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This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic
Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph
(connections in a network) using observed network activity. This network discovery uses Bayesian model
selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains
observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic)
and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional
magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be
applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting
state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of
directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial
independence of random fluctuations. The scheme furnishes a network description of distributed activity in
the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks.
The networks are characterised in terms of their connectivity or adjacency matrices and conditional
distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions.
We envisage that this approach will provide a useful complement to current analyses of functional
connectivity for both activation and resting-state studies.
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Introduction

Historically, Dynamic Causal Modelling (DCM) has been portrayed
as a hypothesis-led approach to understanding distributed neuronal
architectures underlying observed brain responses (Friston et al., 2003).
Generally, competing hypotheses are framed in terms of different
networks or graphs, andBayesianmodel selection is used toquantify the
evidence for one network (hypothesis) over another (Penny et al.,
2004). However, in recent years, the number of models over which
people search (the model-space) has grown enormously; to the extent
thatDCM is nowused to discover the bestmodel over very largemodel-
spaces (e.g., Stephan et al., 2010; Penny et al., 2010). Here, we take this
discovery theme one step further and throw away prior knowledge
about the experimental causes of observed responses to make DCM
entirely data-led. This enables network discovery using observed
responses during both activation studies and (task-free) studies of
autonomous or endogenous activity during the “resting state”. In what
follows, we describe this scheme in terms of the underlying generative
model, the construction of model-spaces and how these spaces are
searched for the optimummodel. In addition to covering the theoretical
background to DCM discovery, we illustrate its application to an fMRI
(attention to motion) dataset used previously in technical papers. In
subsequent work, we will illustrate its application to resting-state fMRI
data (Li et al., in preparation).

This paper comprises four sections. In the first, we describe the form
of the DCM used in subsequent sections. This is exactly the same as the
conventional DCM for fMRI but includes endogenous fluctuations,
which are represented by randomdifferential equations (Li et al., 2010).
These equations can be regarded as a [bi]linear approximation to any
nonlinear model of neuronal dynamics. In this paper, we take a closer
look at what this linear approximation means, when considering
endogenous fluctuations that arise from self-organised dynamics (e.g.,
Suckling et al., 2008; Honey et al, 2009). Having established the basic
form of ourmodel, we then turn tomodel inversion and consider briefly
the distinction between deterministic and stochastic schemes. This
distinction is important because stochastic or random fluctuations are
inevitable, when modelling self-organised dynamics at a macroscopic
scale. The second section deals with the construction of model-spaces
and how each model within these spaces is evaluated or ‘scored’. The
main focus of this section will be on efficient scoring and plausible
constraints or priors on models that restrict the search to sensible
subspaces. We consider the difficult problem of scoring very large
numbers of models. To finesse this problem we use a proxy for the
model evidencebasedupon the conditional density over theparameters
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of a fully connected network (the Savage–Dickey density ratio; Dickey,
1971). This section borrows several ideas from graph theory and
connects them with Bayesian constructs in DCM. The resulting search
scheme is used in Monte Carlo simulations to evaluate and validate the
accuracy of model selection; i.e., network discovery. The third section
applies these procedures to an empirical fMRI time-series, acquired
under an attention tomotion paradigm. This section illustrates the sorts
of results that can beobtained and revisits some key questions about the
functional architecture of hierarchies in the brain and the relative
expression of top-down and bottom-up influences.We conclude with a
brief discussion of the relevance of this scheme for determining
neuronal architectures from measured brain responses in general, and
its implications for the characterisation of fMRI time-series in particular.

The generative model and its inversion

This section describes the causal or generative model for the
specific fMRI application considered in this paper. The model is
basically the same as the conventional DCM for fMRI; however, we
will motivate the assumptions implicit in the usual approximation.
This more detailed examination of DCM for fMRI discloses the central
importance (and nature) of fluctuations in neurophysiologic states,
which have been ignored in classical (deterministic) variants of
Dynamic Causal Modelling.

We have introduced several schemes recently that accommodate
fluctuations on hidden neuronal and other physiological states (Penny
et al., 2005; Daunizeau et al, 2009; Friston et al., 2010; Li et al., 2010).
This means that one can estimate hidden states generating observed
data, while properly accommodating endogenous or random fluctua-
tions. These become particularly important when modelling endog-
enous dynamics, which are itinerant (wandering) and sometimes
ergodic (e.g., resting-state fMRI time-series). We will exploit these
schemes to search over models that couple fluctuating dynamics in
different parts of the brain. We first consider the generative model per
se and then turn to its inversion or optimisation. Here, we take the
opportunity to consider two alternative approaches to dealing with
fluctuations in neuronal activity; the first is based upon Generalised
Filtering for stochastic DCM described in Friston et al. (2010) and
applied to fMRI in Li et al. (2010). The nature of these generalised
schemes speaks to the fact that there is no real difference between
hidden states and parameters in DCM; therefore, it should be possible
to cast unknown fluctuations in neuronal states as unknown
parameters. In fact, this approach was used in the pioneering work
of Riera et al. (2004). We will address the implicit exchangeability of
states and parameters by comparing stochastic DCM (Daunizeau et al.,
2009; Li et al., 2010) with deterministic DCMs that model unknown
fluctuations in neuronal states with a mixture of temporal basis
functions.

The generative model

DCM for fMRI rests on a generative model that has two
components. The first is a neuronal model describing interactions
(dependencies) in a distributed network of neuronal populations. The
second component maps neuronal activity to observed hemodynamic
responses. This component has been described in detail many times
previously and rests on a hemodynamic model (subsuming the
Balloon model; Buxton et al., 1998; Friston et al, 2003; Stephan et al.,
2007) and basically corresponds to a generalised (nonlinear)
convolution. In this paper, we will focus exclusively on the neuronal
model, because the hemodynamic part is exactly the same as
described previously (Stephan et al., 2007). Although we will focus
on neuronal systems, the following arguments apply to any complex
distributed system with coupled nonlinear dynamics. This means that
the procedures described later could (in principle) be applied in
different domains.
This material that follows is a bit abstract and could be skipped by
the pragmatic reader. It is presented to make four key points: (i) the
dynamics of coupled systems can be summarisedwith a small number
of macroscopic variables that describe their behaviour; (ii) the time
constants of these macroscopic dynamics are necessarily greater than
those of the underlying macroscopic dynamics; (iii) reducing the
dynamics to macroscopic variables necessarily induces fast fluctua-
tions in these variables (cf., system noise) even if the system is
deterministic and (iv) these fluctuations are analytic (continuously
differentiable). The last point is crucial because it renders the model
non-Markovian and calls for (inversion) schemes that eschew
Markovian assumptions (e.g., Generalised Filtering: Friston et al,
2010; Li et al., in press).

Consider the system generating neurophysiologic time-series. This
comprises a set of n regions, vertices or nodes, where each node
corresponds to a vast number of neurons in a cortical area, source or
spatial mode (pattern). We will first assume that the dynamics of
neuronal states in one node ξ=[ξ1, ξ2, …]T evolve according to some
unknown and immensely complicated equations of motion:

ξ̇ = f ξð Þ
≜

ζ̇1 = f1 ζ1;…; ζNð Þ
ζ̇2 = f2 ζ1;…; ζNð Þ
ζ̇3 = …

ð1Þ

These two equations represent the same dynamics but the first is
expressed in terms of the original neuronal states (e.g., transmem-
brane voltages and conductances) of every neuron in the node, while
the second equations are expressed in terms of the amplitude of
patterns or modes of the original variables, U(ξ)=U−ξ. This
alternative description can be regarded as a change of variables
ξ=Uζ⇒ζ=U−ξ. We assume that this mappingU− :ξ→ζ is chosen so
that it conforms locally to the generalised eigenvectors U(ξ) of the
Jacobian I = ∂f = ∂ξ, with eigenvalues U−IU = λ. The Jacobian
describes the stability of flow in state-space; i.e., how quickly flow
changes with position. We now appeal (heuristically) to the centre
manifold theorem and synergetic treatments of high-dimensional,
self-organising systems (Ginzburg and Landau, 1950; Carr, 1981;
Haken, 1983); see De Monte et al (2003), Melnik and Roberts, 2004
and Davis, 2006, for interesting examples and applications. Namely,
wemake the assumption that the eigenvalues λk = U−

k IUk associated
with each mode ζk=Uk

−ξ are distributed sparsely; λ1 N λ2 N λ3…∈R.
That is, one or a small number of them are near zero, whereas the rest
are large and negative. This assumption has additional plausibility for
neuronal systems, given their tendency to show self-organised
criticality and slowing (Stam and de Bruin, 2004; Shin and Kim,
2006; Suckling et al., 2008; Kitzbichler et al., 2009). Critical slowing
means that some modes decay slowly and show protracted correla-
tions over time.

