nonlinearities
in responses. Their role in mediating the poststimulus
undershoot is emphasised less here because the rCBF
component can model undershoots.

The conclusions above are based only on data from
the auditory cortex and from one subject. There is no
guarantee that they will generalize. One of our review-
ers thought that this paper was more important for its
conceptual motivation of modelling than for the specific
findings. This is a very valid point. We anticipate that
the framework presented here will be refined or
changed when applied to other data, or the assump-
tions upon which it is based are confirmed or refuted.

CONCLUSION

In conclusion we have developed an input-state-out-
put model of the hemodynamic response to changes in
synaptic activity that combines the Balloon model of
flow to BOLD signal coupling and a dynamical model of
the transduction of neuronal activity into perfusion
changes. This model has been characterized in terms of
its Volterra kernels and easily reproduces empirical
kernels with parameters that are biologically plausi-
ble. This means that the nonlinearities inherent in the

Balloon model are sufficient to account for hemody-
namic refractoriness and other nonlinear aspects of
evoked responses in fMRI.

APPENDIX

Volterra kernels represent a generic and important
characterization of the invariant aspects of a nonlinear
system (see Bendat, 1990). This appendix describes the
nature of these kernels and how they are obtained
given the differential equations describing the evolu-
tion of the state variables. Consider the single input-
single-output (SISO) system

Ẋ~t! 5 f~X, u~t!!

y~t! 5 l~X~t!!,
(A.1)

where, for the hemodynamic model, X 5 {x1, x2, x3,
x4}

T 5 {s, fin, v, q}T with

ẋ1 5 f1~X, u~t!! 5 eu~t! 2
x1

ts
2

x2 2 1

tf

ẋ2 5 f2~X, u~t!! 5 x1

ẋ3 5 f3~X, u~t!! 5
1

t0
~x2 2 fout~x3, a!!

ẋ4 5 f4~X, u~t!! 5
1

t0
Sx2

E~x2, E0!

E0
2 fout~x3, a!

x4

x3
D

and

y~t! 5 l~X~t!! 5 V0~k1~1 2 x4!

1 k2~1 2 x4/x3! 1 k3~1 2 x3!!.

The Volterra series expresses the output y(t) as a non-
linear convolution of the neuronal inputs u(t), critically
without reference to the state variables X(t). This se-
ries can be considered a nonlinear convolution that
obtains from a functional Taylor expansion of y(t) about
X(0) 5 X0 5 [0, 1, 1, 1]T and u(t) 5 0,

y~t! 5 k0~t! 1 O
i51

` E
0

t

· · · E
0

t

ki~t, s1, · · · si!

3 u~s1! · · · u~si!ds1 · · · dsi (A.2)

ki~t, s1, · · · si! 5
­ iy~t!

­u~s1! · · · u~si!
,

where ki is the ith, generally time-dependent, kernel.
˙
The Taylor expansion of X(t) about X0 and u(t) 5 0:
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Ẋ~t! < f~X0, 0! 1
­f~X0, 0!

­X
~X 2 X0!

1
­ 2f~X0, 0!

­X­u
~X 2 X0!u 1

­f~X0, 0!

­u
u

has a bilinear form following a change of variables
(equivalent to adding an extra state variable x0(t) 5 1):

Ẋ9~t! < AX9 1 BX9u

X9 5 F 1
XG

A 5 F 0 0

S f~X0, 0! 2
­f~X0, 0!

­X
X0D ­f~X0, 0!

­X
G

B 5 F 0 0

S­f~X0, 0!

­u
2

­ 2f~X0, 0!

­X­u
X0D ­ 2f~X0, 0!

­X­u
G .

(A.3)

This formulation is important because the Volterra
ernels of bilinear systems have closed-form expres-
ions. The existence of these closed-form expressions is
ue to the fact that the iterated integrals associated
ith the system’s Generating Series can be expressed

n terms of the generalized convolution integrals, of
hich the Volterra series is comprised (Fliess et al.,
983). Here we take a more heuristic approach and
onsider the solution to A.2 and its derivatives with
espect to the inputs u(t)

X9~Dt! < e Dt~A1Bu~0!!X9~0! f X9~TDt!

< P
j5T21

0

e Dt~A1Bu~jDt!!X9~0!, Dt3 0

­ iX9~TDt!

­u~t1Dt! · · · u~tiDt!
5 P

j5T21

ti11

e Dt~A1Bu~jDt!!

3 B P
j5ti

ti2111

e Dt~A1Bu~jDt!! · · ·

3 B P
j5t1

0

e Dt~A1Bu~jDt!!X9~0!.

The kernels associated with the state variables X9 are
these derivatives evaluated at u(t) 5 0:

xi~t, s1, · · · si! 5
­ iX9~t!

­u~s1! · · · u~si!

~t2si!A ~si2si21!A s1A
5 e Be · · · Be X9~0!;
i.e.,

x0~t! 5 e tAX9~0!

x1~t, s1! 5 e ~t2s1!ABe s1AX9~0!

x2~t, s1, s2! 5 e ~t2s2!ABe ~s22s1!ABe s1AX9~0!

x2~t, s1, s2, s3! 5 · · ·

The kernels associated with the output y(t) follow from
the chain rule:

k0~t! 5 l~x0~t!!

k1~t, s1! 5
­l~x0~t!!

­X9
x1~t, s1!

k2~t, s1, s2! 5
­l~x0~t!!

­X9
x2~t, s1, s2!

1 x1~t, s1!
T

­ 2l~x0~t!!

­X9 2
x1~t, s2!

k2~t, s1, s2, s3! 5 · · ·

If the system is fully nonlinear, as in this case, then the
kernels can be considered local approximations. In
other words the kernels are only valid for inputs (i.e.,
neuronal activations) of a reasonable magnitude.
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