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Modelling event-related responses in the brain
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The aim of this work was to investigate the mechanisms that shape

evoked electroencephalographic (EEG) and magneto-encephalographic

(MEG) responses. We used a neuronally plausible model to character-

ise the dependency of response components on the models parameters.

This generative model was a neural mass model of hierarchically

arranged areas using three kinds of inter-area connections (forward,

backward and lateral). We investigated how responses, at each level of

a cortical hierarchy, depended on the strength of connections or

coupling. Our strategy was to systematically add connections and

examine the responses of each successive architecture. We did this in

the context of deterministic responses and then with stochastic

spontaneous activity. Our aim was to show, in a simple way, how

event-related dynamics depend on extrinsic connectivity. To emphasise

the importance of nonlinear interactions, we tried to disambiguate the

components of event-related potentials (ERPs) or event-related fields

(ERFs) that can be explained by a linear superposition of trial-specific

responses and those engendered nonlinearly (e.g., by phase-resetting).

Our key conclusions were; (i) when forward connections, mediating

bottom-up or extrinsic inputs, are sufficiently strong, nonlinear

mechanisms cause a saturation of excitatory interneuron responses.

This endows the system with an inherent stability that precludes non-

dissipative population dynamics. (ii) The duration of evoked transients

increases with the hierarchical depth or level of processing. (iii) When

backward connections are added, evoked transients become more

protracted, exhibiting damped oscillations. These are formally identical

to late or endogenous components seen empirically. This suggests that

late components are mediated by reentrant dynamics within cortical

hierarchies. (iv) Bilateral connections produce similar effects to

backward connections but can also mediate zero-lag phase-locking

among areas. (v) Finally, with spontaneous activity, ERPs/ERFs can

arise from two distinct mechanisms: For low levels of (stimulus related

and ongoing) activity, the systems response conforms to a quasi-linear

superposition of separable responses to the fixed and stochastic inputs.

This is consistent with classical assumptions that motivate trial

averaging to suppress spontaneous activity and disclose the ERP/

ERF. However, when activity is sufficiently high, there are nonlinear

interactions between the fixed and stochastic inputs. This interaction is
1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2004.12.030

* Corresponding author. Present address: INSERM U594 Neuro-
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expressed as a phase-resetting and represents a qualitatively different

explanation for the ERP/ERF.
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Introduction

Classical event-related potentials (ERPs) and event-related

fields (ERFs) have been used for decades as putative electro-

physiological correlates of perceptual and cognitive operations.

However, the exact neurobiological mechanisms underlying their

generation are largely unknown. Recently, there has been a special

interest in the distinction between evoked and induced responses.

Evoked responses are disclosed by conventional averaging

procedures, whereas the latter usually call for single-trial analyses

of induced oscillations. In this paper, we used neuronal simulations

to examine the mechanisms that underpin ERPs/ERFs. In a

companion paper, we will examine induced responses using

time–frequency analyses and other transforms of single-trial data.

Neural mass models

The complexity of neural networks generating MEG/EEG

signals (DeFelipe et al., 2002; Thomson and Deuchars, 1997) is

considerable. This means that MEG/EEG observation models rely

upon simplifying assumptions and empirical priors (David and

Friston, 2003; Freeman, 1978; Lopes da Silva et al., 1974;

Robinson et al., 2001; Stam et al., 1999; Valdes et al., 1999; Van

Rotterdam et al., 1982; Wendling et al., 2000). The primary aim of

this paper is to describe a candidate forward model and establish its

face validity. This model was designed to reproduce responses seen

empirically and enable mechanistic enquiries into the generation of

evoked and induced responses. This is the focus of the current

paper. However, we will also use this model in a forthcoming paper

as an observation model, allowing its parameters to be inferred

from real data (David et al., 2004b). In this context, face validity is

especially important.
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Neural mass models of MEG/EEG usually comprise cortical

macro-columns, which can be treated as surrogates for cortical

areas and, sometimes, thalamic nuclei. These models use a small

number of state variables to represent a neuronal population mean

state. This approach, referred to loosely as a mean-field approx-

imation, is efficient when determining the steady-state behaviour of

neuronal systems but its accuracy in a dynamic or nonstationary

context is less established (Haskell et al., 2001). However, we will

assume that the mean field approximation is sufficient for our

purposes. The majority of neural mass models of MEG/EEG have

been designed to generate alpha rhythms (Jansen and Rit, 1995;

Lopes da Silva et al., 1974; Stam et al., 1999; Van Rotterdam et al.,

1982). Recent studies have shown that it is possible to reproduce

the whole spectrum of MEG/EEG oscillations, using appropriate

values of model parameters (David and Friston, 2003; Robinson et

al., 2001). In addition, these models have been used to test specific

hypotheses about brain function, e.g., focal attention (Suffczynski

et al., 2001). Pathological activity such as epilepsy can also be

emulated. This means, in principle, that generative models of the

sort employed above could be used to characterise the pathophy-

siological mechanisms underlying seizure activity (Robinson et al.,

2002; Wendling et al., 2002).

To date, modelling event-related activity using neural mass

models has received much less attention. An early attempt, in the

context of visual ERPs, showed that it was possible to emulate

ERP-like damped oscillations (Jansen and Rit, 1995). A more

sophisticated thalamo–cortical model has been used to simulate

event-related synchronisation (ERS) and event-related desynchro-

nisation (ERD), commonly found in the alpha band (Suffczynski et

al., 2001). Finally, it has been shown that model parameters can be

adjusted to fit real ERPs (Rennie et al., 2002). These studies

(Rennie et al., 2002; Suffczynski et al., 2001) emphasise the role of

the thalamo–cortical interactions by modelling the cortex as a

single compartment.

Hierarchical models

It is well-known that the cortex has a hierarchical organisation

(Crick and Koch, 1998; Felleman and Van Essen, 1991),

comprising bottom-up, top-down and lateral processes that can

be understood from an anatomical and cognitive perspective (Engel

et al., 2001). We have previously discussed the importance of

hierarchical processes, in relation to perceptual inference in the

brain, using the intimate relationship between hierarchical models

and empirical Bayes (Friston, 2002). The current work was more

physiologically motivated. Using a hierarchical neural mass model,

we were primarily interested in the effects, on event-related MEG/

EEG activity, of connections strengths, and how these effects were

expressed at different hierarchical levels. In addition, we were

interested in how nonlinearities in these connections might be

expressed in observed responses.

The neuronal model described below embodies many neuro-

anatomic and physiological constraints which lend it a neuronal

plausibility. It has been designed to (i) explore emergent behaviours

that may help understand empirical phenomena and, critically, (ii)

as the basis of dynamic observation models. Although the model

comprises coupled systems, the coupling is highly asymmetric and

heterogeneous. This contrasts with homogenous and symmetrically

coupled map lattices (CML) and globally coupled maps (GCM)

encountered in more analytic treatments. Using the concepts of

chaotic dynamical systems, GCMs have motivated a view of
neuronal dynamics that is cast in terms of high-dimensional

transitory dynamics among dexoticT attractors (Tsuda, 2001). Much

of this work rests on uniform coupling, which induces a

synchronisation manifold, around which the dynamics play. The

ensuing chaotic itinerancy has many intriguing aspects that can be

related to neuronal systems (Breakspear et al., 2003; Kaneko and

Tsuda, 2003). However, the focus of this work is not chaotic

itinerancy but chaotic transience (the transient dynamics evoked

by perturbations to the systems state) in systems with asymmetric

coupling. This focus precludes much of the analytic treatment

available for GCMs (but see Jirsa and Kelso, 2000 for an analytical

description of coherent pattern formation in a spatially continuous

neural system with a heterogeneous connection topology). How-

ever, as we hope to show, simply integrating the model, to simulate

responses, can be a revealing exercise.

