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Nonlinear PCA: characterizing interactions
between modes of brain activity

Karl Friston’, Jacquie Phillips, Dave Chawla and Christian Biichel
The Wellcome Department of Cognitive Neurology, Institute of Neurology, Queen Square, London WCIN 3BG, UK

This paper presents a nonlinear principal component analysis (PCA) that identifies underlying sources
causing the expression of spatial modes or patterns of activity in neuroimaging time-series. The critical
aspect of this technique is that, in relation to conventional PCA, the sources can interact to produce
(second-order) spatial modes that represent the modulation of one (first-order) spatial mode by another.
This nonlinear PCA uses a simple neural network architecture that embodies a specific form for the
nonlinear mixing of sources that cause observed data. This form is motivated by a second-order approx-
imation to any general nonlinear mixing and emphasizes interactions among pairs of sources. By
introducing these nonlinearities principal components obtain with a unique rotation and scaling that does
not depend on the biologically implausible constraints adopted by conventional PCA.

The technique is illustrated by application to functional (positron emission tomography and functional
magnetic resonance imaging) imaging data where the ensuing first- and second-order modes can be inter-
preted in terms of distributed brain systems. The interactions among sources render the expression of any
one mode context-sensitive, where that context is established by the expression of other modes. The
examples considered include interactions between cognitive states and time (i.e. adaptation or plasticity
in PET data) and among functionally specialized brain systems (using a fMRI study of colour and motion
processing).

Keywords: functional neuroimaging; PCA; interactions; spatial modes; nonlinear unmixing; sources

1. INTRODUCTION

This paper introduces a new technique that falls under
the heading of nonlinear principal component analysis
(PCA), in the characterization of functional neuro-
imaging time-series. This technique identifies the under-
lying dynamics that determine the expression of spatial
modes or patterns of brain activity where, in contra-
distinction to conventional PCA; the underlying causes
can interact to produce second-order spatial modes.
These second-order modes represent the modulation of
one distributed brain system by another and provide for a
parsimonious characterization of multivariate time-series
that embody nonlinear interactions.

(a) Eigenimage analysis

In Friston et al. (1993) we introduced voxel-based PCA
of functional neuroimaging time-series to characterize
distributed brain systems implicated in sensorimotor,
perceptual or cognitive processes. These distributed
systems are identified with principal components or eigen-
images that correspond to spatial modes of coherent brain
activity. This approach represents one of the simplest
multivariate characterizations of functional neuroimaging
time-series and falls into the class of exploratory analyses.
Principal component or eigenimage analysis generally
uses singular value decomposition (SVD) to identify a set
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of orthogonal spatial modes that capture the greatest
amount of variance, expressed over time. As such, the
ensuing modes embody the most prominent aspects of the
variance—covariance structure of a given time-series.
Noting that the covariances among brain regions is
equivalent to functional connectivity renders eigenimage
analysis particularly interesting because it was among the
first ways of addressing functional integration (i.e.
connectivity) in the human brain. Subsequently eigen-
image analysis has been elaborated in a number of ways.
Notable among these are the application of canonical
variate analysis (CVA; Friston et al. 1996a), multi-
dimensional scaling (Friston et al. 19964) and partial least
squares (PLS; Mclntosh et al. 1996). Canonical variate
analysis was introduced in the context of ManCova
(multiple analysis of covariance) and uses the generalized
eigenvector solution to maximize the variance that can be
explained by some explanatory variables relative to error.
CVA can be thought of as an extension of eigenimage
analysis that refers explicitly to some explanatory vari-
ables and allows for statistical inference. Partial least
squares 1s another name for SVD and can be thought of
as an eigenimage analysis of the cross covariances
between two sets of data. It was first applied to neuro-
physiological data from different parts of the brain (the
right and left hemispheres; Iriston 1995) and has been
developed to look at the relationships between imaging
time-series and explanatory variables pertaining to
experimental design and behaviour (McIntosh et al. 1996).
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Eigenimage analysis has been applied widely to
positron emission tomographic (PET) and subsequently
functional magnetic resonance imaging (fMRI) data. It
is generally used as an exploratory device to characterize
the main contributions to coherent brain activity. These
variance components may, or may not, be related to
experimental design and recently spontaneous or endo-
genous correlations have been observed in the motor
system without experimental manipulation (Biswal e al.
1995). Despite its exploratory power eigenimage analysis
is fundamentally limited for two reasons. Iirst, it offers
only a linear decomposition of any set of neurophysio-
logical measurements, and second, the particular set of
eigenimages or spatial modes obtained are uniquely
determined by constraints that are biologically implau-
sible. These aspects of PCA represent inherent limitations
on the interpretability and usefulness of eigenimage
analysis of biological time-series.

In this paper we introduce a new technique that
resolves both the problems of linearity and non-uniqueness
of the modes. This technique is a special case of nonlinear
PCA that is motivated by a second-order approximation
to any general interactions among a small number of
‘sources’ or ‘causes’ of variance in multivariate time-series.
In brief, this technique identifies a small number of
sources or components that explain the most variance in
the observed data while allowing for high-order inter-
actions among these sources. The sources are identified
subject to, and only to, the constraint that they are ortho-
gonal or uncorrelated. By virtue of the nonlinear inter-
actions the sources are uniquely identified eschewing the
need to refer to unnatural constraints.