Put simply, all this means is that the dynamics of any system
comprising many elements can be decomposed into a mixture of
(orthogonal) patterns over variables describing its state. By necessity,
some of these patterns dissipate more quickly than others. Generally,
some patterns decay so slowly that they predominate over others that
disappear as soon as they are created. Mathematically, this means that
P (principal) eigenvalues λp→0 : p≤P are nearly zero and the
associated eigenvectors or modes Up(ξ) are slow and unstable. In this
case, ζp=Up

−ξ :p≤P are known as order parameters. Order para-
meters are mixtures of states encoding the amplitude of the slow
(unstable) modes that determine macroscopic behaviour. Other fast
(stable) modes ζq=Uq

−ξ :qNP have large negative eigenvalues, which
means that they decay or dissipate quickly to an invariant attracting
set or manifold, h(ζp), such that ζ̇q = fq ζp;h ζp

� �� �
= 0. In other
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words, the invariant (centre) manifold h(ζp) attracts trajectories and
contains the solutions to Eq. (1). When there is only one order
parameter or principal mode, this manifold is a line or curve in state-
space and ζ1 could represent the distance along that curve (see Fig. 1).
The unstable fast modes decay quickly because the eigenvalue is
effectively their rate of decay. One can see this easily by taking a first-
order Taylor expansion of Eq. (1) about the centre manifold:

ζ̇q ≈ fq ζp; h ζp
� �� �

+ U−
q IUq ζq−hq ζp

� �� �
= λq ζq−hq ζp

� �� �
:

ð2Þ

The slowmodes (which flow on the centre manifold) are then said
to enslave the fast modes (which the centre manifold attracts): This is
the “slaving principle” (Ginzburg and Landau, 1950; Carr, 1981;
Haken, 1983). The crucial thing here is that the distribution of
eigenvalues (rates of dissipation) induces a separation of temporal
scales, so that we can approximate Eq. (1) with:

ζ̇p = fp ζp; h ζp
� �� �

+ ωp

ωp = ∑q
∂fp
∂ζq

ζq−hq ζp
� �� �

+ …
ð3Þ

Here, we have gathered the influences of the fast modes, on the
motion of the slow modes, into fast fluctuations ωp∈R using a Taylor
expansion about the centre manifold. We can do this because the
states are generally near the centre manifold. Basically, we have
thrown away the fast or stable modes and replaced them with
fluctuations on the centre manifold. It should be noted that the
transverse fluctuations ζq(t) about the centre manifold are not
necessarily small. Large fluctuations can occur fairly generically, if
periodic orbits embedded in the centre manifold remain transversely
unstable. In this case, the transverse dynamics can be of large
amplitude, giving rise to what is known as bubbling (Ashwin et al.,
1994, 1996).

An important example of the resulting contractions of state-space
dynamics are those subtended by symmetries (or near symmetries)
among the dynamics, such as the coupling of nearly identical systems
(e.g., cortical macrocolumns). In such a setting, the centre manifold
Fig. 1. The slaving principle and centre manifolds: This schematic illustrates the basic
idea behind the slaving principle. In this example, there are two states, whose flows
bring them to an attracting invariant set (the centre manifold); h(ζ1). Once the states
have been attracted to this manifold they remain on (or near) it. This means the flow of
states can be decomposed into a tangential component (on the manifold) and a
transverse component (that draws states to the manifold). This decomposition can be
described in terms of a change of coordinates, which implicitly separate fast (stable)
transverse dynamics ζ̇2 ξð Þ from slow (unstable) tangential flow ζ̇1 ξð Þ on the centre
manifold. We exploit this decomposition to motivate the separation of dynamics into a
slow, low-dimensional flow on an attracting manifold and a fast (analytic) fluctuating
part that describes perturbations away from (and back to) the manifold. Please see the
main text for a full description of the equations.
approximates a hyper-diagonal subspace or a smoothly mapped
(synchronisation) manifold close by (e.g., Hu et al., 2010): The
presence of strong transverse flow towards this manifold and a
weakly stable or unstable flow on the manifold is exactly the sort of
behaviour described by Eq. (3) and has clear relevance for cortical
dynamics. Indeed, manifolds that arise from near symmetry in
coupled dynamical systems have been studied extensively as models
of synchronised neuronal activity (e.g. Breakspear, 2004; Breakspear
and Stam, 2005).

Usually, the centre manifold theorem is used to characterise the
dynamics on the centre manifold in terms of its bifurcations and
structural stability, through normal forms for the associated equations
of motion. Here, we are simply using the existence of a centre (or
synchronisation) manifold to place formal priors on the form of a
generative model. The resulting form (Eq. (3)) comprises slow
deterministic dynamics and fast fluctuations that can be treated as
analytic (differentiable) random terms. These fluctuations are analytic
because they are a mixture of fast deterministic dynamics. Further-
more, in complex self-organising systems, they will exhibit smooth-
ness. This is because some of the fast modes will show critical slowing
(i.e., their eigenvalues will move towards zero). This is important
because it means Eq. (3) is a random differential equation, not a
stochastic differential equation (in which the random terms are
Markovian and have no smoothness). Dynamic causal models based
on random differential equations call for a slighter more sophisticated
treatment than conventional state-space models based on stochastic
differential equations (see below).

In summary, we have exploited the separation of temporal scales
seen in self-organising dynamics (and the ensuing adiabatic expan-
sion implicit in Eq. 3) to summarise the behaviour of a neuronal
ensemble in terms of random differential equations. The key thing
about this formulation is that the dynamics of order parameters are
much slower than the fluctuations they enslave. We have not
considered the exact nature of the order parameters ζp but have in
mind a single circular (phase) variable (see Fig. 1), such that the rate
of change ζ̇1 : = ζ̇ reflects the instantaneous frequency of an
oscillating mode (cf., Brown et al., 2004; Kopell and Ermentrout,

1986; Penny et al., 2009). If we define xi : = ζ̇
ið Þ
as the frequency of

the i-th node andωi : = ω̇
ið Þ
as fluctuations in that frequency, Eq. (3)

tells us that (dropping the subscript for clarity)

ẋi = ζ
::ðiÞ≈∂f ið Þ

∂ζ ið Þ ζ̇
ið Þ + ω̇ ið Þ

= λ ið Þxi + ωi

= ωi:

ð4Þ

This equation says that, in the absence of exogenous influences,
each nodewill show smooth fluctuations in the frequency at which its
principal mode oscillates. Note that the frequency will not decay
because the underlying (quasiperiodic) dynamics are on the centre
manifold, where λ(i)=∂f (i)/∂ζ(i)=0:∀i (there is no imaginary
component because there is only one order parameter). One could
use either Eq. (3) or Eq. (4) as the formal basis of a generative model
for neuronal dynamics. Both share the same key attribute; namely,
smooth fluctuations on slow macroscopic dynamics. We will use
Eq. (3) as the basis for stochastic DCMs for electromagnetic brain
signals in future papers. Whenmodelling fMRI data (in this paper) we
will use Eq. (4), because this summary of neuronal activity is the most
prescient for fMRI responses. This is because it is generally assumed
that fMRI signals scale with the predominant frequency of neuronal
activity (Kilner et al., 2005; Laufs and Duncan, 2007; Rosa et al., 2010).
We now turn to how different nodes are coupled and see how a
separation of fast and slow dynamics in a distributed network of
nodes provides a model for network dynamics. We will see that only
the slow dynamics are communicated among nodes, which means we
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can model distributed activity with a small number of macroscopic
variables (e.g. one per node) with fast fluctuations that are specific to
each node.

Generative models of network activity

To simplify the model of responses distributed over n nodes, we
adopt a mean-field assumption (see Deco et al., 2008). This simply
means that the dynamics of one node are determined by the mean or
average activity in another. Intuitively, this is like assuming that each
neuron in one node ‘sees’ a sufficiently large number of neurons in
another to render the effective influence the same as the average over
all neurons in the source node. The dynamics of these averages are
enslaved by the slowmodes of other regions so that the motion of the
order parameter of each mode is a function of the order parameters
from all nodes and local fluctuations:

ζ̇ ið Þ= f ið Þ ζð Þ + ω ið Þ

ζ
::ðiÞ= ∑

n

j=1

∂f ið Þ

∂ζ jð Þ ζ̇
jð Þ + ω̇ ið Þ

⇒

ẋ = A ζð Þx + ω

ζ = ζ 1ð Þ
; ⋯; ζ nð Þh iT

x = ζ̇ 1ð Þ
; ⋯; ζ̇ nð Þh iT

ω = ω̇ 1ð Þ
; ⋯;ω̇ nð Þh iT

Aij=
∂f ið Þ

∂ζ jð Þ :

ð5Þ

Here A⊂θ are unknown quantities or parameters encoding the
effective connectivity or coupling among nodes. Crucially, this is the
random differential equation used in stochastic DCM for fMRI
(ignoring bilinear terms and exogenous inputs). In summary, we
end up with a very simple model of neuronal dynamics that has been
used for many years. In previous work, we motivated the determin-
istic variant of this model by a Taylor series approximation to
unknown non-autonomous dynamics (Friston et al., 2003; Stephan et
al., 2008). Here, we have shown how this form emerges naturally from
a basic but fundamental principle (the slaving principle), which
applies to coupled dynamical systems that self-organise (Ginzburg
and Landau, 1950; Haken, 1983). It should be acknowledged that this
model is less physiologically grounded than equivalent DCMs for
electromagnetic data (where the hidden states are the voltages and
currents of neural masses). The hidden neuronal states here are some
(unspecified) phase-variable that reports the frequency at which
neuronal states orbit an (unspecified) manifold: However, unlike our
previous treatments, we have principled reasons to suppose this
phase-variable (and its manifold) exist. In previous motivations, we
represented the macroscopic behaviour of each node with one
(Friston et al, 2003) or two (Marreiros et al, 2008) macroscopic
neuronal states; with no motivation for why this was appropriate or
sufficient. The current treatment provides that motivation and shows
that using a small number of macroscopic states creates fast (analytic)
fluctuations, which are ignored in deterministic models. Crucially,
these fluctuations are mandated by the slaving principle, even in the
absence of stochastic or random effects. This completes our
specification of the generative model for distributed neuronal
responses under adiabatic and mean field assumptions. We now
turn to the inversion of this model, given empirical data.
Model inversion

In DCM, models are usually inverted by optimising a free-energy
bound F y; qð Þ≤ lnp y jmð Þ on the model log-evidence (or log marginal
likelihood of the data y conditioned upon a model m), assuming the
posterior is approximately Gaussian (the Laplace assumption).
Optimising this bound, with respect to a proposal density, q(ϑ),
provides two things: First, it provides a free-energy or bound
approximation F≈ lnp y jmð Þ to the log-evidence. This will be used
in the next section for model comparison or scoring. Second, it makes
the proposal density an approximate conditional density
q ϑð Þ = N μ; Cð Þ on the unknown states and parameters ϑ={x, θ} of
the model, given the data. This conditional density obtains from the
construction of the free-energy, which is simply the log-evidence
minus the divergence between the proposed and true conditional
density. This means that maximising the free-energy minimises the
difference between the two, such that the free-energy becomes an
approximate log-evidence and the proposal density becomes an
approximate conditional density (for technical details see Friston et
al., 2003, 2007, 2010).