Mechanisms of ERP/ERF generation; linear or nonlinear?

It is generally held that an ERP/ERF is the result of averaging a

set of discrete stimulus-evoked brain transients (Coles and Rugg,

1995). However, several groups (Jansen et al., 2003; Klimesch et

al., 2004; Kolev and Yordanova, 1997; Makeig et al., 2002) have

suggested that some ERP/ERF components might be generated by

stimulus-induced changes in ongoing brain dynamics. This is

consistent with views emerging from several neuroscientific fields,

suggesting that phase-synchronisation, of ongoing rhythms, across

different spatio–temporal scales mediates the functional integration

necessary to perform higher cognitive tasks (Penny et al., 2002;

Varela et al., 2001). In brief, a key issue is the distinction between

processes that do and do not rely on phase-resetting of ongoing

spontaneous activity. Both can lead to the expression of ERP/ERF

components but their mechanisms are very different.

EEG and MEG signals are effectively ergodic and cancel when

averaged over a sufficient number of randomly chosen epochs. The

fact that ERPs/ERFs exhibit systematic waveforms, when the

epochs are stimulus locked, suggests either a reproducible

stimulus-dependent modulation of amplitude or phase-locking of

ongoing MEG/EEG activity (Tass, 2003). The key distinction,

between these two explanations, is whether the stimulus-related

component interacts with ongoing or spontaneous activity. If there

is no interaction, the spontaneous component will be averaged out,

because it has no consistent phase relationship with stimulus onset.

Conversely, if there is an interaction, dominant frequencies of the

spontaneous activity must experience a phase-change, so that they

acquire a degree of phase-locking to the stimulus. Note that phase-

resetting is a stronger-requirement than induced oscillations. It

requires any induced dynamics to be phase-locked in peristimulus

time. In short, phase-resetting is explicitly nonlinear and implies an

interaction between stimulus-related response and ongoing activity.

Put simply, this means that the event-related response depends on

ongoing activity. This dependency can be assessed with the

difference between responses elicited with and without the

stimulus (if we could reproduce exactly the same ongoing activity).

In the absence of interactions, there will be no difference. Any

difference implies nonlinear interactions. Clearly, this cannot be

done empirically but it can be pursued using neuronal simulations.

The secondary aim of the current work was to use realistic

neural mass models of hierarchically organised cortical areas to see

whether phase-resetting is an emergent phenomenon and a

plausible candidate for causing ERPs/ERFs. Phase-resetting is

used in this paper as an interesting example of nonlinear responses
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that have been observed empirically. We use it to show that

nonlinear mechanisms can be usefully explored with neuronal

models of the sort developed here. In particular, static non-

linearities, in neuronal mass models, are sufficient to explain

phase-resetting. Phase-resetting represents nonlinear behaviour

because, in the absence of amplitude changes, phase-changes can

only be mediated in a nonlinear way. This is why phase-

synchronisation plays a central role in detecting nonlinear coupling

among sources (Breakspear, 2002; Tass, 2003).

Overview

This paper is structured as follows. In the first section, we

introduce the hierarchical neural mass model used in the remaining

sections. It is based on previous neuroanatomic studies by

Felleman and van Essen (Felleman and Van Essen, 1991) and

work by Jansen and Rit on modelling MEG/EEG data (Jansen and

Rit, 1995). In the second section, we demonstrate the basic

behaviour of the model, by successive elaboration of a cortical

hierarchy. We start with forward connections and then add

backward and lateral connections. The goal of this approach was

to provide an intuitive understanding of MEG/EEG like dynamics

generated by coupled nonlinear systems. These simulations were

performed in the absence of spontaneous activity. In the third

section, we examine the interaction between evoked and sponta-

neous activity, using a representative hierarchical architecture

established in the previous section. Finally, we discuss the potential

benefits of this modelling approach, for the study of measured

MEG/EEG activity.
Hierarchical models of event-related MEG/EEG activity

Cortico–cortical connections

Although neural mass models originated in the early 1970s

(Freeman, 1978; Lopes da Silva et al., 1974; Wilson and Cowan,

1972), none have addressed explicitly the hierarchical nature of

cortical organisation. The minimal model we propose, which

accounts for directed extrinsic connections, uses the rules in

Felleman and Van Essen (1991). Extrinsic connections are

connections that traverse white matter and connect cortical regions

(and subcortical structures). These rules, based upon a tri-
Fig. 1. Connection rules adopted for the construction of hierarchical models for M

Felleman and Van Essen (1991). The cortical sheet is divided into two compone

granular layers). Bottom-up connections originate in agranular layers and termina

connections originate in agranular layers and target all layers.
partitioning of the cortical sheet (into supra-, infra-granular layers

and granular layer 4), have been derived from experimental studies

of monkey visual cortex. We will assume that they can be

generalised to the whole cortex. The ensuing model is general, and

can be used to model various cognitive paradigms (David et al.,

2004b). However, variability among different cytoarchitectonic

regions is restricted to differences in physiological parameters,

under the same microcircuitry. Under this simplifying assumption,

the connections can be defined as in Fig. 1: (i) Bottom-up or

forward connections originate in agranular layers and terminate in

layer 4. (ii) Top-down or backward connections only connect

agranular layers. (iii) Lateral connections originate in agranular

layers and target all layers. All these long-range or extrinsic

cortico–cortical connections are excitatory and are mediated

through the axons of pyramidal cells.

Although the thalamo–cortical connections have been the focus

of several modelling studies, they represent a minority of extrinsic

connections: in contrast, it is thought that at least 99% of axons in

white matter link cortical areas of the same hemisphere (Abeles,

1991). For this reason, and for simplicity, we do not include the

thalamic nuclei in our model. However, they can be included for

any application where the role of the thalamus (or other subcortical

structure) is thought important.

Jansen model of a cortical area

The neocortex is commonly described as a 6-layered structure

(DeFelipe et al., 2002). Spiny neurons (pyramidal cells and spiny

stellate cells) and smooth neurons are the two major groups of

cortical neurons. The majority of cortical neurons are pyramidal

cells that are found in layers 2 to 6. Most spiny stellate cells are

interneurons that are located in the middle cortical layers. Smooth

neurons are essentially GABAergic interneurons distributed in all

layers. In general, cortical neurons are thought to be organised into

multiple, small repeating microcircuits. In spite of cortical

heterogeneity, a common basic microcircuit has emerged. Its

skeleton is formed by a pyramidal cell which receives excitatory

inputs that originate from extrinsic afferent systems and spiny cells.

Inhibitory inputs originate mostly from GABAergic interneurons.