(b) The importance of nonlinear PCA in
characterizing distributed brain systems

As noted above, the two main limitations of conven-
tional eigenimage analysis are that the decomposition of
any observed time-series is in terms of linearly separable
components characterized by their spatial modes and
scores. Second, that the spatial modes are somewhat arbi-
trarily constrained to be orthogonal and account, succes-
sively, for the largest amount of variance. In general, the
identification of independent components (independent
component analysis or ICA) 1s only possible to within
some permutation and scaling. PCA relaxes the require-
ment of independence and replaces it with orthogonality,
introducing the further problem that there is no unique
rotation of the principal components. In PCA, a unique
rotation and permutation is obtained by requiring succes-
sive modes to account for the greatest amount of variance
that remains once higher components have been
removed. Scaling is constrained by ensuring the spatial
modes have unit sum of squares.

From a biological perspective, the linearity constraint
is a rather severe one. Because the decomposition is linear
it precludes interactions among the causes of spatial
modes. This 1s a highly unnatural restriction on the
activity expressed by distributed brain systems, where one
expects to see substantial interactions that render the
expression of one mode sensitive to the expression of
others. There are numerous examples of nonlinear inter-
actions and modulatory effects that shape the context-
sensitive nature of neuronal dynamics and brain activity.
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Perhaps the most compelling example, at a systems level,
is attentional modulation. Consider two distributed brain
systems, one subserving the processing of dynamic visual
stimuli and the other responsible for a particular atten-
tional set. In the context of attending to visual motion,
the neuronal responses in the visual system, elicited by
motion stimuli, will depend on whether the subject is
attending to this attribute or not. Attentional status will
be reflected in the activity of some attentional mode and
therefore the expression of the visual processing mode
will be a function of the expression of the attentional
mode. It 1s more than likely that the implicit interaction
between the visual and attentional modes will result not
only in the degree to which the modes are expressed, but
in their form or relative regionally specific contributions.
For example, activity in visual area V5, that has been
implicated in the processing of visual motion (Zeki 1990),
may be enhanced (relative to say V2 or V1) whenever the
appropriate attentional mode 1s being expressed (Treue &
Maunsell 1996; Biichel et al. 1998). This context-sensitive
expression of spatial modes can be modelled conceptually
in terms of first- In this
example, there are two sources or causes of distributed
neuronal responses, namely the presence of visual motion
in the visual field and attention. Both these causes are
expressed in terms of activity in their respective spatial
modes and the interactions between these two causes
would correspond to a second-order effect that was
expressed in V5. These second-order effects can be
thought of as changes in the first mode that depend on
the expression of activity in the second mode or equiva-
lently modulation of one mode that is sensitive to the
context engendered by the other.

The example considered in this paper is based on a
fMRI study of visual processing that was designed to
address the interaction between colour and motion
processing. We had expected to demonstrate that a
‘colour’ mode and ‘motion’ mode would interact to
produce a second-order mode reflecting (i) reciprocal
interactions functionally
specialized for colour and motion, (ii) interactions in
lower visual areas mediated by convergent backwards
efferents, or (ii1) interactions in the pulvinar mediated by
corticothalamic loops). Two out of three of these predic-
tions were seen (see § 3(b)).

In summary, to properly model the context-sensitive
nature of distributed but coherent brain responses, it may
be necessary to address interactions among spatial modes
that allow for the modulation of one mode by another.
These modulatory effects are second- or high-order in
nature and correspond to an interaction among the
underlying causes in determining a particular pattern of
cortical responses. This is the principle motivation for the
development and use of nonlinear forms of PCA.

and second-order effects.

between extrastriate areas

This paper 1s divided into two sections. The first section
reviews the theoretical background to nonlinear PCA,
first in general terms and then the specific implementa-
tion proposed here. This section includes the theoretical
motivation behind the particular form of the decomposi-
tion employed, how sources and modes are identified and
how the ensuing modes can be interpreted. The second
section 1s an illustrative application of nonlinear PCA to
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the original PET study used to illustrate eigenimage
analysis (Friston et al. 1993) and a fMRI study of visual
motion and colour processing that exemplifies the modu-
lation of one brain system by another.

2. THEORETICAL BACKGROUND

(a) Nonlinear PCA

Nonlinear PCA (e.g. Kramer 1991; Softky & Kammen
1991; Karhunen & Joutsensalo 1994) is a natural exten-
sion of PCA in a sense that it aims to identify a small
number of underlying components or sources causing a
multivariate data set that best explain the observed
variance-covariance structure. Nonlinear PCA is itself a
variant of related nonlinear approaches to structural
analysis that have been pioneered over the last few
decades. These include nonlinear factor analysis (e.g.
McDonald 1984) and nonlinear partial least squares (e.g.
Wold 1992).