The key thing that we need to consider here is the nature of the
conditional density; in other words, what are the unknown states and
parameters, ϑ={x, θ}? Above, we appealed to the separation of
temporal scales (and the slaving principle) to separate the dynamics
into a deterministic and a fluctuating part. These fluctuations mean
that hidden neuronal states have to be represented probabilistically
and call for DCMs that allow for system or state noise (cf. the
fluctuations above). Recently, we introduced a Generalised Filtering
scheme (Friston et al., 2010) that represents hidden states in
generalised coordinates of motion and absorbs unknown (time-
invariant) parameters into the filter. This scheme is efficient and
allows one to infer on hidden states and parameters using models
based on random differential equations like Eq. (5). It accommodates
random differential equations by representing the generalised motion
of hidden states, which means that their fluctuations are analytic. We
will use this scheme in subsequent sections. However, at this point,
we note that there is an alternative to Generalised Filtering that uses a
deterministic formulation, without random fluctuations. This scheme
uses exogenous inputs in deterministic DCMs to model the fluctua-
tions on neuronal states. Essentially, this converts the problem of
inferring hidden states into a problem of inferring the parameters
(coefficients) of temporal basis functions modelling unknown hidden
states (cf. Riera et al., 2004). This rests on reformulating Eq. (4) to give

ẋ = Ax + ω

= Ax + Cu

ω tð Þij = ∑j Ciju tð Þj:

ð6Þ

Here, u(t)j : j=1, …, J is the j-th temporal basis function. In what
follows, we use a discrete cosine basis set, where the number of
components is one quarter of the length of the time series. This basis
set was chosen because of its well known efficiency in modelling
(compressing) typical signals. Note that this deterministic model
ensures the fluctuations are smooth and analytic. Under this model,
there is no uncertainty about the states, given the parameters θ⊃{A,
C}, and therefore our conditional density is just over the parameters.
In short, the deterministic scheme optimises q(ϑ) :=q(θ) by
absorbing unknown fluctuations into the parameters, while General-
ised Filtering absorbs unknown parameters into the fluctuating states.

Eq. (6) has been introduced to show the formal connection
between stochastic and deterministic DCM and promote a particular
perspective on exogenous inputs: namely, that they are prior
expectations (usually based on known experimental design) about
hidden neuronal fluctuations. This perspective is exploited in the last
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section and provides a graceful link (conceptually and practically)
between activation and resting-sate studies; i.e., activation studies
can be treated as task-free and vice-versa. The only difference is the
prior belief we have about the motion of hidden neuronal states. The
following comparative evaluations of deterministic and stochastic
formulations are not meant to be exhaustive or definitive but are
presented to highlight when their formal connection breaks down.
Stochastic vs. deterministic models

To compare and contrast the stochastic and deterministic schemes,
we generated synthetic fMRI data using Eq. (5) and the hemodynamic
equations of motion in the forward model of DCM for fMRI (Friston et
al., 2003; Stephan et al., 2007). The results of these simulations are
shown in Fig. 2 and exhibit the characteristic amplitude and ultra slow
fluctuations seen in resting state time-series. This figure shows the
response of three nodes, over 256 (3.22 s) time-bins, to smooth
neuronal fluctuations that were generated independently for each
region. These fluctuations were generated by smoothing a sequence of
independent Gaussian variables so that they had a Gaussian
autocorrelation function of two time-bins width and a log-precision
Fig. 2. Synthetic data: This figure shows the synthetic data generated by a network or graphw
(3.22 s) time bins. Signal is shown as solid lines and observation noise as dotted lines. The s
the upper right. In this model, there are five hidden states per node, which evolve accordin
neuronal fluctuations shown in the lower left panel. These were created by convolving a
deviation. The ensuing neuronal responses are communicated among nodes by extrinsic con
node to the red node, as described in the main text. These influences or effective connecti
possible but absent edge (anti-edge).
of four (precision is inverse variance). Small, random fluctuations in
the hemodynamic states (like normalised flow, volume and deox-
yhemoglobin content) had a Gaussian autocorrelation width of half a
time bin and a log-precision of sixteen. These values were chosen to
produce amaximum signal change of about 1% in the fMRI signals. The
coupling parameters used for this simulation used a small chain of
three areas, with reciprocal connections (see black arrows in the
insert in Fig. 2):

A =
−:5 + :4 0
+ :3 −:5 −:3
0 −:2 −:4

2
4

3
5 ð7Þ

The use of positive and negative coupling parameters produces the
anti-correlated responses seen between the first two nodes and the
third (Fig. 2, upper left panel). The remaining model parameters
controlling the hemodynamic convolution (response function) were
set to their usual priors (c.f. Friston et al., 2003) and scaled by a small
Gaussian deviate with a log-precision of six (i.e., perturbed in a
region-specific way by a random scaling with a standard deviation
exp(−6/2)=.0498 of about 5%). These synthetic data were then used
ith three nodes. The upper left panel shows the simulated activity of each node over 256
ignal is a nonlinear function of the hidden hemodynamic and neuronal states shown on
g to the model's equations of motion. The dynamics seen here are caused by random
random Gaussian variable with a Gaussian convolution kernel of two bins standard
nections. In this example, we connected the blue node to the green node and the green
vity is denoted by the bidirectional solid black arrows. The light grey arrow denotes a

image of Fig.�2
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Fig. 3. Conditional estimates using a deterministic model: This figure shows the conditional estimates of the coupling parameters among the three nodes of the previous figure. The
top panel shows the conditional means (grey bars) and 90% confidence intervals (red bars), superimposed upon the true values (black bars). It can be seen that although the
estimates are in the right direction, they are very imprecise (they have a high conditional uncertainty). These estimates were obtained using a deterministic scheme, where unknown
(hidden) neuronal causes were modelled as a mixture of temporal basis functions (a discrete cosine set). The true fluctuation or hidden input is shown on the lower left, while the
estimated fluctuation is shown on the lower right. This estimate is a reconstitution of the hidden cause, using the conditional estimates of the basis function coefficients. One can see
that the amplitude of the input has been overestimated. This reflects the fact that the coupling coefficients were under estimated (upper panel). The colour scheme pertains to the
same nodes as in the previous figure.
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for model inversion using (i) a conventional deterministic scheme
(Friston et al., 2003) that modelled exogenous input with a discrete
cosine set with 64 components and (ii) Generalised Filtering (Friston
et al., 2010), respectively. In both schemes, we assumed a prior log-
precision of six for observation noise and (for Generalised Filtering) a
log-precision of six for hidden neural states and sixteen for the
remaining hemodynamic states. This essentially treats neuronal
fluctuations as the predominant source of hemodynamics and
assumes hemodynamic fluctuations are largely neuronal in origin.
The priors on the coupling parameters were mildly informative with a
mean of zero and a precision of one half (a variance of two). The
ensuing (marginal) conditional densities of the parameters q(A) for
both schemes are shown in Figs. 3 and 4.

Fig. 3 shows the conditional density of the coupling parameters for
the deterministic scheme in terms of their 90% conditional confidence
intervals (red bars) and true values (black bars). It can been seen that
the deterministic scheme, modelling fluctuations with fixed temporal
basis functions, underestimates the coupling strengths and conse-
quently overestimates the amplitude of the neuronal fluctuations
(represented by exogenous inputs) causing them (i.e., it over-
estimates the parameters C⊂θ). This is not an invalid result, in that
the true values lie within the conditional confidence intervals;
however, this model provides inefficient estimates in relation to
Generalised Filtering: Fig. 4 shows the equivalent results for
Generalised Filtering, which are much more accurate and precise
(note the smaller confidence intervals in the upper left panel). In this
model, there are no exogenous inputs because dynamics are
explained by hidden fluctuations in neuronal and hemodynamic
states. Here, the inferred neuronal fluctuations are much closer to the
true values used to generate data (lower right panel). Crucially, in
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Fig. 4. Conditional estimates using a stochastic model: This figure shows similar results to those presented in Fig. 3. However, in this case the conditional estimates were based upon a
stochastic model using Generalised Filtering. Here (upper left), we see that the estimates are closer to their true values and are much more precise. Furthermore, the conditional
(maximum a posteriori; MAP) estimates of the neuronal fluctuations are very close to those elicited by the neuronal input used to simulate the data (compare the left and right lower
panels). Because this model includes unknown (hidden) neuronal and physiological states, it also returns a conditional estimate of the hidden states causing responses. These are
shown in the upper right panel. The conditional expectations are shown as coloured solid lines and the 90% confidence intervals (tubes) are shown as grey regions. Note that these
hidden states are effectively log-states, such that a value of zero corresponds to 100% of the steady-state value. For small deviations from zero, the values of these hidden states
correspond roughly to proportional changes. In this example, we see changes of up to about 20% (in blood flow).
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contrast to deterministic schemes, stochastic DCM also infers the
hidden physiological states that mediate neurovascular coupling (e.g.,
flow, volume and deoxyhemoglobin content), which are shown in the
upper right panel.