These micro-anatomical characteristics have been found in all

cortical areas and species examined so far and, therefore, they can

be considered as fundamental aspects of cortical organisation

(DeFelipe et al., 2002).
EG/EEG signals. These rules are a simplified version of those proposed by

nts: the granular layer (layer 4) and the agranular layers (supra- and infra-

te in layer 4. Top-down connections only engage agranular layers. Lateral
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The Jansen model (Jansen and Rit, 1995) follows the micro-

circuitry described above to emulate the MEG/EEG activity of a

cortical area. Consequently, it is particularly well suited to embed

in a hierarchical structure. A cortical area is modelled by three

subpopulations. A population of excitatory pyramidal (output) cells

receives inputs from inhibitory and excitatory populations of

interneurons, via intrinsic connections (intrinsic connections are

confined to the cortical sheet). Within this model, excitatory

interneurons can be regarded as spiny stellate cells found

predominantly in layer 4 and in receipt of forward connections

(Miller, 2003). Excitatory pyramidal cells and inhibitory interneur-

ons will be considered to occupy agranular layers and receive

backward and lateral inputs.

We have described dynamics of these three subpopulations

previously. We will review the model briefly but refer interested

reader to David and Friston (2003) for more details. The main

difference (cf. David and Friston, 2003) is that ERPs/ERFs are

modelled as small perturbations around the resting potential.

Therefore, all the variables below are zero-mean, centred on the

resting state we assumed to be 0. The evolution of population

dynamics rests on two operators. The first transforms p, the

average density of pre-synaptic input arriving at the population,

into v, the average post-synaptic membrane potential. This is

modelled by the linear transformation m = h � p, where � denotes

convolution and h is the impulse response or kernel

h tð Þ ¼
Ht exp � t=sð Þ

s
t z0

0 t b 0
:

(
ð1Þ

The excitatory (e) and inhibitory (i) kernels, he and hi respectively,

are parameterised by He,i and se,i modelling specific properties of

inhibition and excitation. The parameters He,i control the

maximum post-synaptic potential and se,i are lumped time

constants of passive membrane currents and other spatially
Fig. 2. Jansen’s model of a cortical area. Three neuronal subpopulations are consi

and inhibitory interneurons with the connectivity constants c2 = 0.8c1, c3 = c4 = 0

potentials as shown in Eq. (1). We assume that the average depolarisation of pyram

with source reconstruction algorithms using MEG/EEG scalp data. For simplic

measured scalp MEG/EEG data.
distributed delays in the dendritic tree. The second operator

transforms the average membrane potential of each subpopulation

into an average firing rate. This is assumed to be instantaneous and

is described by the sigmoid function

S vð Þ ¼ 2e0

1þ exp � rvð Þ � e0 ð2Þ

where e0 and r are parameters that determine its shape (e.g.,

voltage sensitivity). It is this function that endows the simulation

with nonlinear behaviours that are critical for phenomena like

phase-resetting.

Interactions, among the different subpopulations, depend on the

constants ci, which control the strength of intrinsic connections and
the total number of synapses expressed by each subpopulation. The

relative values of these constants are fixed, using anatomical

information from the literature, as described in Jansen and Rit

(1995): c2 = 0.8c1, c3 = c4 = 0.25c1. The Jansen model is

summarised in Fig. 2.

We assume that MEG/EEG signals are a linear mixture of the

average depolarisation of pyramidal cells. This mixture depends

upon source lead-fields that model the spatial distribution of the

ensuing electromagnetic fields (Baillet et al., 2001). We further

assume that the depolarisation of pyramidal cells is proportional to

the cortical current source densities, which are estimated using

inverse solutions (Baillet et al., 2001). Therefore, we consider the

indirectly observed doutputT of the Jansen model to be the

depolarisation of pyramidal cells. For simplicity, we ignore the

effects of instrumental amplifiers and assume that MEG/EEG

cortical current densities can be estimated precisely and refer to

them as bMEG/EEG signals.Q Thus, unless otherwise specified,

signals are simply the depolarisation of pyramidal cells.

For given synaptic kernels h and sigmoid functions S, the

Jansen model can reproduce a large variety of MEG/EEG-like
dered to model a cortical area. Pyramidal cells interact with both excitatory

.25c1. The parameters He,i and se,i control the expression of post-synaptic

idal cells y is proportional to reconstructed cortical current densities obtained

ity, we use the same term bMEG/EEG signalQ for estimated cortical and
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waveforms (David and Friston, 2003; Jansen and Rit, 1995;

Wendling et al., 2000). Although we have presented the dynamics

in terms of a convolution operator and static nonlinearly, the

integration of the model actually proceeds using the equivalent

differential equations. These are provided in Appendix A. Being

able to formulate the model in terms of differential equations is

important for extending the neural mass formulation used here to a

true mean field approximation using the Fokker–Plank formalism

(De Groff et al., 1993; Fourcaud and Brunel, 2002). This will be

the subject of a future communication (Harrison et al., submitted

for publication).

Hierarchical extension of the Jansen model

Using the connection rules above, it is straightforward to

construct hierarchical cortico–cortical networks using Jansen

models of cortical areas. The different types of connections are

shown in Fig. 3, in terms of connections among the three

subpopulations. To model event-related responses, the network

receives inputs via input connections. These connections are

exactly the same as forward connections delivering fixed or

stochastic inputs u to the spiny stellate cells in layer 4. In the

present context, they can be regarded as connections from thalamic

or geniculate nuclei. Inputs u can model incoming stimuli and

stochastic background activity. The influence of the ith input is

controlled by the parameter ci.

Connections among areas are mediated by long-range excita-

tory (glutaminergic) pathways. As discussed in Section 2.1, we

consider three types of extrinsic connections (Fig. 3): forward,

backward and lateral. The strength of each type of connection is

controlled by a coupling parameter a: aF for forward, aB for

backward and aL for lateral. We model propagation delays for

these connections (see Appendix A).

Using these connections, hierarchical cortical models for

MEG/EEG can be constructed to test various hypotheses, and

represent examples of dynamic causal models (Friston et al.,

2003). The causal model here is a multiple-input multiple-output

system that comprises m inputs and l outputs with one output per

region. The m inputs correspond to designed causes (e.g., stimulus
Fig. 3. Hierarchical connections among Jansen units (Fig. 2) based on simplified Fe

pyramidal cells axons. Their targets depend upon the type of connections. Couplin

aF for forward, aB for backward and aL for lateral.
functions encoding the occurrence of events) or stochastic

processes modelling background activity. In principle, each input

could have direct access to every region. However, in practice the

effects of inputs are usually restricted to a single input region,

usually the lowest in the hierarchy. Each of the l regions produces

a measured output that corresponds to the MEG/EEG signal. Each

region has five (He,i, se,i, c1) intrinsic parameters such as the

membrane time constants described above. These play a crucial

role in generating regional responses. However, in the present

study, we will consider them fixed and focus on the extrinsic

coupling parameters or effective connectivity. These are the

matrices C, AF, AB and AL that contain the coupling parameters

c, aF, aB and aL. The values of these parameters, used in the

following simulations, are provided in Appendix A and in figure

captions.
Input–output behaviour

In this section, we characterise the input–output behaviour of a

series of canonical networks in terms of their impulse response

functions. This is effectively the response (mean depolarisation of

pyramidal subpopulations) to a delta-function-input or impulse.