Imagine that we had m observations of an n-variate.
For example m scans, where each scan comprised 7 voxels.
We can represent these data as m points in an n-dimensional
space. In conventional PCA, the first principal compo-
nent corresponds to the direction of a line running along
the principal axis of the resulting cloud of points. The
direction of this line is specified by an n-vector that corre-
sponds to the eigenimage and the projections of any one
point on to this line give the expression of this component
for the observation (i.e. point) in question. There are two
equivalent perspectives on the role that the principal axis
serves. The first is that the projection of the m points on to
this line has the maximum dispersion or variance. In
other words, the component scores of the first principal
component has the most variance. The other perspective
is that the average distance of any point from this line is
minimized in relation to all possible lines. In other words,
the first principal component is the pattern over the z
voxels that minimizes the unexplained variance in the
data. Nonlinear PCA adopts exactly the same principles
but allows for curvilinear lines. In brief, a curve is fitted
to the data in n-space such that the average distance of
the data points from this principal curve is minimized
(figure 1). This heuristic description highlights the inti-
mate relationship between nonlinear PCA and the identi-
fication of principal curves or surfaces (Dong & McAvoy
1996). In the case of linear PCA, the principal axes are
determined analytically using the eigenvector solution of
the n X n covariance matrix. In nonlinear PCA there is no
closed-form solution and iterative techniques are gener-
ally employed. These iterative approaches are usually best
framed in terms of simple neural networks using gradient
ascent or descent on the weights of the connections within
the network. One attractive architecture (Kramer 1991)
that has been used in this context is based on the notion
of ‘bottle-neck nodes’. These architectures have five layers
with a mirror symmetry about the middle or third layer.
The first and fifth layers represent inputs and outputs.
The middle layer has, typically, a very small number, 7,
of nodes. The intermediate layers two and four have
larger numbers of nodes or neurons than the input or
output layers and employ some nonlinear activation func-
tion. The network is trained to reproduce its input at the
outputs. This simple training forces the network to learn
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Figure 1. Schematic illustrating the idea behind nonlinear
PCA and principal curves. In this simple example there are
only two voxels and a series of images corresponding to points
with values {x, »} in the plots. A conventional PCA finds the
principal line or axis given by a linear function of x and y that
minimizes the average squared distance (7) of each point from
that line (a). Nonlinear PCA is exactly the same but in this
instance the axis is a curve given by some nonlinear function
of x and y (0).

a nonlinear function of the inputs that best predicts the
inputs themselves, subject to the constraint that it can be
expressed as a function of small number, 7, of sources
(activities of the ‘bottle-neck nodes’ in the middle layer).
The transformation from the input to the middle layer
represents a projection of the data on to the ¥ principal
surfaces of the data and the nonlinear transformation
from the middle layer to the output layer defines the form
of these surfaces. There are some extremely interesting
issues pertaining to the use of these architectures in
identifying principal components of a nonlinear sort,
but we will not pursue them here. In this paper, we take
a somewhat different approach that embodies some
explicit constraints on the form of the nonlinearities that
may cause biological data and develop an alternative
architecture that retains the two basic principles of
(1) using ‘bottle-neck nodes’, and (i) training the
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network so that the output best predicts the input in a
least-squares sense.

(b) Second-order PCA

In this subsection we will introduce a variant of
nonlinear PCA that uses a specific form for the assumed
nonlinear mixing of sources to produce the observed
responses in data. This form is predicated on interactions
among sources in the genesis of multivariate time-series.
In what follows we shall assume that an n-variate obser-
vation is caused by a small number of J underlying
sources and interactions among these sources. Generally
the observation of the ith variate (e.g. at the ith voxel)
will be some nonlinear function of the underlying sources

2i(t) = Ji(s(1)), (1)

where () =[»(),...2,¢)] is an n-vector function of
time. Similarly for s (@) = [5,(), - . . 570) ]

A second-order approximation of the Taylor expansion
of equation (1) about some expected value §(f) for the
sources 1s given by

-mzﬂ®+§ﬁﬁw+23miwu 2)
i ' — 0w S OOy "

where u(f) = (s(f) —$(f)) 1s an alternative representation of
the sources. Now incorporating all n observations (i.e.
voxels) equation (2) can be expressed, in matrix form, in
terms of zeroth-, first- and second-order modes repre-
sented by the n-vectors Vo V'and V2,

() = Ve + Z u; V} + Z W ka,
J Jik
where
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J J

|
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The elements of the vectors V' correspond to the first
order partial derivatives in equation (2) and the elements
of the vectors V2 correspond to the second-order deriva-
tives. V! and V2 have the natural interpretation of first-
and second-order modes, respectively. In other words the
Jth source is expressed in terms of the spatial mode le
and the interaction between the jth and Ath modes
expressed as a spatial mode ka. Equation (3) can be
considered a special case of a more general equation that
embodies higher-order terms:

YO RV VD oluu,) Vi, (4)
J Jok

o(+) 1s some sigmoid or squashing function that allows for
slightly more general forms of interactions among sources
and ensures a unique scaling for the sources ().