Because the deterministic scheme used a discrete cosine set with
64 parameters to model neuronal fluctuations, it implicitly imposes
smoothness constraints on the fluctuations. The equivalent smooth-
ness constraints in Generalised Filtering come from priors on the
precision of generalised fluctuations (i.e., fluctuations and their high-
order temporal derivatives). Interestingly, the computational cost of
using the Generalised Filtering schemewas less than the deterministic
scheme (about 80 and 100 s per iteration during model inversion,
respectively). This was a bit surprising, because Generalised Filtering
allows for random fluctuations, not just on the neuronal states, but all
(four) hemodynamic states in each node or region (see Fig. 4). In
other words, Generalised Filtering was not just estimating the
neuronal states but all unknown physiological states. In short, (in
this instance) there is little to be gained, either in terms of accuracy,
completeness or computational efficiency, from the deterministic
formulation. Therefore, we used Generalised Filtering for the rest of
this work.

Summary

In summary, this section has rehearsed the linear approximation
to network dynamics used in DCM for fMRI, but from a new
perspective. Here, we have taken care to develop this approximation
from basic principles (e.g., centre manifold theorem and the slaving
principle) and to highlight the role of endogenous fluctuations. These
fluctuations model the dynamics attributable to fast (stable) modes
that become enslaved by the slow (unstable)modes, which determine
macroscopic behaviour. We then used a mean-field assumption to
provide a generative model for distributed responses, cast as a
random differential equation. One important insight from this
motivation is that the time-constants (implicit in the model
parameters) of macroscopic network dynamics are much longer
than the microscopic time constants (e.g., effective membrane time
constants). For example, fluctuations in the characteristic frequency of
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each mode (Eq. (4)) may be much slower (e.g., 100–10,000 ms) than
the oscillatory dynamics (e.g., 10 to 1000 ms) of the (slow) modes
themselves, which again are far slower than the dynamics of the fast
modes (e.g., .1 to 10 ms). This is important because it suggests that
priors on the parameters should allow for slow dynamics. In the next
section, we focus on the priors on the effective coupling matrix, A⊂θ,
which determines the network dynamics and its architecture.

Searching model-spaces

Having established the form of the generative model and the
optimisation of its parameters, we now turn to optimising the model
per se. In terms of model optimisation or scoring, we are searching for
the model that has the highest evidence or marginal likelihood.
Usually, in DCM, one uses the free-energy bound as an approximation
to the log-evidence. The problem we now contend with is how to
score large numbers of models. For the purposes of network
discovery, we can associate each model m with a particular sparsity
structure on the effective connectivity matrix, A⊂θ. In what follows,
we will use several terms from graph theory: A graph comprises a set
of nodes and edges (connections), where the edges are deployed
according to an adjacencymatrixA mð Þ. This contains zero or non-zero
elements that designate the absence or presence of a connection
respectively. In general, graphs can be directed or undirected, cyclic or
acyclic. We will deal with directed cyclic graphs. This means that we
allow for directed connections and for cycles or loops within the
graph; this includes reciprocal connections between two nodes. It is
worthwhile noting structural causal modelling based on Bayesian
networks (belief networks or directed acyclic graphical models;
Spirtes et al, 2000; Pearl, 2009) generally deal with directed acyclic
graphs; although there are treatments of linear cyclic graphs as
models of feedback (Richardson and Spirtes, 1999). Furthermore,
analyses of functional connectivity (and of diffusion tensor imaging
data) only consider undirected graphs because the direction of the
influence between two nodes is not accessible. This is because
functional connectivity is the statistical dependence between two
time-series, which has no inherent directionality; although one could
argue that directed transfer entropy tests for functional connectivity
over time (e.g., Lizier et al., 2010). We can relax these (undirected and
acyclic) constraints, because we have an explicit (directed and cyclic)
generative model of how data are produced. In what follows, we will
consider restrictions on the size of the model-space that is searched,
using priors based on each model's adjacency matrix. We then turn to
approximate scoring, based upon the conditional densities on the
coupling parameters of fully connected graphs from the previous
section. Finally, we demonstrate the sensitivity and specificity of the
scoring scheme, using simulated data.

Graphs, priors and dependencies

In this section, we cast network discovery in terms of inference on
Bayesian dependency graphs. A Bayesian dependency graph encodes
conditional dependencies with edges among variables associatedwith
each node of the graph. The absence of an edge (anti-edge) represents
causal independence; i.e., changing the variable in a source node does
not change the variable in the target node. This means that
discovering the network entails discovering the anti-edges that
determine the sparsity structure.

It is important to realise that a dynamic causal model is (formally)
a Bayesian dependency graph, in which the form of the dependencies
among hidden states is described with deterministic or random
differential equations. This means that a DCM can be structurally
cyclic (e.g., nodes can be reciprocally connected); however, the
underlying Bayesian dependency graph is acyclic. This is because the
variables in a parent node change the motion of variables in their
children, which can only affect their parent in the future. This
precludes instantaneous (cyclic) dependencies. Formally speaking, for
every DCM there is an equivalent Dynamic Bayesian Network (DBN),
whose nodes represent variables at successive time points. The
conditional dependencies among these nodes are specified by the
solutions of the differential equations over the discrete time intervals
of the DBN. Crucially, the equivalent DBN is acyclic because future
variables cannot affect past variables. In short, although a DCM can be
structurally cyclic, the implicit dynamic Bayesian network is acyclic.

In the present context, establishing an anti-edge means inferring a
DCM (graph) without a particular connection is more likely than the
equivalent graph that includes the connection. The implicit difference
in log-evidence for these two models is the log-Bayes factor and (by
the Neyman–Pearson Lemma) is the most efficient statistic for testing
the relative likelihood of both models. This means, in principle, we
have a straightforward way to identify conditional dependencies and,
by scoring all possible models, discover the underlying dependency
graph. Note that this can, in theory, finesse so called missing region
problem (c.f., Roebroeck et al., 2009; Daunizeau et al., in press) that
can arise when a connection is inferred that is actually mediated by
common input. This is because an exhaustive model search will
preclude a false inference of conditional dependency between two
unconnected nodes, provided the source of common input is part of
the full model (and that one can invert it). Furthermore, DCM
discovery discloses the underlying network in a way that equivalent
analyses of functional connectivity cannot aspire to. This is because
functional connectivity is simply the statistical dependence between
two nodes that could be conditionally independent when conditioned
on a third node. Having said this there are finessed functional
connectivity analyses that use partial correlations (e.g., Marrelec et al.,
2006, 2009; Smith et al., 2010). Indeed, the principal aim of structural
causal modelling (Meek, 1995; Spirtes et al., 2000; Pearl, 2009) is to
identify these conditional independencies.

An anti-edge requires that the effective connectivity between two
nodes in a DCM is zero. This is enforced by a prior on the unknown
coupling parameters,which defines amodel. The variances of these priors
can be encoded in an adjacency matrix: A prior variance of zero (i.e., no
uncertainty) forces the posterior estimate to take its prior mean. Under
zero mean priors (as for all coupling parameters in DCM for fMRI), a zero
entry in the adjacency matrix thus prohibits an effective connection,
establishing an anti-edge between the respective regions. Conversely, a
finite value in the adjacency matrix means that the connection has finite
variance and that its posterior estimate can take non-zero values. In short,
the adjacency matrix from graph theory furnishes formal priors on
coupling parameters Aij mð Þ = 0⇔p Aij jm

� �
= δ 0ð Þ. This means that

there are as many models as there are adjacency matrices. Although, in
principle, it should be easy to optimise themodel (adjacencymatrix)with
anexhaustive search, this is seldompossible inpractice. This is because the
combinatorics of deploying k edges among n nodes becomes unmanage-
able when the size of the graph is large.

To finesse this problemwe can assume all connections in the brain
are directed and reciprocal. This (bidirectional coupling) assumption
rests on longstanding anatomical observations (Zeki and Shipp, 1988)
that it is rare for two cortical areas to be connected in the absence of a
reciprocal connection (there are rare but important exceptions in sub-
cortical circuits). More recently, this notion was confirmed in
comprehensive analyses of large connectivity databases demonstrat-
ing a very strong tendency of cortico-cortical connections to be
reciprocal (Kötter and Stephan, 2003). From a functional point of
view, modern theories of brain function that appeal to the Bayesian
brain, call on reciprocal message passing between units encoding
predictions and prediction errors (Mumford, 1992; Friston, 2008).
Others theories that rest on reciprocal connections include belief
propagation algorithms and Bayesian update schemes that have been
proposed as metaphors for neuronal processing (Deneve, 2008).
Despite this strong motivation for introducing symmetry constraints
on the adjacency matrix, it should be noted that the assumption of
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reciprocal coupling is not necessary for network discovery; it is used
here to demonstrate how prior beliefs can constrain model spaces.
Furthermore, this constraint does not mean that the effective
connection strengths are identical for both directions of a reciprocal
connection: The posterior estimates of coupling can be very different.

Evenwith this constraint, thenumberofmodels jA mið Þ j = 2n n−1ð Þ=2

can still be too great to explore exhaustively (see Fig. 5). For example,
with three regions there are 8 models, for four regions there are 64, for
eight regions there are 268,435,456; and so on. Thismeans that there is a
combinatoric explosion as one increases the number of nodes in the
network. In what follows, we describe a procedure that deals with this
problem by scoring models based on the inversion of just one (full)
model.

