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REVIEW

Modalities, Modes, and Models in
Functional Neuroimaging
Karl J. Friston

In this, the 21st century, human-brain mapping celebrates 21 years of cognitive activation studies.
This review looks at imaging neuroscience and key ideas it has pursued; some ideas portend
exciting developments, and others have failed gloriously. In terms of achievements, there is much
to celebrate, in the sense that it is difficult to imagine modern neuroscience without brain imaging.
I will look at recent advances from the perspectives of functional segregation and integration in
the brain, paying special attention to approaches that deal with the distributed and integrated
nature of neuronal processing and the questions they address.

Neuroimaging is now the predominant
technique in behavioral and cognitive
neuroscience. The volume of papers and

number of fields it pervades are unrivaled (Fig.
1). Despite this, it is curiously difficult to sum-
marize its achievements. The simplest summary
falls back on the two guiding principles that
shaped brain mapping at its inception: namely,
functional segregation and integration. Neuro-
imaging has established functional segregation
(the segregated or modular deployment of func-
tional specialization within brain regions) as a
fundament of brain organization. Furthermore,
we can now characterize the integration of dif-
ferent brain areas in terms of functional and ef-
fective connectivity (Fig. 2). But beyond this,
what have we learned? If you ask any imaging
neuroscientist, they will recount exciting devel-
opments in their own field, ranging from the
detailed functional architecture of retinotopically
mapped visual cortex to the role of the ventral
striatum in emotional learning. However, the
question is more difficult to answer in terms of
generic principles that underlie the brain’s
function and its relationship to anatomy. To see
how people have tried to access these broader
principles, I will look at recent trends in func-

tional magnetic resonance imaging (fMRI), with
a special focus on the questions that have been
addressed. This focus is particularly important
for functional neuroimaging, whose contributions
will be measured by the depth of the questions
asked, not the elegance of themethod or, perhaps,
the answers.

I first consider four themes that have caught
people’s imaginations recently and examine their
underlying motivations, noting that there are
many other exciting developments I could have
addressed [such as genetics in neuroimaging, psy-
chopharmacological fMRI, invasive and non-
invasive electrophysiology, retinotopic mapping,
computational anatomy, tractography with diffu-
sion weighted imaging, lesion-deficit mapping,
magnetic resonance spectroscopy, optical imag-
ing, and technical advances such as polarization
transfer (1)]. I then consider a couple of failures
and conclude with a discussion of the implications
for future directions; this discussion is illustrated
with a few questions or model-led examples.

Multimodal Fusion
For years, we have heard about the promise of
multimodal fusion, in which the spatial precision
of fMRI will be complemented with the tempo-
ral precision of electroencephalography (EEG) to
provide unprecedented spatiotemporal accuracy.
However, this has not happened, despite the fact
that we have the technology to acquire both mo-

dalities simultaneously (2) and have sophisticated
biophysical models mapping from neuronal ac-
tivity to both hemodynamic and electromagnetic
measurements (3). So why is multimodal imag-
ing not commonplace? Perhaps because there are
many questions about functional anatomy that do
not need bilateral spatial and temporal precision.
Most questions about structure-function mapping
and neuronal processing come in two flavors:
where is it? or when is it? Functional magnetic
resonance imaging is quite sufficient for ques-
tions of where and electromagnetic measure-
ments [EEG and magnetoencephalography
(MEG)] are the modalities of choice for ques-
tions of when; however, there are also questions
about how imaging signals are generated that rest
on fusion.

Multimodal fusion refers to the use of a com-
mon forward model of neuronal activity that
explains different sorts of data. Several years ago,
this was thought to be the best way to integrate
fMRI and EEG because model parameters that
are under-constrained by one modality might be
informed by the other. In retrospect, this may
have been a little misguided because the added
value afforded by fusion requires unknown quan-
tities generating data to express themselves in
both modalities. Ironically, it may be that the com-
plementary aspects of fMRI and EEG subvert the
benefits of fusion. This may explain the success
of simpler approaches to multimodal integration,
in which the results from one modality constrain
models of the other. These approaches use fMRI
to provide precise spatial constraints (priors) on
the source reconstruction of electromagnetic sig-
nals (4). Conversely, the temporal precision of
EEG has been exploited in epilepsy research, in
which explanatory variables based upon EEG fea-
tures provide temporal constraints (in the form of
explanatory variables or regressors) tomodel fMRI
data (5).