The above gives a suitable form for a nonlinear decom-
position or PCA of a multivariate data set y(f). To identify
the values of u(f) and the spatial modes it is necessary to
assume a constraint of orthogonality for the sources. This
1s a natural constraint in a sense that the underlying
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causes of any biological data should be independent if
they represent true causes, and as such will be ortho-
gonal. Notice that the assumption of orthogonality is a
weaker assumption than independence and it is this
assumption that defines the algorithm described here as a
nonlinear PCA. Had we assumed independence then the
problem would become that of nonlinear independent
component analysis (Common 1994)
demand a different approach.

which would

(c) Neuronal architecture and identification of
nonlinear components

In this section the neuronal architecture and gradient
descent scheme used to identify sources and their modes
are described. Note that equation (4) can be treated as a
general linear model and as such, if we knew the sources
u (), the modes could be estimated by minimizing the
residuals trace{R}in a least squares sense, where

R=(y—-XV)"(y—XV), (5)

X=0, u,...

Uy, o(uy),... cr(ukuk)].

Here 1 is a column of ones and I, below, is the identity
matrix. (X7X) !Xy is simply the least-squares estimator
of V given the inputs y and estimated sources (and their
interactions) in X. The problem therefore, reduces to
identifying the variates w(f) corresponding to estimates of
the sources, that minimize the norm of the residuals
trace{R}. By noting the existence of some vector G; where
V°G.=0, V!G.,=1 for i=j and 0 otherwise and
kaGl- = 0 then post-multiplying equation (4) throughout
by G; gives u;(t) =y({) X G,. This means that there must be
a linear combination of the inputs that gives the ith
source. One simply has to find the linear combination of
inputs that minimizes trace{R} for a given input (),
subject to the constraint that the sources are orthogonal.
These observations lead to the following simple neural
network: the network has three layers comprising input,
middle and output layers. The input and output layers
have n nodes and linear activation functions and can be
imagined as lying next to each other (figure 2). The
middle layer comprises a small ( < n) number of first-
order nodes with linear activation functions that receive
inputs from all the input nodes. In addition the middle
layer includes p=n{—1)/2 second-order nodes that
receive lateral inputs from the first-order nodes. Each
second-order node receives two inputs that are multiplied
and subject to the nonlinear function o(+) to provide their
output. The network is trained on the feedforward
connection strengths from the input layer to the first-
order nodes of the middle layer. The weights to the ith
first-order node are effectively estimates of G; The
connections from all middle-layer nodes to the outputs
are determined using the least-squares estimators of the
modes given the current estimate of the sources and the
inputs according to equation (5). Anti-Hebbian lateral
connections (Foldiak 1993) among the first-order nodes in
the middle layer ensure that the sources #(f) are ortho-
gonal. These JxJ lateral connection strengths L are
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Figure 2. The neural net architecture used to estimate sources
and modes. The lower half of the schematic represents the real
world with its sources and interactions (here only two sources
and the subsequent interaction are shown). These sources and
interactions (u) cause signals () in the input layer (layer 1)
that here comprises ten voxels or channels. The signals caused
by the sources are weighted by the voxel-specific elements of
the corresponding first- or second-order spatial modes (V! and
V?). Feedforward connections (G) from the input layer to
layer 2 provide an estimate of the sources () in layer 2. This
estimation obtains by changing G to minimize the sum of
squared residuals (trace{R}) or differences between the
observed signals and those predicted by the activity in layer 3.
The activity in layer 3 results from backwards connections
from the estimated source and interaction nodes in layer 2.
These backward connections are the estimates of the spatial
modes (V' and V?) and are determined using least-squares
given the input (y) and the current estimate of the sources
(u). Lateral decorrelating or anti-Hebbian connections L
between the first-order modes ensure orthogonality of the
source estimates. Note that in the absence of any interaction
the solution would correspond to a conventional PCA where
G =pinv (V).

determined at each iteration to render the off-diagonal
elements of Cov{u) zero:

L=1-)\"'AVE". (6)

Als a leading diagonal matrix whose elements correspond
to the variance of the sources in the absence of decorre-
lating lateral connections (i.e. A=diag{t’7a*} where
w' =y x G). A and E are the eigenvalues and eigen-
vectors of &7 4", Estimates of the sources are given by

u=yG+uL=yx GI—L)". (7)

Note that substituting equation (6) into equation (7) gives
Cov{u}ox u’u = ) thereby ensuring orthogonality of the
estimated sources. Implementing changes in the lateral
connections in this way enforces orthogonality of the
projection effected by the feed-forward connections at
each iteration. L imposes this constraint because the
effective feed-forward connections are G(I—L)~!. Essen-
tially the architecture is finding the rotation and scaling,
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of some projection on to a low-dimensional orthogonal
subspace that enables the interactions, among the
projected inputs that ensue, to predict as much of the
original inputs as possible. % enters into equation (5) with
y to compute trace{R}. The learning rule for the esti-
mates of G; corresponds to gradient descent on the trace
of the residuals. In practice, we use a Nelder—Mead
simplex search as implemented in MATLAB (MathWorks
Inc., Natick, MA, USA) that minimizes trace{R}, which
is simply a function of the input y and the feed-forward
connections strengths G. This neural network appears to
be robust and usually converges within a few tens of itera-
tions to give estimates of the underlying sources u(f) and
least-square estimates of corresponding spatial modes V.
Figure 2 is a schematic that tries to convey the simplicity
of the architecture. Here the third or output layer has
been reflected back on to the inputs to emphasize the
symmetry between the assumed structure of causes in the
world and the architecture used to identify them.