The simulations of this section can be regarded modelling event-

related responses to events of short duration, in the absence of

spontaneous activity or stochastic input. In the next section, we

will use more realistic inputs that comprise both stimulus-related

and stochastic components.

The effects of inputs

Inputs u act directly on the spiny stellate neurons of layer 4.

Their influence is mediated by the forward connections para-

meterised by the matrix C. When these connections are

sufficiently strong, the output of the spiny stellate subpopulation

saturates, due to the nonlinear sigmoid function in Eq. (2). This

nonlinearity has important consequences for event-related

responses and the ensuing dynamics. In brief, the form of the

impulse response function changes qualitatively with input
lleman and van Essen rules (Fig. 1). Long-range connectivity is mediated by

g or connectivity parameters control the strength of each type of connection:



Fig. 4. The strength of input modulates the shape of MEG/EEG signal. The output of one area (variable y, see Appendix A) has been calculated for different

values of c, the strength of forward connections mediating input u (delta function). When c is small (c = 1, c = 1000), the output is not saturated and the MEG/

EEG signal ( y) amplitude is linearly related to c. For large values of c (c = 106, c = 109), spiny stellate cells saturate and the shape of event-related MEG/EEG

response changes substantially.
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strength. To illustrate this point, we modelled a single area, which

received an impulse at time zero and calculated the corresponding

response for different values of c (Fig. 4). With weak inputs, the

response is linear, leading to a linear relationship between c and

peak MEG/EEG responses. However, with large values of c

neuronal activity leaving the linear domain of the sigmoid function

in Eq. (2), the spiking saturates and the shape of the evoked

response changes.

This behaviour is not surprising and simply reflects the

nonlinear relationship between firing rates and post-synaptic

depolarisation modelled by the nonlinearity. This nonlinearity

causes saturation in responses of units to intrinsic and extrinsic

inputs. For example, when the input is strong enough to saturate

spiny stellate spiking, the pyramidal response exhibits a short

plateau (right panel in Fig. 4). This saturation persists until the

membrane potential of spiny stellate cells returns to its resting

state. The sigmoid function models phenomenon; (i) at the single

unit level, like refractoriness and spike rate adaptation and (ii)

aspects of neuronal ensembles at the population level, like the
Fig. 5. The MEG/EEG signal of area 1 (black) and area 2 (grey) is plotted as a fu

effect as input connectivity c: high values cause a saturation of spiny stellate cells

Nonlinear effects are particularly strong for the largest value of aF (right panel) as t

huge negative response in area 2.
distribution of thresholds involved in the generation of action

potentials. The ensuing behaviour confers an inherent stability on

dynamics because it is recapitulated in response to all bottom-up

influences, as shown next.

Bottom-up effects

The targets of the forward connections and extrinsic inputs are

identical. Therefore, the effects of c and aF on event-related

responses, are exactly the same. Fig. 5 shows the simplest case of

two areas (area 1 drives area 2). The difference, in relation to the

previous configuration, is that area 1 has a gating effect. This is

basically a low-pass filter, which leads to greater variation of the

response in area 2, relative to responses elicited by direct input to

area 2 (cf. Fig. 4). For instance, the small negative response

component in area 1, which follows the first positive deflection, is

dramatically enhanced in area 2 for strong forward couplings.

Again, this reflects the nonlinear behaviour of subpopulations

responding to synaptic inputs.
nction of the forward connectivity aF. Bottom-up connectivity has the same

(input cells), with a dramatic effect on MEG/EEG event-related responses.

he small negative component of area 1 (seen best in the left panel) induces a



Fig. 6. A feedforward system composed of five areas. The MEG/EEG signal ( y) of each area elicited by a single pulse on area 1 is plotted in successive panels

from left to right. Event-related activity lasts longer in high-level cortical areas of feedforward architectures. At each level in the hierarchy, the event-related

response of pyramidal cells experiences successive low-pass filters, embodied by synaptic processes that transform the input signals to output.

1 A phase-transition refers to the qualitative change in the systems

attractor caused by changes in the systems parameters, here the coupling

parameters. In the present context, increasing the backward coupling causes

the point attractor to loose its dynamic stability (stability under smal

perturbations) and the emergence of a limit-cycle attractor. The nature of

the phase-transition is usually assessed in terms of Lyapunov exponents

(eigenvalues of the systems Jacobian BC/Bx). When the system has a poin

attractor, the imaginary part of the principal or largest exponent is 0. A limi

cycle has nonzero imaginary parts and chaotic attractors have at least one

real positive exponent. We do not present a stability analysis or the

Lyapunov exponents in this work, because the phase-transitions are self-

evident in the trajectories of the system.
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Level in hierarchy

As mentioned above, activity is subject to low-pass filtering, by

synaptic processes, each time it encounters a cortical region. A

simple and intuitive consequence of this is that the form of event-

related responses changes with each successive convolution in the

hierarchy. To illustrate this point, we consider a feedforward

configuration composed of five regions (Fig. 6). We see in Fig. 6

that, in addition to the propagation lag that delays the waveform at

each level, the event-related response is more enduring and

dispersed in higher-level areas. A useful heuristic here is that late

components of evoked responses may reflect hierarchical process-

ing at a deeper level. This effect is independent of synaptic time

constants and connectivity parameters.

This simple delay and dispersion is not necessarily seen with

more realistic configurations that involve top-down effects. In this

context, late response components in higher cortical areas can

reenter (Edelman, 1993) lower levels engendering complicated and

realistic impulse response functions. In the reminder of this section,

we look at the effects of adding backward and then lateral

connections to the forward architecture considered above.

Top-down effects

Top-down connections mediate influences from high to low-

level regions. Incoming sensory information is promulgated

through the hierarchy via forward, and possibly lateral, con-

nections to high-level areas. To demonstrate the effect of

backward connections on MEG/EEG, we will consider a minimal

configuration composed of two areas (Fig. 7). The fact that the

forward and backward connections are different renders this

functionally asymmetric architecture hierarchical. Although

asymmetric, the presence of forward and backward connections

creates loops. This induces stability issues as shown in Fig. 7:

when backward connections are made stronger, damped oscil-

lations (aB = 1; aB = 10) are transformed into oscillations which

ultimately stabilise (aB = 50) because of the saturation described

in the previous subsection. Therefore, with aB = 50, the stable

attractor is a limit cycle and the resting state point attractor looses

its dynamic stability. The dependence of oscillations on layers,

loops and propagation delays has been the subject of much study in

computational models (Lumer et al., 1997).
From a neurobiological perceptive, the most interesting

behaviours are shown just prior to this phase-transition1 when

damped oscillations are evident. Note that the peaks of the evoked

response, in this domain, occur every 100 ms or so. This emulates

the expression of late components seen empirically, such as the

N300 or P400. The key point here is that late components, in

the EEG/MEG, may reflect reentrant effects mediated by

backward connections in hierarchical architectures. This obser-

vation fits comfortably with the notion that late EEG/MEG

components reflect endogenous processing and depend explic-

itly on top-down effects. In short, late components may

depend on backward connections and reflect a reentry of

dynamics to hierarchically lower processing areas. This

dependency can be seen clearly by comparing the two left-

hand panels in Fig. 7 that show the emergence of late

components on increasing the backward connection from one

to ten.