So what questions call for fusion? A nice ex-
ample is fusion of EEG and MEG data to mea-
sure evoked or induced responses, in which each
modality alone is blind to certain sources (6). How-
ever, multimodal fusion really comes into its own
when trying to understand the neurophysiology
of brain-imaging signals and how they reflect
underlying computations: Questions about func-
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tional segregation are constrained by the reso-
lution of fMRI. For example, a voxel (volume
element of several mm3) contains on average 5.5
million neurons, 1010 synapses, 22 km of den-
drites, and 220 km of axons. Clearly, this pre-
cludes questions about functional specialization
within the dendritic tree or indeed a cortical ma-
crocolumn and calls for a broader notion of
multimodal fusion, in which noninvasive imag-
ing and invasive microscopic techniques are used
to understand the principles of cortical compu-
tation that transcend spatial scales. I will return to
this later but first consider techniques that try to
find evidence for functional segregation at the
voxel level.

Multivariate Pattern Classification, Decoding,
and Mind-Reading
There has been immense interest recently in the
use of multivariate pattern classification to infer
the intentions or percepts of subjects by using
fMRI measurements (mind-reading or decoding)
(7–9). Conventional brain mapping tries to estab-
lish statistical dependencies between experimental
manipulations and measured brain responses.
This is related to a similar mapping in computa-
tional neuroscience, which refers to how neurons
encode features in the outside world. The reverse
mapping from measured physiological signals
to the features encoded is called decoding. De-
coding, reverse inference, or mind-reading uses
multivariate analyses of fMRI data to classify the
perceptual or cognitive state of a subject. Cru-
cially, they harness patchy functional segregation
(such as orientation selectivity in the visual cor-
tex) at the voxel and subvoxel scale to search for
patterns over voxels that best discriminate be-
tween experimental conditions.

Despite the allure of mind reading, one has to
be wary of admiring the “emperor’s new clothes.”
This is because multivariate pattern classifica-
tion conflates multivariate with classification. Put
briefly, their enhanced sensitivity and finessed
characterizations of distributed responses rest on
the use of multivariate models, not classification
or reverse inference. Demonstrating a significant
mapping between mental states and brain signals
does not depend on the direction of the mapping
(as with a significant correlation). In other words,
showing that one can decode activity in the vi-
sual cortex to classify (above chance) a subject’s
percept is exactly the same as demonstrating signif-
icant visual cortex responses to perceptual changes.
In this sense, all demonstrations of functionally
specialized responses represent an implicit mind-
reading. So what are the new questions behind
decoding studies? If one looks closely, the ques-
tions are the same as in conventional encoding
analyses: Basically, are there regionally specific
correlates of some cognitive, perceptual, or sen-
sorimotor state? However, when addressed with
multivariate analyses the question pertains to
distributed neuronal activity. This is because

one is no longer testing for a dependency be-
tween an experimental variable and activity in
one voxel but distributed responses over many
voxels (Fig. 3). These distributed responses may
have a fine-scale structure and be highly subject-
specific, as opposed to the “blobs” identified in
conventional mass-univariate analyses. This speaks
to exciting developments, in which t tests used
in conventional analyses (such as statistical para-
metric mapping) are replaced with statistics from
multivariate models to provide maps of the mu-
tual information between locally distributed
cortical responses and experimental variables
(10). Here, questions about functional segrega-
tion have not changed fundamentally but are
framed in terms of distributed neural computa-
tions at the voxel or subvoxel scale. We will see
below that multivariate models (such as eigen-
image analysis and dynamic causal modeling)

also play an important role in studying functional
integration.