(d) Interpreting the estimates

Generally, in PCA, in the absence of any variance
maximization—minimization criterion, there is no unique
rotation of the spatial modes (i.e. any linear combination
of the modes, that conforms to an orthogonal rotation, is
as equally good as any other). The incorporation of the
interaction term into the decomposition implicit in equa-
tion (3) ensures a unique rotation and, furthermore,
incorporating the sigmoid function in equation (4)
ensures that the scaling is uniquely determined. The latter
follows from the fact that there will be some optimum
squashing of each interaction term to best predict the
observed data. The reason that unique solutions obtain in
this form of nonlinear PCA is that we have assumed a
very specific form for the high-order interactions among
sources in causing the data. This i1s based on the pairwise
interactions between sources as modelled by the second
term in equation (4). The interpretation of the sources
and their modes is relatively straightforward.

The observed multivariate data can be explained by a
small number of 7 sources whose expressions are given by
. The values of @; scale the contribution of the first-order

J

spatial mode V} in a way that is directly analogous to

conventional PCA, where #; would be the jth component
score. In addition there are second-order effects that
represent interactions between pairs of sources o(u; ).
These interactions are expressed in second-order modes
corresponding to ka. Each second-order mode will have
a variance component that may or may not be orthogonal
to the first-order modes. Although the sources are ortho-
gonal there is no explicit requirement for the modes to be
so. The variance accounted for by each source and inter-
action is given by

|”j| : |VJI| and |U(”j”k)| ) |ka > (8)
and can be used to rank the relative contributions of each
source or interaction. |- | denotes the vector norm (i.e.
sum of squares).

The nonlinear PCA proposed here therefore decom-
poses a multivariate data set into first- and second-order
components that can be ascribed to a small number of
underlying sources. The number of sources will be
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generally greater than the minimum number acquired to
account for the rank of the multivariate data. For
example, with just three voxels or channels, two sources
would be sufficient if the third dimension was explained
by the interaction between these two sources. Three sources
would be sufficient to account for a six-dimensional data
set and so on. Clearly in the analysis of functional neuro-
imaging time-series an initial dimension reduction is
required before nonlinear PCA can be applied. For
example, taking the first 36 spatial modes of a fMRI
imaging time-series, using conventional singular value
decomposition, would, in principle, require only eight
underlying sources. In this sense, nonlinear PCA represents
a parsimonious characterization of the data that captures
nonlinear interactions among spatial modes or distributed
brain systems in a comprehensive but intuitive fashion.
These and other issues will be demonstrated in the next
section, which uses real data to illustrate the technique.

3. ILLUSTRATIVE EXAMPLES

In this section we will use a multisubject PET study of
verbal fluency and a fMRI case study of visual processing
to illustrate the use of nonlinear PCA and some aspects of
functional anatomy that can be addressed with this tech-
nique. The PET study is used to show that a considerable
amount of variance can be accounted for by interactions
among causes of the data and is presented for comparison
with the original linear PCA characterization in Iriston et
al. (1993). In brief, we will show that the two experi-
(task and time) combine to express
themselves in a second-order mode that reflects time-
dependent adaptation of task-related responses. This
effect can be construed as large-scale neurophysiological
plasticity attributable to strategic changes in cognitive
processing during intrinsic, relative to extrinsic, genera-
tion of words. The second example, using fMRI, deals
more explicitly with the modulation of one brain system
by another. In particular the interactions between
specialized cortical systems that may be mediated by
corticothalamic loops.

mental factors

(a) A PET study of verbal fluency

(1) Data acquisition, experimental design and preprocessing

The data were obtained from five subjects scanned 12
times (every 8 min) while performing one of two verbal
tasks. Scans were obtained with a CTI PET camera (model
953B, CTI, Knoxville, TN, USA). PO was administered
intravenously as radiolabelled water infused over 2 min.
Total counts per voxel during the build-up phase of radio-
activity served as an estimate of regional cerebral blood
flow (rCBF). Subjects performed two tasks in alternation.
One task involved repeating a letter presented aurally, at
one per two seconds (word shadowing). The other was a
paced verbal fluency task, where the subjects responded
with a word that began with the letter presented (intrinsic
word generation). The data were realigned, stereotactically
normalized and smoothed with a 16 mm Gaussian kernel
(Friston et al. 1996¢). The data were subject to a conven-
tional SPM analysis using multiple linear regression with
12 condition-specific effects, five subject effects and global
activity as described in Friston et al. (1995a). Parameter
estimates, representing condition-specific effects averaged
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over subjects, were selected from voxels that exceeded a
threshold of p <0.05 in the ensuing SPM{F }and subject to

nonlinear PCA as described below.

(11) Nonlinear PCA

The data were reduced to an eight-dimensional
subspace using SVD and entered into the nonlinear PCA
using two sources. The ability of these two sources, and
their interaction, to explain the observed regional activity
is illustrated in figure 3a. Here an arbitrary voxel (that
showing the highest F-value in the conventional SPM
analysis) was selected from the left inferior frontal gyrus
(Brodmann Area 47). The observed condition-specific
activity, over 12 scans, is shown in black and that
predicted by the two sources is shown in white. The rela-
tive amount of variance accounted for by the two sources
and their interaction is shown in the middle panel. It can
be seen that 88% of the total variance, over all voxels
included in the analysis, can be explained by two sources.
The second-order mode accounts of 2.2% of this (after
removing that which can be modelled by the first-order
effects) and would have been distributed over other
modes in a conventional PCA. Figure 35 shows this distri-
bution indicating that the fifth and sixth eigenimages, in
a conventional PCA, largely comprise the interaction
between the two modes identified by nonlinear PCA.