The phase-transition from damped late components to

oscillations is critical. Before the transition, the system is

controllable. This means that the response can be determined

analytically given the input. As discussed in Friston (2000a), long

impulse responses endow the brain with a dmemoryT of past

inputs that enables perceptual processing of temporally extended

events. In Friston (2000b), this was demonstrated using a Volterra

kernel formulation and the simulation of spatio–temporal recep-

tive fields in the visual system. However, after the transition it is

no longer possible to determine when the input occurred given

the output. This violates the principle of maximum information
l

t

t



Fig. 7. Backward connections have a key influence on the stability of MEG/EEG event-related activity as demonstrated by this simple model composed of two

areas (area coded in black and area 2 coded in grey). The forward connectivity aF has been fixed to 40 and backward connectivity aB varies between 1 and 50

from left to right. When top-down effects are small, their reentry leads to longer lasting event-related responses characterised by damped oscillations (aB = 1;

aB = 10). However, over a critical threshold of aB (which depends upon aF), the system undergoes a phase-transition, loses its point attractor and expresses

oscillatory dynamics (aB = 25; aB = 50).
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transfer (Linsker, 1990) and precludes this sort of response in the

brain. In short, it is likely that reentrant dynamics prolong

neuronal transients but will stop short of incurring a phase-

transition to oscillations. If this phase-transition occurs, it is likely

to be short-lived or pathological (e.g., photosensitive seizure

activity).

It should be noted that the oscillations in the right-hand

panels of Fig. 7 do not represent a mechanism for induced

oscillations. The oscillations here are deterministic component

of the systems impulse response function and are time-locked

to the stimulus. Induced oscillations, by definition, are not

time-locked to the stimulus and probably arise from a stimulus-

related change in the system’s control parameters (i.e., short-

term changes in connectivity). We will return to this point

later.

Lateral connections

Lateral connections link different regions at the same level in

the hierarchy. They can be unidirectional or bi-directional as shown

for the model in Fig. 8 with two areas. The main difference between

forward and unidirectional lateral connections is that the latter

target pyramidal cells. This means that the MEG/EEG signal is not

so constrained by nonlinear saturation in layer 4 units. Therefore, as

shown in Fig. 8a, the event-related response does not saturate for

strong lateral connectivity values aL. On the other hand, bilateral

connections and hierarchical connections are differentiated by the

fact that bilateral connections are completely symmetric, which

enable them to create a synchronisation manifold (Breakspear,

2002; Breakspear and Terry, 2002). A comparison of Fig. 8b and

Fig. 7 shows that a special aspect of bilateral connections is their

ability to support dynamics that are in phase. This sort of zero-lag

phase-synchronisation is commonplace in the brain. Its mediation

by lateral connections in this model concurs with previous

modelling studies of zero-lag coupling in triplets of cortical areas

that involve at least one set of bilateral or reciprocal connections

(Chawla et al., 2001). For very large values of aL, architectures

with bilateral connections are highly nonlinear and eventually

undergo a second phase-transition (see Fig. 8b).
In this section, we have provided a deterministic character-

isation of simple hierarchical models in terms of their impulse

responses. We have tried to show that the model exhibits a degree

of face validity in relation to real evoked responses and have

related certain mechanistic aspects to previous modelling work to

provide some construct validity. We now turn to the secondary

biological focus of this paper; namely the plausibility of nonlinear

mechanisms that might explain ERP/ERF components.
Ongoing and event-related activity

So far, we have considered noise-free systems. Event-related

responses were modelled in terms of deterministic impulse

responses that were unique to a given neuronal configuration. In

this context, it is not necessary to evoke the notion of averaging.

However, real MEG/EEG signals show a great variability from

trial to trial (Arieli et al., 1996). In this section, we model this

variability by adding a stochastic component (a zero-mean

Gaussian process) to the input u. The output corresponding to a

stochastic input is referred to ongoing activity, i.e. oscillations in

the MEG/EEG signal that share no phase relationship with the

stimulus. This does not mean that ongoing activity should be

considered as noise, just that there is no obvious stimulus-related

structure.

Ongoing activity

Ongoing activity is shaped by the same nonlinear convolution

experienced by deterministic inputs. In the context of stationary

inputs, the outputs can be characterised in terms of their spectral

properties, which are determined by the generalised transfer

functions of the Volterra kernels associated with any controllable

analytic system. The impulse response function is the first-order

kernel. As soon as the connectivity parameters of a hierarchical

network change, the principal modes of this network, defined by

the principal frequencies of oscillations, are modulated (David and

Friston, 2003). As an illustration, let us consider the simple

hierarchical model of two cortical areas established in the previous



Fig. 8. The effects of lateral connections are shown with a simple model composed of two areas (black: area 1, grey: area 2). The depolarisation of pyramidal

cells ( y) is plotted for several values of lateral connectivity aL. (a) Unilateral connections support transients that differ from those elicited by forward

connections (Fig. 4). In particular, the saturation of layer 4 is not so important and the signal exhibits less saturation for large aL. (b) Increasing bi-directional

lateral connections has a similar effect to increasing backward connections. The main difference is the relative phase of evoked oscillations, which are

synchronised at zero-lag. For very large values of aL, the model is highly nonlinear and eventually exits the oscillatory domain of parameter space.
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section (Fig. 9) with two configurations, which differ in the

strength of backward connections (aB = 1 and aB = 10). The

corresponding frequency spectra, of pyramidal cell depolarisation
Fig. 9. The modulation of backward connectivity (aB = 1 or aB = 10) has huge e

plotted in black for area 1 and in grey for area 2). When aB increases from 1 to 10

amplitude spectra in the right panel were obtained by averaging the modulus of the

2.5 s (examples are shown in the two left-hand panels, black: first area, grey: sec
of the two areas, show that the change in connectivity induces a

profound modulation of their spectral profile. As one might intuit,

increasing backward connections induce a peak at the same
ffect on the power spectrum of ongoing MEG/EEG dynamics (variable y is

, there is loss of power below 3 Hz, and an excess between 3 and 7 Hz. The

Fast Fourier Transform of pyramidal cell depolarisation, over 100 epochs of

ond area).
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frequency of the damped oscillations in the impulse response

function. This is an important aspect of ongoing activity in the

sense that its spectral behaviour may be very close to that of

evoked transients as shown in Makeig et al. (2002).

Induced vs. evoked dynamics

This modulation of oscillatory dynamics, by the systems

coupling parameters, provides a natural model for event-related

changes in rhythmic activity. This phenomenon is known as event-

related synchronisation (ERS) in frequency bands showing an

evoked increase in power, or conversely, event-related desynchro-

nisation (ERD) for decreases (Basar, 1980; Pfurtscheller and Lopes

da Silva, 1999). In light of the above connectivity-dependent

changes in power, ERD and ERS may reflect the dynamics induced

by evoked changes in short-term plasticity. The key difference

between evoked and induced transients relates to the presence or

absence of changes in the systems control parameters, here

connectivity or synaptic efficacy. Evoked changes are not

necessarily associated with parameter changes and any compli-

cated response can be ascribed to transients that arise as the

systems trajectory returns to its attractor. Conversely, induced

responses arise from perturbation of the attractor manifold itself, by

changes in the parameters and ensuing changes in the dynamics.