Approximating the model evidence

Wewant to find a simple way of scoring large numbers (thousands
or millions) of models. We can do this by exploiting the fact that each
model can be formed from a fully connected model by switching off
various coupling parameters. If we can find a way to approximate the
log-evidence of any reduced model (graph), nested within the full
model, from the conditional density over the parameters of the full
Fig. 5. Model spaces and adjacency matrices: This figure illustrates the model spaces
induced by considering different adjacency matrices or combinations of edges among
the nodes of a graph. The upper panel shows the number of different models that one
can entertain as a function of the number of nodes. Here, we placed the additional
constraint on the models that each connection has to be bidirectional. The lower panel
shows all the alternative models that could be considered, given four nodes. One
example is highlighted in the insert, where the solid bidirectional arrows denote edges
and the grey arrows denote anti-edges. This particular example was used to generate
simulated data for the results described in the next figure.
model, then we only need to invert a singlemodel (i.e., the full model)
to score an arbitrary number of reduced models extremely efficiently.

More formally, we seek the log-evidence ln p(y|mi) of model i.
Here, mi denotes a reduced model with a subset of (reduced)
parameters θi⊂θF that are zero; these define the anti-edges we are
trying to discover. By definition, the likelihood of any data undermi is
the same as their likelihood under the full model, given the reduced
parameters are zero. This means (via Bayes rule)

p y jmið Þ = p y jθi = 0;mFð Þ = p θi = 0 jy;mFð Þp y jmFð Þ
p θi = 0 jmFð Þ

⇒

lnp y jmið Þ = lnp θi = 0 jy;mf

� �
− lnp θi = 0 jmFð Þ + lnp y jmFð Þ:

ð8Þ

The last term is just the log-evidence of the full model, which we will
treat as zero, because log-evidences are only unique up to an additive
constant. Eq. (8) says that the relative log-evidence of a reduced model,
given some data, is equal to the log-posterior minus the log-prior that its
reduced parameters are zero, under a full model. This is intuitively
sensible; in that a conditional density over reduced parameters that is far
from a prior of zero suggests the reduced parameters are needed to
explain the data. Eq. (8) contains the Savage–Dickey density ratio (Dickey,
1971; see also Friston and Penny, 2011) that is used for nested model
comparison, and indeed all classical inference using the extra sum of
squares principle (such as F-tests or analysis of variance, ANOVA).

We can approximate the marginal posterior in Eq. (8) using the
approximate conditional density q ϑ jmð Þ = N μ ; Cð Þ from the inver-
sion schemes considered in the previous section.

lnp y jmið Þ ≈ lnq θi = 0 jmFð Þ− lnp θi = 0 jmFð Þ: ð9Þ

Here q(θi=0|mF) is the marginal conditional density over the
reduced parameters under the full model. Crucially, after inverting a
single (full) model, we can score any new model using Eq. (9). The
reason this works is that the new (reduced) model is defined in terms
of priors on quantities (parameters) that have been fully characterised
during inversion of the full model. Furthermore, Eq. (9) provides an
internal test of the quality of the free-energy bound on log-evidence.
This is because the relative log-evidences anticipated by Eq. (9)
should be the same as those following explicit inversion of each
reduced model. In short, we have a way to scan all the models we are
interested in and identify the model with the greatest evidence.

To illustrate this post hoc model selection we repeated the
simulations above using four nodes (with independent neuronal
fluctuations in each region) and coupling parameters

A =

−:5 + :3 0 0
+ :3 −:5 −:3 0
0 −:3 −:5 + :3
0 0 + :3 −:5

2
664

3
775: ð10Þ

This corresponds to the coupling architecture (adjacency matrix)
illustrated by the insert in Fig. 5 (where the solid black arrows denote
edges and the grey arrows denote anti-edges). We then evaluated the
log-evidence using Eq. (9), for all (64) models with a prior on the
coupling parameters, defined in terms of allowable adjacency matrices

p A jmið Þ = N 0;Πið Þ

Πi = 2 × A mið Þ : i = 1;…;64

Aij∈ 0;1f g:

ð11Þ

The conditional densities of the coupling parameters, following
inversion of the full model, are shown in Fig. 6 (upper left panel). As
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Fig. 6.Model inversion and selection: This figure reports the inversion andmodel selection, following an analysis of simulated data using the graph in the insert of the previous figure.
The parameter estimates are shown on the upper left, using the same format as Figs. 3 and 4. It is immediately obvious that the true edges have been detected with reasonably high
precision. The conditional density on these coupling parameters was then used to compute the log evidence of (64) reduced models as described in the main text, using the Savage–
Dickey ratio. The resulting log-evidence profile over models is shown in the right panels. The upper panel shows the log-evidence as approximated with its free-energy upper bound,
while the lower panel shows the corresponding posterior probability over models (assuming flat priors over models). In this example, the correct model has been selected with
almost 100% posterior model probability. The log-evidences are also shown as a function of graph size on the lower left. The red dot corresponds to the true model (see previous
figure) and has the highest log-evidence. All log-evidences shown in this and subsequent figures are relative to their full model.
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before, these are relatively accurate, with a slightly overconfident
underestimate of the (negative) self-connections that had a prior
precision of 128. The resulting log-evidences over the 64 models are
depicted on the upper right, showing that seven of the reduced
models had a greater log-evidence than the full model. Of these, the
model with the true architecture had, under flat priors over models,
the greatest posterior probability. The lower right panel shows the
same results but in terms of model posteriors p(mi|y)∝p(y|mi)
(Eq. (9)). To illustrate the dependency of the log-evidence on the size
of each graph (model), we have plotted the log-evidence for each
model as a function of its number of (reciprocal) connections (lower
left panel). One can see that generally, models with more connections
have greater evidence because they provide a more accurate
explanation for the data. However, the best model within each
graph size shows the opposite behaviour; when the number of
connections exceeds the true number, the log-evidence diminishes
and always falls below that of the true model (here zero, by definition,
and denoted by the red dot). This reflects the fact that model evidence
automatically penalises redundant parameters or complexity.

To assess the accuracy of the free-energy bound on log-evidence, we
explicitly invertedeachmodel and recorded its free-energy. Theresults in
Fig. 7 testify to the quality of the free-energy bound and demonstrate a
reasonable correspondence between the proxy in Eq. (9) and the log-
evidence as approximated with the free-energy of each reduced model.
To achieve this correspondence we had to apply a model prior that
penalised each connection by a fixed amount (by subtracting a log-prior
cost of 45.8 per connection). Strictly speaking this should not be
necessary; however, Generalised Filtering optimises a posterior over
parameters that is time-dependent (i.e., optimises the time or path
integral of free-energy). This complicates the relationship between
posteriors onparameters (which changewith time) andpriors (whichdo
not). The free-energy used here is therefore based on the Bayesian
parameter average over time (see Friston et al., 2010, Appendix 2 for
details). Despite this complication, it is reassuring to note that, inmodels
with the correct size, both the post hoc and explicit log-evidence proxies
identify the same and correct model (see the lower panel of Fig. 7).

Specificity and sensitivity

Finally, we repeated the simulations described above 200 times
and recorded the distance between the true model and the model
with the largest evidence. Data were generated by sampling coupling
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parameters from a uniform distribution AijeU 1
4 ;

1
2

� �
and switching the

sign of reciprocal connections randomly. Connections were then
eliminated using an adjacency matrix selected at random from the
middle row of Fig. 5 (lower panel). Self-connections were sampled
from AiieN − 1

2 ;
1
4

� �
. Candidate simulations were discarded if the

simulated data exceeded 2% BOLD signal change. The results of these
Monte Carlo simulations are shown in Fig. 8: To assess the sensitivity
and specificity of the discovery scheme, we used the prior covariance
matrix of the model selected to record the number of false positives
(when an anti-edge was falsely inferred to be present) and false
negatives (when an edge was falsely inferred to be absent). However,
this assessment was unnecessary because the model selection
procedure attained 100% accuracy. In other words, the correct
adjacency structure (model) was selected in all cases and, implicitly,
the scheme had a 100% specificity and selectivity for identifying the
presence or absence of a connection. This compares favourably with
simulations using similar graphs and levels of noise that tested a
comprehensive battery of functional connectivity analyses (Smith et
al., 2010). Their results show that “in general correlation-based
approaches can be quite successful, methods based on higher-order
statistics are less sensitive, and lag-based approaches perform very
poorly. More specifically: There are several methods that can give
high sensitivity to network connection detection on good quality
FMRI data, in particular, partial correlation, regularised inverse
covariance estimation and several Bayes net methods; however,
accurate estimation of connection directionality is more difficult to
achieve”. Smith et al. (2010) generated realistic fMRI data using the
same type of DCM used here; however, they focussed on the
application of functional connectivity methods and (structurally)
acyclic graphs. The current results show that it is possible to achieve
100% sensitivity and specificity, with cyclic graphs, provided one uses
an appropriate generative model to make inferences about effective
connectivity.

The conditional means of individual connections are plotted
against their true values (over all simulations) in Fig. 8, for the full
model (upper left panel) and selected model (upper right panel). The
key thing to note here is the shrinkage of the conditional estimates to
the true value of zero, under the optimal model (see the central black
dot in the upper right panel). This reflects the fact that this form of
model selection implements automatic relevance determination
(MacKay, 1995), by virtue of optimising the model evidence with
respect to model hyperparameters; in this instance, the shrinkage
priors prescribed by an adjacency matrix. Interestingly, there was a
mild shrinkage to the true values in the remaining (relevant)
connections. This is seen more clearly when plotting the change in
conditional estimate against the error (lower panel). One would hope
to see that these changes were positive when the error was negative
(i.e., the estimate was too high) and vice versa. This is exactly what
was found (on average).