The first- and second-order modes are seen in figure 4,
along with their expression over the 12 scans. It is imme-
diately apparent that the first mode reflects task-related
effects paralleling the alternation between word genera-
tion and word shadowing. This profile of brain regions is
typical of verbal fluency paradigms that isolate the
intrinsic generation of semantic representations, encoding
and retrieval processes required to compare the current
output with previous words and the maintenance of an
appropriate cognitive set. The key regions involved
include the thalamus, dorsolateral prefrontal cortex, ante-
rior cingulate, temporal cortices and cerebellum. The
second mode represents the other experimental factor,
namely time or order effects. A nonlinear effect is evident
with increases in activity in the cerebellar, thalamic and
left basotemporal regions. More interesting is the second-
order mode that, by implication, reflects an interaction
between task-related responses and time, i.e. time-
dependent increases in physiological responses elicited by
cognitive operations that distinguish between the two
tasks employed. This physiological adaptation in most
pronounced in Broca’s Area (Brodmann Area 44 in the
left prefrontal cortex and the right lateral thalamic
regions). Broca’s Area is traditionally associated with
speech production and appears to undergo a profound
change 1n its relative activation during word shadowing
and generation after the first pair of scans that, presum-
ably, reflects an underlying change in cognitive archi-
tecture or set.

(b) A fMRI study of colour and motion processing
(1) Data acquisition, experimental design and preprocessing

The experiment was performed on a 2 Tesla Magnetom
VISION (Siemens, Erlangen, Germany) whole body MRI
system equipped with a head volume coil. Contiguous
multislice T;-weighted fMRI images (TE=40ms;

64mm X 64mm XxX48mm 3mmXxX3mmXx3mm voxels)
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Figure 3. Variance partitioning following a nonlinear PCA of
the PET verbal fluency study. (¢) Observed activity in a voxel
in the left inferior frontal gyrus (filled bars) and that predicted
on the basis of two sources and their interaction (open bars)
estimated with nonlinear PCA. Activity is in units
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were obtained with echoplanar imaging using an axial
slice orientation. The effective repetition time was 4.8s. A
young right-handed subject was scanned under four
different conditions, in six scan epochs, intercalated with
a low level (visual fixation) baseline condition. The four
conditions were repeated eight times in a pseudorandom
order giving 384 scans in total or 32 stimulation—baseline
epoch pairs. During all stimulation conditions the subject
looked at dots back-projected on a screen by an LCD
video projector. The four experimental
comprised the presentation of (i) radially moving dots,
and (ii) stationary dots, using (i) luminance contrast and
(11) chromatic contrast in a two-by-two factorial design.
Luminance contrast was established using isochromatic
stimuli (red dots on a red background or green dots on a
green background). Hue contrast was obtained by using
red (or green) dots on a green (or red) background and
establishing isoluminance with flicker photometry. In the
two movement conditions the dots moved radially from
the centre of the screen, at 8°s~!, to the periphery where
they vanished. This creates the impression of optical flow.
By using these stimuli we hoped to excite activity in
visual motion systems and those specialized for colour

conditions

processing. Any interaction between these systems would
be expressed in terms of motion-sensitive responses that
depended on the hue or luminance contrast subtending
that motion.

The time-series were realigned, corrected for movement-
related effects and spatially normalized into the standard
space of Talairach & Tournoux (1988) using the subject’s
co-registered structural T} scan and nonlinear deforma-
tions (Friston et al. 1996¢). The data were spatially
smoothed with a 6 mm isotropic Gaussian kernel. As in
the PET example, voxels were selected that showed signifi-
cant condition-specific effects according to a conventional
SPM analysis (Friston et al. 1995b; Worsley & Friston
1995). This analysis used a multiple linear regression and
condition-specific box car regressors convolved with a
haemodynamic response function. In this instance, the
number of voxels was exceeding large and we used a
higher threshold than in the PET analysis ( p=0.001) and
included only those voxels that were posterior to the
posterior commissure.

(1) Nonlinear PCA

The data were again reduced to an eight-dimensional
subspace using SVD and entered into the nonlinear PCA
using two sources. The functional attribution of these
sources was established by looking at the expression of the
corresponding first-order modes over the four conditions.
The expression of epoch-related responses over all 32
stimulation—baseline epoch pairs are shown in terms of
the four conditions in figure 5. This expression is simply
the score on the first principal component over all 32
epoch-related responses for each source. The first mode is