TheNeurophysiological Basis of Imaging Signals
How many times have you read, “We know very
little about the relationship between fMRI sig-
nals and their underlying neuronal causes”? In
fact, decades of careful studies have clarified an
enormous amount about the mapping between
neuronal activity and hemodynamics (11–14).
Furthermore, we know more than is sufficient to
use fMRI for brain mapping. This is because the
statistical models used to infer regionally specific
responses make no assumptions about how neu-
ronal responses are converted into measured
signals (and that in particular do not assume this
mapping is the same from voxel to voxel). In
short, one does not need to know any neurophys-
iology to make precise inferences about where
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Fig. 1. Citation rates for the different modalities of functional neuroimaging. PET, positron
emission tomography; SPECT, single-photon emission computed tomography. The citation rates [in
10,000 citations per year (top left) and proportion by modality (middle left)] are shown for the
past 30 years. These data came from the ISI Web of Knowledge by searching for EEG OR MEG, PET
OR SPECT, fMRI AND Brain with Topic = Neurosciences.
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computations are taking place, provided there
is some mapping between neuronal activity and
hemodynamic responses (in a well-designed ex-
periment, the only difference between conditions
is neuronal activity, which is the only explanation
for any hemodynamic difference).

So what are the questions asked when study-
ing their relationship? These questions are about
what can and cannot be inferred about neuronal
activity from fMRI; for example, does fMRI re-
flect presynaptic inputs or postsynaptic firing (14);
can it disambiguate between inhibitory and ex-
citatory synaptic activity (13)? These questions
address synaptic and microcircuit mechanisms in
an attempt to disclose the relationship between
spiking activity, local field potentials, and non-
invasive imaging signals. Not only is this im-
portant for understanding what the brain is doing
(in terms of local neuronal computations), it is
critical for modeling distributed brain responses.

This is because fMRI responses do not cause each
other; they are caused by hidden neuronal states,
and one needs to understand the mapping from
neuronal states to measured signals to make
sensible inferences about effective connectivity
(the influence that one neuronal system has on
another). For example, in fMRI, there is a distinc-
tion between models of effective connectivity
used by dynamic causal modeling and economet-
ric models (such as structural equation model-
ing and Granger causality). In dynamic causal
modeling, neuronal states are modeled explic-
itly, allowing for regional variations in the
hemodynamic response function. This variation
violates the assumptions of econometric models.
Recent multimodal studies in rat models of epi-
lepsy have shown these variations can have a
profound effect on inferences about effective
connectivity (15). Another important example is
the relationship between hemodynamics and the

frequency of induced electrophysiological re-
sponses, in which higher frequencies (that may
reflect neuromodulatory mechanisms) lead to in-
creased fMRI signals (16).

Resting-State Correlations and Modes
There has been a recent upsurge in studies of
fMRI signal correlations observed while the brain
is at rest (17). These patterns seem to reflect ana-
tomical connectivity (18, 19) and can be char-
acterized in terms of remarkably reproducible
patterns of functional connectivity called modes
(20). One of these modes recapitulates the pattern
of deactivations observed in activation studies
(the default mode) (21). These studies have
been received with much excitement (see http://
restingstate.stanford.edu/) and some ambivalence:
On the one hand, they are very interesting. They
suggest that, even at rest, endogenous activity
in the brain is self-organizing and highly struc-
tured. On the other, their relationship to neuronal
dynamics (22) and the questions they pose (23)
are not always clear. One view of resting-state
correlations is that they forego hypothesis test-
ing because they preclude experimental manipu-
lations. So why are they so interesting? Perhaps
because they address functional integration and
distributed processing and do so in the context of
structure-function relationships. In this context,
there are many mechanistic questions about the
genesis of autonomous dynamics and the struc-
tures that support them. Some of the most interest-
ingwork in this field has come from computational
anatomy and neuroscience. The emerging picture
is that endogenous fluctuations are a consequence
of dynamics on anatomical connectivity structures
with particular scale-invariant and small-world
characteristics (24, 25). These are well-studied and
universal characteristics of complex systems and
suggest that we may be able to understand the
brain in terms of universal phenomena. In short,
endogenous fluctuationsmay be one way in which
anatomy speaks to us through dynamics. Further-
more, they prompt important questions about how
fluctuations shape evoked responses. In other
words, are evoked brain responses and implicit
computations affected by endogenous changes in
its state (26)?