This distinction was discussed in Friston (1997) in relation to MEG

dynamics and modelled using asymmetric connections between

two areas in Friston (2000a).

Empirically, the ERS/ERD approach is used to look for MEG/

EEG power changes of rhythmic activity induced by external

events. This phenomenon has been modelled, in the case of alpha

rhythms, by a computational model of thalamo–cortical networks

(Suffczynski et al., 2001). It has been shown that a key mechanism

is the modulation of functional interaction between populations of

thalamo–cortical cells and the reticular nucleus. This and related

issues will be addressed in a subsequent paper on induced

responses. Here, we focus on evoked changes.

The present analysis concludes by examining the sensitivity of

evoked transients to state changes caused by ongoing activity,

when the parameters are held constant. In particular, we see if this

sensitivity can be expressed as phase-resetting. The key issue here

is the presence of nonlinear interactions between the current state

of the system and its perturbation by a stimulus.

Phase-resetting and nonlinear interactions

In the following, we investigate the effect of ongoing activity,

on stimulus-dependent responses, to reconcile apparently contra-

dictory conclusions from studies of event-related potentials. On

one hand, classical studies have shown that event-related potentials

are associated with amplitude changes in the MEG/EEG signal that

represent a linear summation of an impulse response and ongoing

activity (Arieli et al., 1996; Shah et al., 2004). In this scheme, the

variability at the single-trial level is due to, and only to, ongoing

activity, which is removed after averaging to estimate the impulse

response. On the other hand, it has been hypothesised that event-

related waveforms, obtained after averaging, could be due to a

phase-resetting of ongoing activity with no necessary change in the

amplitude (i.e., power) of any stimulus locked transient (Jansen et

al., 2003; Makeig et al., 2002). Although mathematically well

defined, the neural mechanisms that could instantiate phase-

resetting of ongoing activity are unknown.
We will take phase-resetting to imply a nonlinear interaction

between ongoing activity and stimulus-related input that results in

phase-locking to stimulus onset. Although phase-locking can be

produced by evoking oscillatory transients (i.e., amplitude

modulation), this mechanism involves no change or resetting of

the ongoing dynamics. To assess the contribution of phase-

resetting in our simulations, we therefore need to look for

interactions between ongoing and stimulus-related inputs that

produced phase-locking in the outputs. As mentioned in the

Introduction, this was addressed, in a simple way, by subtracting

the response to ongoing activity alone from the response to a

mixture of ongoing activity and stimulus input. In the absence of

interactions, this difference (the evoked response) should be the

same. On the other hand, if interactions are prevalent, the

difference should change with each realisation of ongoing activity.

We performed these analyses with different levels of input and

assessed the degree of phase-locking in the outputs with the

phase-locking value (PLV) (Lachaux et al., 1999; Tallon-Baudry

et al., 1996): PLV(t) = |hexp(j/(t))itrials| where the instantaneous

phase /(t) was obtained from the Hilbert transform (Le Van

Quyen et al., 2001).

Testing for interactions

To evaluate the effect of background activity on single-trial

event-related responses, we used the two area hierarchical model

above, with aB = 1 (Fig. 9). The first area was driven by an impulse

function (stimulus) and Gaussian random noise (background

activity) of standard deviation r = 0.05. The output of this region

can be considered a mixture of evoked response and ongoing

activity. We considered two conditions: one with low levels of

mixed input (c = 102) and another with high levels (c = 2.104).

These values were chosen to emphasise the systems nonlinear

properties; with the smaller value of c, neuronal responses remain

largely to the linear regime of the nonlinear function. The larger

value of c was chosen so that excursions of the states encroached on

the nonlinear regime, to produce neuronal saturation in some trials.

In both cases, the stimulus was a delta-function. The simulated

responses, for 100 trials, are shown in Fig. 10.

When input levels are low (left hand side of Fig. 10), event-

related activity at the single-trial level shows a relatively

reproducible waveform after stimulus onset (Fig. 10B). This

transient is reflected in the ERP/ERF after averaging (Fig. 10C).

To confirm the experimental results of Arieli et al. (1996), we

decomposed each event-related response into two components.

First, the stochastic component (the response to ongoing activity

alone—Fig. 10D) and second, an extra component elicited by

adding the stimulus (Fig. 10E). This is the difference between

the response elicited by stochastic component alone (Fig. 10D)

and the response to the mixed input (Fig. 10B). If the system

was linear, these differences should not exhibit any variability

over trials, and thus define the breproducible responseQ (Arieli et
al., 1996). Effectively, the stimulus-dependent component shows

no variability and we can conclude that the response compo-

nents due to stimulus and ongoing activity are linearly

separable. In other words, there are no interactions that could

mediate phase-resetting. Despite this, there is ample evidence

for phase-locking. This is shown in Fig. 10F, using the PLV

index.

However, the situation is very different when we repeat the

simulations with high input levels (right hand side of Fig. 10). In

this context, the event-related responses do not show any obvious



Fig. 10. Event-related responses in the context of ongoing activity (100 trials). Two hierarchically connected regions are considered. Input (ongoing and

stimulus-related) enters into the system through region 1. Two levels of input are considered: weak on the left-hand side (c = 102), strong on the right-hand side

(c = 2.104). The successive horizontal panels show different types of activity. The time scale is identical for each panel and shown at the bottom. (A) Inputs,

comprising a delta function and Gaussian noise of standard deviation 0.05 (stimulus onset at time 0). (B) Event-related activity ( y) at the single-trial level. The

time series over trials is shown (area 1 is above area 2). (C) Averaged event-related response estimated by averaging over epochs shown in panel (B) (area 1 in

black, area 2 in grey). (D) Responses ( y) to the noisy input without the delta function, shown in the same format as in panel (B). (E) Stimulus-dependent

component obtained from subtracting panel (D) from panel (B). (F) Phase-locking value computed form time series in panel (B), which exhibits a transient

phase-synchronisation to peristimulus time (black: area 1, grey: area 2).
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increase in amplitude after the stimulus (Fig. 10B). However, the

averaged event-related activity (Fig. 10C) is very similar to that

above (left hand side of Fig. 10C). The fact that one obtains an

ERP by averaging in this way suggests that the stimulus input

induced phase-resetting of the ongoing oscillations. This is

confirmed by the large variation in stimulus-dependent compo-

nents from trial to trial. This variation reflects nonlinear inter-

actions between the stimulus and ongoing activity (Fig. 10E).

These interactions are associated with phase-locking as shown in

Fig. 10F.

In summary, the fact that the difference in evoked responses with

and without background noise (panel e, Fig. 10) shows so much

variability, suggests that background activity interacts with the

stimulus: When ongoing activity is high, stellate cells outputs
saturate and the stimulus-related response is attenuated. Conversely,

when ongoing activity is low the evoked-response is expressed fully.