These results are presented to show that, in principle, it is fairly
easy to identify the correct functional architecture of directed cyclic
graphs, provided one uses an appropriate generative model and has
sufficiently precise data. The data and noise in these simulations had a
standard deviation of about .35 and exp(−4/2)≈.14, respectively,
giving a signal to noise ratio of about 2.6. This is large for a single voxel
but not untypical of eigenvariates or averages used to summarise
regional activity. For comparison, Smith et al. (2010) used a noise
level of .1% to 1% and fMRI signals withmaximum amplitudes of about
4%, whereas we used a noise level of .14% and signals with maximum
amplitudes of about 2%. For both the simulations and empirical
analyses below we used 256 bins of 3.22 s, corresponding to 13.7 min
of scanning time.

Summary

In this section, we have cast network discovery in terms of
optimising dynamic Bayesian dependency graphs (represented as
DCMs) and considered how this translates into Bayesian model
selection. We finessed the problem of searching large model-spaces
on two fronts. First, motivated by empirical evidence on anatomical
connectivity patterns, we restricted the model-space to bidirectional
connections. Although helpful, this constraint is not, strictly speaking,
necessary. More importantly, we introduced a proxy scoring scheme
based upon the Savage–Dickey density ratio. This works well for the
time-series and levels of noise considered. Equipped with this scoring
scheme, we can search over enormous model-spaces, while only
inverting a single (full) DCM. For a typical fMRI study,model inversion
takes about five to ten minutes on a modern computer and post hoc
model selection takes a few seconds.

It should be remembered that these simulation results show only that
it is possible to recover the connectivity structure fromrealistic responses;
however, this clearly rests on having the right generative model. In this
section,weused the samemodel to generate and explain data. In the next
section we turn to empirical data, where there is no such guarantee.
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An empirical illustration

In this section, we apply the procedures described in the previous
section to an empirical dataset that has been used previously to describe
developments in causal modelling and related analyses. We have
deliberately chosen an activation study to show that DCM discovery can
be applied to conventional studies as well as (design-free) resting-state
studies. The interesting distinction between the two applications reduces
to prior constraints on the fluctuations. In other words, as discussed in Li
et al. (2010), under stochastic DCM, designed or experimental manipula-
tions furnish prior expectations about fluctuations in neuronal states.We
can elect to include these priors or ignore them. In the analysis below, we
throw these priors away and let the data tell us if our experimental
manipulations had any discernable effect upon neuronal activity. We
hoped to show that the inferred neuronal states did indeed reflect the
experimental manipulations and, at the same time, discover the
hierarchical (or non-hierarchical) architecture subtending observed
responses. We are not suggesting that this is a good way to analyse
activation studies; it just allows us to show the inversion scheme returns
valid estimates of hidden states: However, applying stochastic DCM to
activation data is potentially interesting, because it allows one to quantify
howmuch neural activity can be attributed to evoked responses (i.e., the
experimental design or exogenous inputs) relative to endogenous and
recurrent activity. In what follows, we will briefly describe the data used
for our analysis and then report the results of network discovery.

Empirical data

These data were acquired during an attention to visual motion
paradigmandhave beenusedpreviously to illustrate psychophysiological
interactions, structural equation modelling, multivariate autoregressive
models, Kalman filtering, variational filtering, DEM and Generalised
Filtering (Friston et al., 1997; Büchel and Friston, 1997, 1998; Friston et al.,
2003, 2008, 2010;Harrisonet al., 2003; Stephanet al., 2008; Li et al., 2010).
Datawere acquired fromanormal subject at two Tesla using aMagnetom
VISION (Siemens, Erlangen) whole body MRI system, during a visual
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attention study. Contiguous multi-slice images were obtained with a
gradient echo-planar sequence (TE=40 ms; TR=3.22 s; matrix
size=64×64×32, voxel size 3×3×3mm). Four consecutive 100 scan
sessions were acquired, comprising a sequence of ten scan blocks of five
conditions. The first was a dummy condition to allow for magnetic
saturation effects. In the second, Fixation, subjects viewed a fixation point
at the centre of a screen. In an Attention condition, subjects viewed 250
dots moving radially from the centre at 4.7 degrees per second and were
asked to detect changes in radial velocity. In No attention, the subjects
were asked simply to view themoving dots. In a Static condition, subjects
viewed stationary dots. The order of the conditions alternated between
Fixation and visual stimulation (Static, No Attention, or Attention). In all
conditions subjectsfixated the centreof the screen.Noovert responsewas
required in anycondition and therewerenoactual changes in the speedof
the dots. The data were analysed using a conventional SPM analysis
(http://www.fil.ion.ucl.ac.uk/spm). The regions or nodes chosen for
network analysis were selected in a rather ad hoc fashion and are used
here simply to demonstrate procedural details; however, wewere careful
to avoid the danger highlighted by the analyses of Smith et al. (2010)who
note: “…the use of functionally inaccurate ROIs (when defining the
network nodes and extracting their associated time series) is extremely
damaging to network estimation”.We therefore ensured that the regional
summaries were defined functionally by selecting regions showing
evoked responses. Six representative regions were defined as clusters of
contiguousvoxels survivingan(omnibus) F-test for all effects of interest at
pb .001 (uncorrected) in the conventional SPM analysis. These regions
were chosen to cover a distributed network (of largely association cortex)
in the right hemisphere, from visual cortex to frontal eye fields (see
Table 1 for details). The activity of each region (node) was summarised
with its principal eigenvariate to ensure an optimum weighting of
contributions for each voxelwith the ROI (see Fig. 9). In this example, one
can see evoked responses in visual areas (every 60 s) with a progressive
loss of stimulus-bound activity and a hint of attentional modulation and
other fluctuations in higher regions.
Model inversion and selection

As for the simulated data of the previous section, we inverted a
DCM with full connectivity using the first 256 volumes of the time-
series. Becausewe did not know the level of observation noise in these
data, we reduced the prior expectation of its log-precision to four;
otherwise, the analyses of simulated and empirical data were
identical. A summary of the conditional expectations of hidden states
generating regional activity are shown in Fig. 10 (upper right). The
solid lines are time-dependent means and the grey regions are 90%
confidence intervals (i.e., confidence tubes). These states comprise, for
each region, neuronal activity, vasodilatory signal, normalised flow,
volume and deoxyhemoglobin content, where the last three are log-
Table 1
Regions selected for DCM analysis on the basis of an (Omnibus) SPM of the F-statistic
testing for evoked responses. Regions are defined as contiguous voxels in the SPM
surviving a threshold of pb .001 (uncorrected).The anatomical designations should not
be taken too seriously because the extent of several regions covered more than one
cytoarchitectonic area, according to the atlas of Talairach and Tournoux.

Name Rough designation Location (mm) Number of (3 mm3)
voxels

vis Striate and extrastriate cortex −12 −81 −6 300
sts Superior temporal sulcus −54 −30 −3 269
pfc Prefrontal cortex −57 21 33 48
ppc Posterior parietal cortex −21 −57 66 168
ag Angular gyrus −66 −48 21 51
fef Frontal eye fields −33 −6 63 81
states. These hidden states provide the predicted responses in the
upper left panel for each region and the associated prediction errors
(red dotted lines). The same data are plotted in the lower panels for
the first four minutes of data acquisition, with hidden neuronal states
on the left and hemodynamic states on the right (where log-states are
plotted as states). These results are presented to show that inferred
neuronal activity in the visual region (highlighted in blue) follows
visual stimulation (grey filled areas — high for attention and low for
no attention). This confirms that model inversion has effectively
deconvolved neuronal activity from hemodynamic signals; and that
this deconvolution is veridical, in relation to known experimental
manipulations. Recall that the model was not informed of these
manipulations but can still recover evoked responses. The associated
hemodynamic states of all regions are shown on the lower right (blue
highlights blood flow in the visual region). It can be seen that changes
in blood flow are in the order of 10%, which is in the physiologically
plausible range.

Fig. 11 summarises the results of post hoc model selection. The
inversion of the full model took about 16 min (about 16 iterations of
about oneminute each), while the post hoc search took about 16 s. The
upper left panel shows the log-evidence profile over the 215=32,768
models considered (reflecting all possible combinations of bidirec-
tional edges among the six nodes analysed). There is a reasonably
clear optimum model. This is evident if we plot the implicit log-
posterior as a model posterior (assuming flat priors over models), as
shown on the upper right. In this case, we can be over 80% certain that
a particular network architecture generated the observed fMRI data.
The parameter estimates of the connections under the full model
(left) and the selected model (right) are shown in the lower panels.
One can see that three (bidirectional) connections have been
switched off, as their parameter estimates are reduced to their prior
value of zero. It is these anti-edges that define the architecture we
seek. This is a surprisingly dense network, in which all but three of the
fifteen reciprocal connections appear to be necessary to explain
observed responses. This dense connectivity may reflect the fact we
are using macroscopic regional summaries of activity (that may be
engendered by sparse connections on a mesoscopic scale); it may also
reflect the fact that we deliberately chose regions that play an
integrative (associational) role in cortical processing (c.f., hubs in
graph theory; Bullmore and Sporns, 2009). There is an interesting
structure to the anti-edges that speaks to the well known segregation
of dorsal and ventral pathways in the visual system (Ungerleider and
Haxby, 1994): The missing connections are between (i) the superior
temporal sulcus and the early visual system, and (ii) the (ventral)
superior temporal sulcus/angular gyrus and (dorsal) posterior parietal
cortex. On the other hand, there are strong effective connections from
the visual system to the prefrontal cortex. This does not mean that
there are direct (monosynaptic) connections between these regions;
it means they show conditional dependencies that are mediated in a
neuronally plausible (polysynaptic) fashion, which cannot be
explained by regional activities in the other nodes we considered.