Some Interesting Failures
It is worthwhile to consider ideas that have not
worked (and acknowledge thosewho tried tomake
themwork). I will look at two examples, one from
biophysics and one from neuroinformatics. A few
years ago there was great excitement about the
possibility of using fMRI to measure neuronal
currents directly (27, 28). Despite some impres-
sive scientific prospecting, the hope that we will
be able to measure neuronal activity directly on a
millisecond and millimeter scale throughout the
brain is now receding. Basically, the sorts of sig-
nals caused by neuronal activity currently appear
to be too small tomeasure. However, it is comfort-
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ing to reflect that we can already measure, with
exquisite temporal precision, neuronal currents
using EEG and MEG.

In 2000, there was a bold experiment to see if
fMRI data sharing would provide added value for
the imaging community (29) in terms of meth-
odological cross-validation and the opportunity
to reanalyze data. Despite laudable efforts, the ex-
periment failed; why? Functional neuroimaging
is a leader in providing informatics models for
standardization (such as data formats and ana-
tomical spaces) and software sharing (such as data
analysis packages). However, unlike genomic or
astrophysical data, fMRI data per se are very con-
text sensitive. This means if data are optimal for
your question, they are suboptimal for mine. This
somewhat subverts the raison d’être for sharing.
Furthermore, on a lighter note, a reviewer observed
that “it’s much too easy to collect… data (easier
in fact than obtaining data from the data centre).”

Models and Questions
I have looked at recent developments in terms of
the questions they address. The premise of this
review is that the challenge for neuroimaging lies

in specifying the questions or competing models
(hypotheses) that it can explore. The implicit
equivalence between questions and models may
explain why many recent advances in character-
ing brain-imaging data rest on model comparison.
We have been comparing models with classical
inference from the inception of brain mapping
(comparing null and alternative models about re-
gionally specific brain activations). However, the
range and nature of models we could compare is
growing rapidly. The conceptual challenge ahead
may not lie in finessing the techniques at our
disposal but informing the models used to ex-
plain data. I will consider four examples ofmodel-
led neuroimaging, all of which engage with fields
beyond neuroimaging.

Computational Neuroscience
Perhaps the most obvious place to look for well-
posed questions or models is theoretical neuro-
biology and computational neuroscience. There
are many compelling examples that use fMRI to
adjudicate among models of neuronal computa-
tions and their functional architectures. These
studies rest on replacing traditional explanatory

variables in statistical models of imaging data
with quantities generated by computational mod-
els that are actually doing something. Nice ex-
amples here include the models of reinforcement
and value learning (30–33). There is now an estab-
lished tradition of taking a computational model
that represents a hypothesis about how the brain
evaluates contingencies, optimizing the model in
relation to behavioral data, and using it to predict
regionally specific fMRI responses (33). As a re-
sult of this approach, ventral striatal responses
can now be treated as a proxy for unexpected re-
wards of the sort predicted by temporal difference
models of learning. This is remarkable because a
few years ago the only regionally specific cor-
relates of reward came from invasive unit elec-
trode recordings (34). Another nice example is in
computational motor control, in which theories
about optimal control can be evaluated against
empirical fMRI data (35). The last example is the
use of constructs from information theory to
quantify novelty and surprise to see which parts
of the brain encode causal regularities (or vola-
tility) in our sensorium (36, 37).

Neuroeconomics
A pleasing example of synergy between imaging
and another field is the use of constructs from
behavioral economics. Neuroimaging is now a
primarymodality for the study of neuroeconomics
and allows researchers to establish the neuronal
infrastructures that may be responsible for en-
coding and computing things like expected util-
ity, discounting, and other variables that shape
our choices in social or economic interactions
(38, 39). Another example, from the new field of
social neuroscience, is the adoption of game
theory to generate predictors of brain responses.
In this context, model comparison allows one to
lend a physiological validity to notions like guilt,
regret, or altruism (40).