This dependency on ongoing activity is revealed by variation in the

evoked responses with high input levels. In conclusion, the

apparently contradictory results presented in Arieli et al. (1996),

Jansen et al. (2003), Makeig et al. (2002) and Shah et al. (2004) can

be reproduced in most part and reconciled within the same

framework. With high activity levels, the ongoing and stimulus-

dependent components interact, through nonlinearities in the

population dynamics, to produce phase-resetting and a classical

ERP on averaging. When activity is lower, the stimulus and

endogenous dynamics do not interact and the ERP simply reflects

the transient evoked by stimuli that is linearly separable from

ongoing dynamics.
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Discussion

We have shown that it is possible to construct hierarchical

models for MEG/EEG signals. To that end, we have assumed an

architecture for cortical regions and their connections. In

particular, we have used the Jansen model (Jansen and Rit,

1995) for each source, and a simplified version of the

connection rules of Felleman and Van Essen (1991) to couple

these sources. Here, we have fixed the parameters intrinsic to

each source (synaptic time constants, output function and intrin-

sic connections) and have focused on manipulating extrinsic

connections among areas. We have used this model to address

some issues in the genesis of evoked responses as observed with

MEG/EEG.

Inferring neural mass models and their parameters, on the

basis of the EEG and MEG alone, is a dynamical inverse problem

that does not have a unique solution. The model we have

described is one possible model among many others. We have

used this model to afford a balance between simple neuronal

models that are unrealistic but sufficient to emulate dynamics

seen empirically, and more complicated models that have an

explicit relation to electrophysiology but are difficult to manip-

ulate. In a future work, we will compute the relative likelihood

of, or evidence for, different models (with Bayesian model

selection) using real MEG/EEG data (David et al., 2004b). At this

stage, we focus on establishing the face validity of a representa-

tive model by showing that it can reproduce a range of biological

behaviours.

Deterministic simulations

In Section 3, we ignored the stochastic component of MEG/

EEG signals. This allowed us to study various configurations in

terms of their deterministic input–output behaviour. Each type of

extrinsic connection (forward, backward and lateral) had specific

effects on event-related dynamics. The key conclusions from

these analyses were: (i) When forward connections, mediating

bottom-up or extrinsic inputs, are sufficiently strong, nonlinear

mechanisms cause a saturation of neuronal responses. This

endows the system with an inherent stability that precludes

nondissipative dynamics. (ii) The duration of evoked transients

increases with the hierarchical depth or level of processing. (iii)

When backward or bilateral connections are added, evoked

transients become more protracted, exhibiting damped oscilla-

tions. These are formally identical to late or endogenous

components.

These simulations suggest that late components are mediated

by reentrant dynamics within cortical hierarchies. Increasing the

strength of extrinsic backward or bilateral connections causes the

number of late components to increase until a phase-transition

into a quasi-oscillatory regime, whose dynamic stability is

assured by the nonlinear saturation above. We discussed, briefly,

the importance of this phase-transition in relation to information

theoretic constraints on neuronal computations. In short, it is

likely that selective pressure will extend the duration of transients

so that the mutual information between current activity and past

perceptual brain states is maximised (see Friston, 2000a for a

fuller discussion). However, phase-transitions to oscillation are

not adaptive because the system is no longer controllable and the

informational link with the past is lost. A simple mechanism for

increasing the memory of neuronal systems is to re-enter past
states from hierarchical levels via backward connections. This is

precisely what we simulated. In summary, late components may

represent dynamic bechoesQ that allow current sensory informa-

tion to interact with perpetual constructs from higher areas, based

on previous sensory input. We have discussed one form of this

hierarchical reentry, using an empirical Bayesian perspective on

predictive coding (Friston, 2002).

Stochastic simulations

In the second section, we introduced stochastic components to

the inputs, to study event-related responses in the context of

background activity. This work was motivated by apparently

contradictory views of ERP/ERF generation. Some authors (Arieli

et al., 1996; Shah et al., 2004) have argued that ERPs/ERFs can be

considered as the impulse response function of a linear system,

despite the huge variability at the single-trial level. In contrast, it

has been proposed (Duzel et al., 2003; Jansen et al., 2003;

Klimesch et al., 2004; Makeig et al., 2002) that ERPs/ERFs could

be due to a phase-resetting process that does not require the notion

of a linear impulse response. This induces some hypothetical

neural mechanism that can implement a phase-resetting of ongoing

activity. These two views are supported by analyses of real MEG/

EEG data. We showed that our model reproduces data that support

both views. In our framework, the key factor is the level of activity.

When activity is low, the model operates in a quasi-linear regime

and reproduces the linear behaviours reported in Arieli et al.

(1996). Conversely, when activity is high, single-trial responses do

not show any amplitude modulation and yet still produce an ERP

on averaging. This is consistent with the observations of Jansen et

al. (2003) and Makeig et al. (2002).

Our analyses suggest that phase-resetting involves a nonlinear

interaction between stimulus-related responses and ongoing

activity. This observation is very reminiscent of a similar finding,

pertaining to fast-oscillatory dynamics induced in simulated

populations. These simulations (Chawla et al., 2000) showed that

functional connectivity or dynamic integration between two

populations increases with mean background activity and with

stimulus-related rate modulation. Furthermore, as the background

activity increases, the populations become increasingly sensitive to

the intensity of the stimulus in terms of a predisposition to

transient phase-locking. This reflected an interaction between

background activity and stimulus-intensity in producing dynamic

correlations. The mechanism of these interactions was modelled at

the level of membrane time constants and temporal integration

over milliseconds, using single-compartment units and the

Hodgkin–Huxley formalism. Our simulations were at a much less

detailed level, employing mean field-like approximations. Fur-

thermore, they addressed evoked transients as opposed to induced

fast dynamics. However, they both speak to the central role of

nonlinear interactions between ongoing activity and stimuli in

causing phase-locking. In our case, of evoked responses, this

phase-locking was to stimulus onset and the mechanism can be

attributed directly to the only nonlinearity in our model: namely

the sigmoid response function transforming depolarisation to firing

rate. This nonlinearly renders ongoing activity sensitive to

stimulus perturbations (this is the definition of an interaction).

This sensitivity is due to the saturating nature of the sigmoid

function. When ongoing activity is high, the system states are

close to the nonlinear regime of the sigmoid function and

perturbations due to the stimulus cause neuronal saturation. This
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saturation causes the ongoing activity to bforgetQ its history and

experience a resetting of its phase.

Phase-resetting vs. phase-locking

In this paper, we have made a clear distinction between phase-

locking and phase-resetting. Phase-locking, as measured by the

PLV implies a statistical dependency among phases, over ERPs

(that is, knowing the phase from one ERP allows one to predict the

phase of another). Phase-locking can be mediated in a number of

ways. As shown in Fig. 10F, there is no real difference between the

phase-locking measures obtained from linear and nonlinear single-

trial responses. Conversely, phase-resetting refers to a change in

the phase, within ERPs. This can be mediated by linear or

nonlinear mechanisms (i.e., a second or high-order interaction

between ongoing dynamics and the stimulus). The key debate here

is not about phase-resetting itself, but whether it is caused by

nonlinear mechanisms (i.e., without changes in amplitude). We

therefore focused on the distinction between linear or nonlinear,

rather than phase-resetting per se. In a future paper, we will look at

phase-resetting, explicitly, using background activity that is

periodic and of known phase (see below).