Fig. 12 shows the underlying graph in anatomical and functional
(spectral embedding) space. Note that these plots refer to undirected
graphs, although our scheme provides separate estimates for both
directions of reciprocal connections (we will look at directed
connections strengths below). The upper panel shows the same
regions depicted in Fig. 9, but now connected using the conditional
means of the coupling parameters, under the reduced (optimal)
model. The colour of the arrows reports the source of the strongest
bidirectional connection, while its width represents its absolute
(positive or negative) strength. This provides a description of the
architecture in anatomical space. A more functionally intuitive
depiction of this graph is provided in the lower panel. Here, we
have used spectral embedding to place the nodes in a functional space,
where the distance between them reflects the strength of bidirec-
tional coupling. Spectral embedding uses the eigenvectors V=eig(L)

http://www.fil.ion.ucl.ac.uk/spm


Fig. 9. Empirical data: This figure illustrates the data used for the empirical illustration of model selection. Regional summaries were harvested from six regions of interest using the
attention to motion paradigm described in the main text. The central location of each region is shown on the left, superimposed on a translucent (canonical) cortical surface in MNI
space. The resulting principle eigenvariate (summarising observed responses) are shown in the right panels. In this example, we can see evoked responses in visual areas (every 60 s)
with a progressive loss of stimulus-bound activity and a hint of attentional modulation and other fluctuations in higher regions. The predictions of these dynamics, based on inferred
hidden states are shown in the next figure.
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(principal components), of the weighted graph Laplacian, to define
locations that best capture the proximity or conditional dependence
between nodes. The Laplacian is

Lij =
Wij−∑kWkj : i = j

Wij : i ≠ j

�
ð12Þ

where W is a weighted adjacency matrix based on the conditional
expectations of A⊂θ. Fig. 12 uses the first three eigenvectors to define
this functional space. This is similar to multi-dimensional scaling but
uses the graph Laplacian based upon a weighted adjacency matrix to
define similarities. The weighted adjacency matrix was, in this case,
simply the maximum (absolute) conditional estimate of bidirectional
coupling parameters; Wij=max(|Aij|, |Aji|).

Spectral embedding suggests that the frontal eye fields (fef) play a
central and supraordinate role in this network, in the sense that they
are remote from the visual region but predominate in terms of the
strength of their efferent connections. Interestingly, the prefrontal
cortex (pfc) and visual region (vis) are the furthest apart in anatomical
space but the closest pair of nodes in functional space. This reflects the
strength of the coupling between these nodes and more generally the
tight functional integration between visual and prefrontal areas
during visual attention tasks (e.g., Desimone and Duncan, 1995;
Gazzaley et al., 2007). Note that this characterisation of the network is
insensitive to the sign of connections. Before concluding, we now
provide an exemplar analysis that can only be pursued using cyclic
directed graphs with asymmetric reciprocal connections; namely an
analysis of hierarchical structure.
Asymmetric connections and hierarchies

Network analyses using functional connectivity or diffusion
weighted MRI data cannot ask whether a connection is larger in one



Fig. 10. Conditional estimates of hidden states: A summary of the conditional expectations (means) of the hidden states generating observed regional data is shown on the upper
right. The solid lines are time-dependent means and the grey regions are 90% confidence intervals (i.e., confidence tubes). These states comprise, for each region, neuronal activity,
vasodilatory signal, normalised flow, volume and deoxyhemoglobin content. The last three are log-states. These hidden states provide the predicted responses (conditional
expectation) in the upper left for each region and associated prediction errors (red dotted lines), in relation to the observed data. The same data are plotted in the lower panels for
about the first four minutes of data acquisition. These results show that the inferred neuronal activity in the visual region (highlighted in blue) follows visual stimulation (grey filled
areas— high for attention and low for no attention). The resulting hemodynamic changes are shown as conditional means on the lower right (blue highlights blood flow in the visual
region). In this figure log-states have been plotted as states (with a normalised steady-state value of one).
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direction relative to another, because they are restricted to the
analysis of undirected (simple) graphs. However, here we have the
unique opportunity to exploit asymmetries in reciprocal connections
and revisit questions about hierarchical organisation (e.g., Capalbo et
al., 2008; Hilgetag et al., 2000; Lee and Mumford, 2003; Reid et al.,
2009). There are many interesting analyses that one could consider,
given a weighted (and signed) adjacency matrix. Here, we will
illustrate a simple analysis of functional asymmetries: Hierarchies are
defined by the distinction between forward (bottom-up) and
backward (top-down) connections. There are several strands of
empirical and theoretical evidence to suggest that, in comparison to
bottom-up influences, the net effects of top-down connections on
their targets are inhibitory (e.g., by recruitment of local lateral
connections; cf, Angelucci and Bullier, 2003; Crick and Koch, 1998).
Theoretically, this is consistent with predictive coding, where top-
down predictions suppress prediction errors in lower levels of a
hierarchy (e.g., Summerfield et al., 2006; Friston, 2008; Chen et al.,
2009). One might therefore ask which hierarchical ordering of the
nodesmaximises the average strength of forward connections relative
to their backward homologue? This can be addressed by finding the
order that maximises an asymmetry index, derived from the
estimated effective (directed) connection strengths:

α = ∑i;jbi Ãij

Ãij = Aij−Aji:
ð13Þ

The resulting order was vis, sts, pfc, ppc, ag, and fef, which is not
dissimilar to the vertical deployment of the nodes in functional
embedding space (Fig. 12; lower panel). The middle panel shows the
asymmetry indices for each connection, based on the conditional
estimates of the selected model. This is a pleasing result because it
places the visual cortex at the bottom of the hierarchy and the frontal
eye fields at the top, which we would expect from the functional
anatomy of these regions. Note that there was nothing in the data
selection or modelling that could bias the conditional estimates of
directed coupling to produce this result. As such, it can be taken as an
incidental face validation of the discovery scheme. Before closing, we
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Fig. 11.Model selection using empirical data: This figure summarises the results of model selection using the empirical fMRI data. The upper left panel shows the log-evidence profile
over the models considered (reflecting different combinations of edges among the six nodes analysed). The implicit model posterior (assuming flat priors over models), is shown on
the upper right and suggests that we can be over 80% certain that a particular architecture generated these data. The parameter estimates of the connections under the full (left) and
selected model (right) are shown in the lower panels. Again, we see that certain connections have been switched off as the parameter estimates are reduced to their prior value of
zero. It is these anti-edges that define the architecture we are seeking. This architecture is shown graphically in the next figure.

1217K.J. Friston et al. / NeuroImage 56 (2011) 1202–1221
now turn to a more explicit validation, using empirical data in which
conditional dependencies among nodes are destroyed.

A null analysis

As a final step towards demonstrating the face validity of the
network discovery scheme, we examined whether the discovery
scheme detects the absence of conditional dependencies. Conditional
dependencies can be destroyed by phase-shuffling the empirical data
from the example above to remove any dependencies among nodes,
while preserving the within-node dependencies over time (i.e., their
spectral properties). Phase-shuffling involves Fourier transforming
each regional time-series, randomising the phases (independently in
each region) and taking the inverse Fourier transform. Phase-shuffled
data only contain evidence for a graph with no edges. Fig. 13 reports
the post hoc model selection results following inversion of phase-
shuffled data using exactly the same format as Fig. 9. This selection
should result in an edgeless graph, which is nearly the case but not
quite: It can be seen that the log-evidence profile is much shallower in
comparison to the analysis of unshuffled data (by an order of
magnitude). This results in small model posteriors (upper right)
that are distributed over several models. The models with fewer
connections are towards the right of these profiles. The model with
the greatest evidence retained four out of fifteen connections (see the
conditional estimates under the reduced model on the lower right).
This is a slightly disappointing result, because we would have hoped
to have seen no edges survive model selection. However, there was
little evidence for the graph with four connections relative to graphs
with fewer connections (with log-Bayes factors of less than three;
Kass and Raftery, 1995). In short, even with real data, the post hoc
model selection proposed for network discovery appears to identify
anti-edges, provided one pays attention to the relative evidence for
alternative models. Clearly, to assess sensitivity in a classical
(frequentist) sense, one would have to assess the distribution of the
log-evidence of the most likely model, under the null hypothesis.
However, this begs the question: What is the null model for the
absence of a conditional dependence or anti-edge?

Summary

In summary, we have seen how DCM can be applied in a purely
data-led way to fMRI studies. In this instance, we used an activation
study where we had some prior expectations about the form of the
evoked responses. Despite the fact that these expectations were not
part of the model, the inferred neural states conformed to what we
hoped to elicit experimentally. Furthermore, without biasing infer-
ence on models, we disclosed a hierarchical organisation of visual and
prefrontal processing areas that has reasonable construct validity in
terms of known functional anatomy. A striking result from this data-
led application was that the strength of backward connections can be
greater than the strength of forward connections: Note all top-down
connection from the frontal eye fields were stronger in absolute terms
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Fig. 12. The selected graph in anatomical space and functional space: This figure shows
the graph selected (on the basis of the posterior probabilities in the previous figure) in
anatomical space and functional (spectral embedding) space. The upper panel shows
the same regions depicted in Fig. 9, but now connected using the conditional means of
the coupling parameters, under the model selected. The colour of the arrow reports the
source of the strongest bidirectional connection, while its width represents its absolute
(positive or negative) strength. This provides a description of the architecture or graph
in anatomical space. A more functionally intuitive depiction of this graph is provided in
the lower panel. Here, we have used spectral embedding to place the nodes in a
functional space, where the distance between them reflects the strength of
bidirectional coupling. Spectral embedding uses the eigenvectors vectors (principle
components) of the weighted graph Laplacian to define a small number of dimensions
that best capture the proximity or conditional dependence between nodes. Here, we
have used the first three eigenvectors to define this functional space. The weighted
adjacency matrix was, in this case, simply the maximum (absolute) conditional
estimate of the coupling parameters described in the previous figure. The middle panel
shows the asymmetry strengths based on the conditional estimates of the selected
model. This provides a further way of characterising the functional architecture in
hierarchical terms, based on (bidirectional) coupling.
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than the equivalent bottom-up connections (Fig. 12). This is entirely
sensible, given the greater abundance of backward connections
anatomically, both within the cortical hierarchy and from cortex to
subcortical structures (e.g., Sillito and Jones, 2002). Furthermore, the
importance of backward connections or top-down influences fits
comfortably with predictive coding accounts of brain function, which
emphasise the importance of predictions that are generated in a top-
down fashion (Rao and Ballard, 1999; Friston, 2005).