Biophysical Modeling
Model comparison also plays a key role in op-
timizing biophysical models. A pragmatic ex-
ample here is the use of EEG data to adjudicate
among forward models that map from sources
in the brain to sensors. These models embody
priors on the deployment of distributed neuronal
sources and allow one to select the best prior
assumptions. Put simply, one creates a number
of models, each incorporating different but plau-
sible assumptions (based on prior beliefs) about
how data are generated. One then compares these
models in terms of their evidence (the probabil-
ity of obtaining data under that model). In some
cases, this comparison is an implicit part of model
optimization and can automatically switch off ir-
relevant neuronal sources (41). The same model
comparison framework has proven extremely
powerful in the comparison of dynamic causal
models (42), in which hundreds of models (en-
coding different connectivity architectures) are

Decoding (e.g., SVM)

Encoding (e.g., SPM)

Multivariate (e.g., CVA)

Time

fMRI
signals

Experimental
variables 

Fig. 3. Schematic showing the relationship between decoding (demonstrating a many-to-one
mapping between activity in a local clique of voxels and an experimental variable), encoding (the
conventional approach of showing a significant many-to-one mapping between experimental
variables and activity in one voxel), and the more general multivariate many-to-many mapping
between both sets of variables. SVM, support vector machine; SPM, statistical parametric mapping;
CVA, canonical variates (or correlation) analysis.
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searched. These are an important class of models
because many questions or hypotheses can be
framed in terms of context-sensitive coupling be-
tween regions. Important questions here include
the relative contribution of interhemispheric,
bottom-up and top-down influences in cortical
processing hierarchies and the implications for
perception and action. These models have now
been developed for fMRI, EEG, MEG, and local
field potentials and are at the stage at which one
can ask mechanistic questions about neuronal
coupling by using, for example, animal models
of Parkinson’s disease (43).

Statistical Models
Imaging neuroscience has made some notable
contributions to the physical sciences. In terms of
statistical models for continuous data, neuro-
imaging has been at the forefront of developments,
thanks to the contribution of people like Keith
Worsley (who died prematurely a few months
ago). Neuroimaging has essentially invented a
new field of statistics, topological inference (based
on random field theory), which underpins near-
ly all mainstream image analysis software (Fig.
4) (44). Similarly, some of the most advanced
mathematical modeling of spatial data and their
deformations has emerged in computational neu-
roanatomy (45). Finally, our systems models of
connectivity and coupling are probably among
the most developed in the biological sciences
(46). These modeling contributions are not al-
ways heralded with the same applause as dis-

covery science but underpin model comparison
and the ability to ask questions of our data.

Conclusion
In summary, the most promising avenues for the
future may rest on developing better models of
our data that complement and exploit the richness
of these data. These models may well already
exist in other disciplines (such as machine learn-
ing,machine vision, computational neuroscience,
and behavioral economics) and may enable the
broader neurosciences to access neuroimaging so
that key questions can be addressed in a theo-
retically grounded fashion. When I started writing
this review, I was looking for headline themes and
imminent breakthroughs. However, these may be
less important than the vast number of incremen-
tal studies that pervade and enrich nearly every
corner of neuroscience. Perhaps what we should
be celebrating 21 years later is the fact that any
bright young student or seasoned researcher can
engage with an imaging unit and start to ask
questions they are passionate about.
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Euler characteristic density

Expected Euler characteristic 

Search volume (resels)

Search volumeExcursion set

Fig. 4. Schematic showing some of the key equations behind topological inference. The basic
idea is to split the problem of computing a P value (top) for a peak in a statistical image or map
into two parts. The first part (left), the Euler characteristic density rD(t), depends only on the
statistic and threshold t chosen for a D-dimensional search space; s ∈ S. This is the expected
number of peaks per resolution element (resel). In this example, the equations pertain to the T
statistic with a cumulative density FT and n degrees of freedom. The second part (right) is the
search volume ℓ(S)D measured in resels, which depends only on the shape and smoothness of the
search space. This is defined in terms of the residuals r(s) of the statistical test at each voxel; see
(44) for details.
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