Figure 3 (Cont.) corresponding to regional cerebral
perfusion inml dI=! min~!. (4) Variance, over all voxels
included in the analysis, accounted for by the two sources (or
modes) and their interaction. Total =88%. (¢) Distribution
of variance accounted for by second-order or interaction
effects over the conventional eigenimages obtained in the
initial SVD dimension reduction.
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Figure 4. Maximum intensity projections and expression of the first- and second-order spatial modes of the PET verbal fluency
study. (1) Spatial mode 1, (ii) spatial mode 2, and (ii1) second-order mode. The maximum intensity projections (a) are of the
positive values of each mode and are displayed in standard format. The three orthogonal brain views are from the right, the

back and the top of the brain. The projections have been scaled to the maximum intensity of each mode. The time-dependent
expression of these modes are in terms of the 12 scans (4). The units are adimensional and their absolute values are not important
(the variance they account for is determined by the scaling of the spatial modes which, in turn, is dictated by the sigmoid

squashing function, see figure 3).

clearly a motion-sensitive mode but one that embodies
some colour preference in the sense that the motion-
dependent responses of this system are accentuated in the
presence of colour cues. This was not quite what we had
anticipated; the first-order effect contains what would

Phil. Trans. R. Soc. Lond. B (2000)

functionally be called an interaction between motion and
colour processing. The second source appears to be
concerned exclusively with colour processing in the sense
that its expression is uniformly higher under colour
stimuli relative to isochromatic stimuli in a way that does
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Figure 5. Condition-specific expression of the two first-order
modes ensuing from the visual processing fMRI study.
These data represent the degree to which the first principal
component of epoch-related waveforms over the 32 photic
stimulation-baseline pairs was expressed. These condition-
specific responses are plotted in terms of the four conditions
for the two modes. motion, motion present; stat., stationary
dots; colour, isoluminant, chromatic contrast stimuli; isoch.,
isochromatic, luminance contrast stimuli. () First-order
mode 1, (b) first-order mode 2.

not depend on motion. The corresponding anatomical
profile is seen in figure 6 (maximum intensity projections
in figure 6a and thresholded axial sections in figure 65).
The first-order mode, which shows both motion and
colour-related responses, shows high loadings in bilateral
motion-sensitive complex V5 (Brodmann Areas 19 and 37
at the occipto-temporal junction) and areas traditionally
associated with colour processing (V4-—the lingual
gyrus, Brodmann Area 19 ventromedially). The second
first-order mode is most prominent in the hippocampus,
parahippocampal and related lingual cortices on both
sides. The two more lateral blobs subsume the tails of the
caudate nuclei (figure 64(ii)). This system is not one
normally associated with colour processing but it should
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be noted that some of the main effect of colour has been
explained by the first mode that includes V4. In
summary, the two first-order modes comprise (i) an
extrastriate cortical system including V5 and V4 that
responds to motion, and preferentially so when motion is
supported by colour cues; and (i1) a (para)hippocampal—
lingual system that is concerned exclusively with colour
processing, above and beyond that accounted for by the
first system. The critical question i1s where do these modes
interact?

The interaction between the extrastriate and (para)
hippocampal-lingual systems conforms to the second-
order mode in the lower panels. This mode highlights the
pulvinar of the thalamus and V5 bilaterally. This is a
pleasing result in that it clearly implicates the thalamus in
the integration of extrastriate and (para)hippocampal
systems. This integration being mediated by recurrent
(sub)corticothalamic connections. It 1s also a result that
would not have obtained from a conventional SPM
analysis. Indeed we looked for an interaction between
motion and colour processing and did not see any such
effect in the pulvinar. The reason that the nonlinear PCA
was able to find this interaction was that there were no
constraints on the sources underlying the interaction. In a
conventional SPM analysis the sources are explicitly
assumed to be colour and motion in the visual field,
whereas the two interacting modes identified by the
nonlinear PCA were caused by complicated admixtures of
colour and motion. This result is presented to illustrate
the potential usefulness of nonlinear PCA, not to make
any statistical inferences about reproducible functional
architectures. The exploratory analysis based on this case
study could now be used to motivate hypothesis-led
analyses of other subjects.

4. CONCLUSION

In this paper we have described a specific form of
nonlinear PCA that is predicated on the interaction
between underlying sources in modulating spatial modes
of brain activity. Its theoretical motivation stems directly
from a second-order approximation to the Taylor expan-
sion of any nonlinear function of sources that can cause
multivariate observations. A simple, three-layer neuronal
network architecture is sufficient to identify or estimate
the underlying causes and associated first- and second-
order spatial modes. The first-order modes correspond to
conventional eigenimages or principal components and
the second-order modes describe the patterns of brain
activity that among these
sources. The ensuing decomposition into first- and
second-order components represents an exploratory
analysis of the data that eschews some of the shortcom-
ings of conventional PCA. In particular, nonlinear PCA
allows for the context-sensitive expression of spatial
modes through second-order modes that can be inter-
preted as the anatomical substrate of integration or
modulation. The highly constrained form of nonlinear
PCA presented above has an intuitive interpretation in
terms of pairwise interactions among underlying sources
and by virtue of this represents a useful and parsimo-
nious characterization of functional neuroimaging time-
series.

result from interactions
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Figure 6. Maximum intensity projections and axial (transverse) sections of the first- and second-order spatial modes of the fMRI
photic stimulation study. The maximum intensity projections (a) adhere to the same format as in figure 4. The axial slices have
been selected to include the maxima of the corresponding spatial modes. (1) Spatial mode 1, (ii) spatial mode 2, and (iii) second-
order mode. In this display format the modes have been thresholded at 1.64 of each mode’s standard deviation over all voxels
(white areas). The resulting excursion set has been superimposed onto a structural T-weighted MRI image conforming to the

same anatomical space ().