Discussion

The quest for discovering causal network structure has a long
history, and automatic procedures for determining optimal model
structure, given empirical measurements, have played an increasingly
important role. For example, various algorithmic search procedures
have been proposed for inferring causal structure from association (or
covariance) data, often under the framework of Bayesian networks
(e.g., Glymour et al., 1987; Spirtes et al, 2000; Pearl, 2009).

In the domain of neuroimaging, there has been a growing interest
in searching model-spaces, both in the context of DCM (and other
models of effective connectivity) and analyses of functional connec-
tivity. For example, Bullmore et al. (2000) introduced an automatic
search procedure for structural equation models of fMRI data, and
Valdés-Sosa et al. (2005) has done important work on optimisation of
multivariate autoregressive models, in terms of sparsity. Other
important work in this area has looked at the efficiency of various
correlation schemes and Granger causality, when identifying the
sparsity and connectivity structure of real and simulated data (e.g.,
Cole et al., 2010; Gates et al., 2010; Smith et al., 2010). Finally,
discovery of causal network structure from neuroimaging data has
also been pursued in the context of Bayesian networks. Ramsey et al.
(2010) introduced an “independent multisample greedy equivalence
search” algorithm (IMaGES) for fMRI data. This method uses the
Bayesian information criterion (BIC; Schwarz, 1978) for automatic
scoring of Markov equivalence classes of directed acyclic graphs
(DAGs). The restriction to DAGs means, however, that IMaGES only
returns acyclic (feed-forward) graphs of effective connectivity.

It is difficult to comment upon the comparative performance of
DCM, which deals with dynamic models, in relation to approaches
that do not (see Valdés-Sosa et al., 2010 for a full discussion). Other
schemes that use dynamic graphs include Granger causality (Granger,
1969) and Dynamic Bayesian Networks (DBN: e.g., Burge et al., 2009;
Rajapakse and Zhou, 2007). However, there is a growing appreciation
that Granger causality may not be appropriate for fMRI time-series
(e.g., Nalatore et al, 2007) and performs poorly in comparison to
structural (non-dynamic) approaches based upon partial correlations
(Smith et al., 2010). Granger causality and DBN rest on the theory of
Martingales (i.e. Markovian assumptions), which may be inappropri-
ate for real dynamical systems, whose fast fluctuations are analytic
and may themselves show critical slowing (i.e., non-Markovian or
long-memory behaviour) (see Roebroeck et al. (2009) and Friston
(2009) for discussion). In fact, one motivation for inventing DCM was
to address the shortcomings of autoregressive and underlying
Markovian models. Having said this, the computational expediency
of functional connectivity and Granger causal schemesmean that they
can handle (in principle) vast numbers of nodes and may therefore
play a helpful role in identifying candidate networks for the analyses
of (directed) effective connectivity described in this paper.

Future work

Clearly, muchwork lies ahead in determining the sorts of networks
that can be discovered efficiently with the scheme considered here.
There are several obvious issues that need exploring: First, we need to
establish the level of observation noise that permits veridical
discovery: Increasing levels of noise reduces the posterior confidence
in non-zero connections and predisposes them to removal during post
hoc optimisation. The level of noise used in the simulations is not
unrealistic but guaranteed a strong connection could be estimated
with a high degree of precision. For example, in results of Fig. 6, the
difference in log-evidence between the best model and its nearest
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competitor was about six. This translates into a log-odds ratio of about
exp(6)≈400:1 or a Z-score of about 2.8. This reflects the efficiency of
the model selection and explains why we were able to identify the
correct model in all the simulations. We are currently assessing the
sensitivity and specificity of post hoc model selection as a function of
observation noise: The results in this paper can be regarded as proof of
principle that it is possible to recover the true network, provided that
one has ideal (but not untypical) data. Another key aspect that may
determine the identifiability of certain connections is their relative
strength and sign. By construction, all the reciprocal connections in
our simulations had the same (positive or negative) sign. This is
because we found that strong reciprocal connections with opposite
signs were estimated inefficiently, with shrinkage to their prior mean
of zero. This means that they are unlikely to survive post hoc
optimisation. One can see heuristically why this occurs (in terms of
conditional dependences); however, this and related issues need to be
explored properly. Finally, both inversion of the full model and its post
hoc optimisation are sensitive to the shrinkage priors over the
parameters. We used fairly arbitrary (non informative) priors;
however, these priors can themselves be optimised using the same
formalism behind post hocmodel optimisation (see Friston and Penny,
2011).

We have illustrated networks with a relatively small number of
nodes (two to six). In principle, the scheme can handle much larger
networks; however, the time taken to invert the (full) model may
become prohibitively long (because the number of free parameters
increases quadratically with the number of nodes). Having said this,
DCM is used routinely to invert models with thousands of free
parameters (e.g. DCM for induced electromagnetic sources; Chen et
al., 2008). One approach to large numbers of nodes (e.g., voxels) is to
summarise distributed activity in terms of modes or patterns and then
estimate the coupling among those patterns (cf, Chen et al., 2008;
Havlicek et al., 2010). In terms of the increase in the size of model
spacewith the number of nodes; as noted by one of our reviewers, one
could employ a greedy search using the post hoc log-evidence. In our
current implementation of automatic post hoc searches, we eliminate
redundant parameters, starting with the eight parameters that have
the smallest effect on log-evidence when removed. This process is
repeated until no more parameters are removed or less than eight
parameters remain. Of course, onewould restrict an exhaustive search
of models to preclude those that violate prior beliefs.

In this paper, we have modelled all the nonlinearities that cause
(chaotic) itinerancy in real biological time-series as fluctuations in
random differential equations. Because our DCM is a linear approx-
imation, these nonlinearities are absorbed into the fluctuating terms
that are inferred during model inversion. Fluctuations are important
because they can predominate in certain contexts. For example, the
patterns of synchronisation and coherent activity observed in resting-
state time-series (both empirically and in simulations) can them-
selves wax and wane at a slower timescale. Indeed, it is commonly
thought that the ultra slow fluctuations seen in fMRI may reflect a
modulation of fast synchronised activity at the neuronal level that
may be a principal determinant of observed BOLD signal (Kilner et al.,
2005; Deco et al., 2009; de Pasquale et al., 2010). From the point of
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view of generative models, this suggests that the coupling parameters
are themselves state and implicitly time-dependent. One can model
this state-dependency, and ensuing itinerancy, by simply adding
nonlinear (quadratic) terms to the coupling matrix as described in
Stephan et al. (2008). This provides a DCM based on nonlinear
random differential equations that can, in principle, be inverted using
Generalised Filtering. One of the reasons that we chose the attentional
dataset was that we know that there are strong contextual
(experimental) effects on the coupling that are usually ascribed to
attentional modulation of intrinsic or extrinsic connections in the
visual nodes of the network. This modulation has been variously
modelled in terms of exogenous (experimental manipulations of
attentional set) or endogenous (state-dependent) terms (Li et al.,
2010). In future work, we hope to compare models with and without
nonlinear (state-dependent) coupling using the inversion and
selection schemes described above. In short, network discovery can
also be applied to bilinear and nonlinear DCMs to discover functional
architectures with nonlinear (state-dependent) effects.

In a similar vein, model averaging and selection procedures
currently applied to the free-energy approximations following
inversion of reduced models can be applied to the post hoc log-
evidence used for model discovery (see Stephan et al., 2010 for an
overview of these procedures). For example, in group studies (when
treating the model as a fixed effect over subjects) one would simply
add post hoc log-evidences to discover the best model over subjects
and proceed in the usual way. Similarly, post hoc log-evidences can be
used for random effects model selection for group studies. Again we
will illustrate this in future application papers.

Conclusion

In conclusion, we hope to have introduced a scheme that people
may find useful when answering questions in a discovery or data-led
fashion, while retaining powerful constraints on the way that those
data were generated.We have also described a solution to searches on
large model-spaces which finesse problems due to combinatorics on
connections and computational overhead. We envisage that this
approach could be useful in analysing resting-state studies (Damoi-
seaux and Greicius, 2009; Biswal et al., 2010; Van Dijk et al., 2010) or
indeed any data reporting unknown or endogenous dynamics (e.g.
sleep EEG). Although we have illustrated the approach using region
specific summaries of fMRI data from an activation study, there is no
reason why exactly the same approach could not be applied to the
activity of distributed modes, such as those from principal or
independent component analysis (cf, Havlicek et al., 2010). Finally,
having access to the adjacency matrices summarising functional brain
architectures (in terms of effective connectivity) opens the door to
graph theoretic analyses that leverage important advances in network
theory (e.g., Bullmore and Sporns, 2009).

The schemes described in this paper are implemented in Matlab
code and are available freely as part of the open-source software
package SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Furthermore, the
attentional data set used in this paper can be downloaded from the
above website, for people who want to reproduce the analyses
described in this paper.
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