In this paper, phase-resetting is taken to imply a nonlinear

interaction between ongoing dynamics and a stimulus that induces a

phase-locking over trials. This generalises the notion of alpha

phase-resetting that is usually characterised empirically. Our

simulations and analysis were not limited to a single frequency.

The ongoing activity we used was broad-spectrum and the phase-

locking measure was not frequency-specific. In empirical studies, it

is not possible to analyse the interaction between stimulus and

ongoing activity, because no single trial can be replicated in the

absence of the stimulus. This means that empirical studies have to

use epochs that show oscillations at a particular frequency to

demonstrate phase-resetting. In a future communication, we will

apply this phase-resetting analysis (cf. (Makeig et al., 2002)) to

stimulations in which our stochastic ongoing activity is replaced

with a deterministic sinusoidal forcing term, in the alpha range. This

will allow us to partition phase-locking into components that are

mediated by linear superposition and phase-resetting respectively.

Evoked vs. induced oscillations

We have also noted that event-related activity is not restricted to

ERPs/ERFs. It encompasses event-related changes in oscillations

(power and synchronisation). We have suggested that this

phenomenon can be explained by changes of connectivity due to

short-term neuronal plasticity (see Friston, 2000a for a related

discussion on nonlinear connections). We will be pursuing this in a

subsequent paper on induced responses. The same changes in

connectivity are also responsible for the modulation of long-range

synchrony (or any type of interdependence measure) between

distant MEG/EEG oscillators (David and Friston, 2003; David

et al., 2004a).

Modelling and estimation

Generally, it was striking how different connections engendered

such diverse event-related waveforms. This raises the issue of how

models, of the sort described here, can be applied to real data. The

long-term agenda of our modelling programme is to establish the

validity of neuronal network models so that they can be used as
forward models to explain real data. The key advantage of this

approach is that the parameters of the model, which are estimated,

have a direct physiological interpretation. Several studies have

shown that it is possible to estimate the parameters of observation

models using real MEG/EEG data, in the case of both rhythmic

activity (Valdes et al., 1999) and ERPs (Rennie et al., 2002). An

important issue, in this context, is the ability to constrain, or

regularise, the inverse problem that dynamic forward models like

this pose. These issues can be addressed using Bayesian inference

and dynamic causal modelling (Friston et al., 2003). A great

advantage of using neuronally plausible forward models is that

constraints on the solution can be applied, in an informed way,

using priors on the model parameters. At present, our team has

published Bayesian inference procedures for dynamic causal

modelling of functional MRI (Friston et al., 2003; Penny et al.,

2004). In forthcoming reports, we will extend this approach to a

variety of models, including the neural mass model for MEG/EEG

described here. A preliminary report has already been published in

which we estimate the parameters of this neural mass model but

without localising the sources (David et al., 2004b). In our next

communication, we will combine neural mass models and forward

MEG/EEG modelling to study cognitive functions, and in particular

to infer changes in connectivity among experimental conditions.
Conclusion

We have shown that neural mass models (David and Friston,

2003; Jansen and Rit, 1995; Lopes da Silva et al., 1997; Nunez,

1974; Rennie et al., 2002; Robinson et al., 2001; Stam et al., 1999;

Suffczynski et al., 2001; Valdes et al., 1999; Wendling et al., 2002)

can reproduce a large variety of MEG/EEG signal characteristics.

The potential advantage they afford, in comparison to standard data

analysis, is their ability to pinpoint specific neuronal mechanisms

underlying normal or pathological activity. Effort is needed to

incorporate them, more systematically, in MEG/EEG analyses to

enable enquiry into mechanistic questions about macroscopic

neuronal processes. In forthcoming studies, we will describe the

estimation of such models in a Bayesian framework (Friston et al.,

2002) and will apply the present model to the analysis of real ERPs.
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Appendix A

In this appendix, we provide differential equations for the ith of

l cortical areas of the hierarchical Jansen model as described in

Section 2.3. The activity of the ith cortical area is described by

eight state variables x(i), the rate of change of which is described by

an equation of the following form:

ẋx ið Þ tð Þ ¼ f x ið Þ tð Þ; u ið Þ tð Þ; S y jð Þ t � d ijð Þ
� �� �

;AF ;AB;AL;C
� �

with j p i: ðA:1Þ

u(i) is the extrinsic input to region i not modelled by other

areas. S( y( j)) is the firing rate of pyramidal cells of region j.

AF, AB and AL are l 	 l connectivity matrices for forward,
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backward and lateral connections, respectively. C is the

connectivity vector for extrinsic inputs. d(ij) is the propagation

delay between region i and region j. Eqs. (1) and (2) in the main

text describe neuronal input and output operators that correspond

to the following state equation which is the specific version of Eq.

(A.1) for our model:

ẋx
ið Þ
1 ¼ x

ið Þ
4

ẋx
ið Þ
4 ¼ He

se

Xl
j¼1
j p i

AF i; jð ÞS y jð Þ t � d ijð Þ
� �� �0

B@

þ
Xl
j¼1
j p i

AL i; jð ÞS y jð Þ t � d ijð Þ
� �� �

þ C ið Þu ið Þ þ c1S y ið Þ
� �1CA

� 2

se
x

ið Þ
4 � x

ið Þ
1

s2e

ẋx
ið Þ
2 ¼ x

ið Þ
5

ẋx
ið Þ
5 ¼ He

se

Xl
j¼1
j p i

AB i; jð ÞS y jð Þ t � d ijð Þ
� �� �0

B@

þ
Xl
j¼1
j p i

AL i; jð ÞS y jð Þ t � d ijð Þ
� �� �

þ c2S x
ið Þ
1

� �1CA

� 2

se
x

ið Þ
5 � x

ið Þ
2

s2e

ẋx
ið Þ
3 ¼ x

ið Þ
6

ẋx
ið Þ
6 ¼ Hi

si
c4 S x

ið Þ
7

� �
� 2

si
x

ið Þ
6 � x

ið Þ
3

s2i

ẋx
ið Þ
7 ¼ x

ið Þ
8

ẋx
ið Þ
8 ¼ He

se

Xl
j¼1
j p i

AB i; jð ÞS y jð Þ t � d ijð Þ
� �� �0

B@

þ
Xl
j¼1
j p i

AL i; jð ÞS y jð Þ t � d ijð Þ
� �� �

þ c3S y ið Þ
� �1CA

� 2

se
x

ið Þ
8 � x

ið Þ
7

s2e
ðA:2Þ

where y(i) = x2
(i) � x3

(i) is the pyramidal cells membrane potential

(depolarisation) of region i. This is assumed to be proportional to

the cortically reconstructed current source densities obtained from

MEG/EEG scalp signals. This equation was integrated using

standard Runge–Kutta techniques (Kloeden and Platen, 1999) with

an integration time-step of 1 ms. Apart from the extrinsic

connectivity parameters, we used the same parameters for every

simulation: He = 3.25, Hi = 29.3, se = 10 ms, si = 15 ms, y = y(ij) =
10 ms, c1 = 50, c2 = 40, c3 = c4 = 12, e0 = 2.5, v0 = 0, r = 0.56.
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