In this paper, we have chosen to illustrate the technique
using the interaction between modes associated with
colour and motion processing. Nonlinear PCA could of
course be used in any situation where one expects the
activity of a distributed brain system to be modulated by
the expression of another system. Many examples come to
mind that may, or may not, be grounded in cognitive
science or neuroscience models. For example: Are the
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modes implicated in the visual processing of word forms
and graphemes modulated by semantic modes in more
temporal and parietal Although
nonlinear PCA is an exploratory device, and is implicitly

anterior cortices?
data-led, careful experimental design can be used to
control the expression of various spatial modes that one
wishes to characterize. As a general point it is likely that
the more powerful designs will be factorial in nature,
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allowing the expression of one mode, associated with one
experimental factor, to be assessed under different levels
of the expression of a second mode elicited by a second
experimental cognitive or sensory factor. In
instances, factorial designs are not always easy to
implement (e.g. in selective attention because it 1s difficult
to attend selectively to a particular attribute when it is
not present in the visual field). However, many multi-
factorial experiments, designed to look at language
processing and memory, may lend themselves nicely to
characterization using the techniques described in this

paper.

some

(a) Extensions and limitations

The limitations of the nonlinear PCA proposed above
are embodied in the constraints on the form of the
decomposition assumed. The most obvious constraint is
that it only allows for second-order interactions among
sources or causes of the data, whereas higher-order inter-
actions may prevail. It would, of course, be easy to
extend the neural net architecture to include third- or
higher-order nodes and this may be justified in some data
analytic situations. In neuroimaging, however, the time-
series one deals with are usually quite short and noisy and
simply identifying second-order effects can be quite ambi-
tious. The second limitation is that the number of sources
has to be prespecified. Again this may be a drawback in
terms of system identification and independent compo-
nent analysis in general. However, in neuroimaging one
has experimental control over the number of factors (i.e.
sources) that are likely to cause neurophysiological
changes and specifying the number of sources is a much
more tenable, in terms of justifiable restrictions on the
casual model assumed for the data.

Another important consideration is that, in the special
application of nonlinear PCA to functional imaging
data, an initial dimension reduction using SVD is
required. This is because there are many more voxels
than observations. It is well known that systematic errors
can creep into applying SVD to simple nonlinear depen-
dencies and that these depend on the rate of convergence
of the Taylor series associated with equation (1). In this
paper, the SVD is done first and then the nonlinear
analysis i1s performed. It is always possible that the SVD
has not established the right bases for the subsequent
analysis and that some bias will ensue. The result will be
that apparent modulations of the first-order modes will
not be correct. These issues represent areas of future
work and could be addressed using ‘toy’ nonlinear
systems and synthetic imaging data and by examining
the sensitivity of the second-order modes to the degree of
SVD dimension reduction.
biological
mechanism of the interaction. In the examples presented
above, we have assumed that the interaction is expressed
at a neuronal level, in terms of modulation of neuronal
responses and dynamics themselves. It should be borne in
mind that interactions can also be expressed at the level
of the haemodynamic response to [non-interacting]
neuronal responses (e.g. Friston et al. 1998). This should
be considered where there is a high degree of anatomical
convergence between first-order modes that evidence a
strong interaction.

A  more consideration relates to the
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By virtue of the iterative scheme used for learning in
the neural net there is always the problem of local
minima and the associated dependency on starting esti-
mates. In our applications, we start with the conventional
PCA solution and therefore ensure that the ensuing
modes and interactions always account for more variance
than the corresponding linear PCA. In this sense there is
a unique solution (for any given gradient descent scheme)
and this is the nearest to the solution where the second-
order effects are zero.

Perhaps the most interesting limitation of the technique
presented in this paper is buried in the assumption that
there exists a linear combination of the inputs that gives
the expression of the sources. This depends on the
assumption (see §2) that first- and second-order modes
are not collinear. As long as they are not collinear there is
always a set of feed-forward connection strengths that
span the subspace of one first-order mode that is ortho-
gonal to all other modes (first and second order). What
are the implications of collinearity between a first- and
second-order mode? Collinearity means that the expres-
sion of a first-order mode is itself sensitive to the expres-
sion of another mode (i.e. the first- and second-order
modes are the same thing). The possibility of this speaks
to two fundamentally different context-sensitive effects.
The first is when the interaction between two modes or
causes 1s expressed as a second-order mode with a distri-
bution that is distinct from both first-order modes. This is
the situation considered in this paper and can be
addressed using nonlinear PCA as described above.
Second, the interaction may be expressed solely in terms
of the expression of one of the two first-order modes.
Here there is no second-order mode only a contextual
expression of first-order modes. This second form of
context-sensitivity requires a different sort of approach
(nonlinear ICA) and is interesting because it may repre-
sents a true contextual effect with which the brain has to
contend in everyday sensory processing.

This work was funded by the Wellcome Trust. We would also like
to thank Gary Green and an anonymous reviewer for help in
presenting this work.
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