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Abstract: In systems biology, questions concerning the
molecular and cellular makeup of an organism are of
utmost importance, especially when trying to understand
how unreliable components—like genetic circuits, bio-
chemical cascades, and ion channels, among others—
enable reliable and adaptive behaviour. The repertoire
and speed of biological computations are limited by
thermodynamic or metabolic constraints: an example can
be found in neurons, where fluctuations in biophysical
states limit the information they can encode—with almost
20–60% of the total energy allocated for the brain used
for signalling purposes, either via action potentials or by
synaptic transmission. Here, we consider the imperatives
for neurons to optimise computational and metabolic
efficiency, wherein benefits and costs trade-off against
each other in the context of self-organised and adaptive
behaviour. In particular, we try to link information
theoretic (variational) and thermodynamic (Helmholtz)
free-energy formulations of neuronal processing and
show how they are related in a fundamental way through
a complexity minimisation lemma.

Introduction

The design of engineered and biological systems is influenced by

a balance between the energetic costs incurred by their operation

and the benefits realised by energy expenditure. This balance is set

via trade-offs among various factors, many of which act as

constraints. In contrast to engineering systems, it has only been

possible recently to experimentally manipulate biological sys-

tems—at a cellular level —to study the benefits and costs that

interact to determine adaptive fitness [1,2]. One such example is

the nervous system, where metabolic energy consumption

constrains the design of brains [3]. In this review paper, we start

by defining computation and information in thermodynamic terms

and then look at neuronal computations via the free-energy

principle. We then consider the efficiency of information

processing in the nervous system and how the complexity of

information processing and metabolic energy consumption act as

constraints. The final section tries to integrate these perspectives:

In brief, we will argue that the principle of maximum efficiency

applies to both information processing and thermodynamics; such

that—for a given level of accuracy—statistically and metabolically

efficient brains will penalise the use of complex representations

and associated commodities like energy.

Information Is Physical

A widely used term in neuroscience is ‘‘neuronal computation’’;

but what does computation mean? Simply put, any transformation

of information can be regarded as computation, while the transfer

of information from a source to a receiver is communication [4].

To understand the physical basis of computation, let us reconsider

Feynman’s example of a physical system whose information can be

read out. The example is intentionally artificial, to keep the physics

simple, but has a direct parallel to neuroscience, as we will show at

the end. Consider a box that it is filled with an ideal gas containing

N atoms. This occupies a volume V1, in which we can ignore forces

of attraction or repulsion between the particles. Now suppose that

the answer to a question is ‘‘yes’’ if all N atoms are on the right-

hand side of the box, and ‘‘no’’ if they are on the left. We could use

a piston to achieve this. By compressing the gas into a smaller

volume V2, a piston performs the work

dW~PdV ð1Þ

Classical thermodynamics tells us that the pressure and volume of

an ideal gas are linked such that

PV~NkT ð2Þ

where k is Boltzmann’s constant and the temperature T is assumed

constant. The work done on the gas is then:

dW~

ðV2

V1

NkT

V
dV~NkT(ln V2{ln V1) ð3Þ

As we compress the gas, the atoms speed up and attain kinetic

energy, hence heating the box. According to the conservation of

energy, the work done on the gas is converted to heat. This heat is

dissipated to the external environment to keep the temperature

constant. This means that the internal energy U of all the particles

remains unchanged, such that the work done by the system or

change in Helmholtz free energy A = U–TS reduces to the change in
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thermodynamic entropy S = kH, where H is Shannon entropy:

dA~{dW~dU{kTdH[dH~N(ln V2{ln V1) ð4Þ

For a single gas particle, with V2~
1
2

V1 we find that Shannon

entropy decreases by ln 2. This means that by compressing the gas

there are fewer places that the particles can occupy and we are less

uncertain about their whereabouts. In short, we have gained

information. What have we learned from this exercise? To obtain

information—in other words, to reduce entropy or average

uncertainty —one has to perform work. More generally, Land-

auer’s seminal work showed that energy is required when

information is erased or deleted via irreversible operations [5,6].

In the context of noise or communication, the deletion of incorrect

bits therefore requires the dissipation of energy. This dissipation is

decreased at lower temperatures because of reduced thermal

noise—lower temperatures facilitate a reduction of energy

expenditure.

In the brain, volume changes are not the primary mode of

conveying information. Instead, the compartments present in the

brain, ranging from synaptic clefts to organelles, maintain a

relatively constant volume over several seconds at least. What

changes on a short time scale are the numbers of molecules, such

as transmitters or ions, in these compartments. If we translate

volumes to concentrations ci = N/Vi, the change in entropy due to

information transfer becomes

dH~N ln
V2

V1

� �
?dH~N ln

c1

c2

� �
ð5Þ

The work is then dW~NkT ln
c1
c2

� �
. If the molecules are charged,

the chemical potential sets up an electrical potential (called the

Nernst potential), which is the basis for much of the signalling

within the brain. For some molecules, such as Na+ and K+ ions,

the concentration changes during electrical signalling are minis-

cule relative to the total concentrations of these molecules. By

linearising dW in the concentration changes, we can easily

compute the energetic cost of neuronal signals [7].

In the examples above, the system remains in thermodynamic

equilibrium. Recent progress has been made in describing the

relationship between Helmholtz free energy and work when the

system is driven far from equilibrium—for example, if the gas was

compressed quickly. In this more general setting, the Jarzynski

equality states [8]:

E {dW½ �§dA~{kT ln E exp
dW

kT

� �� �
ð6Þ

where the expectation E[?]is over an ensemble of paths from the

initial to final states. Crucially, the change in Helmholtz free

energy (and expected work) does not depend upon the path or the

rate at which external parameters (like volume) change. Notice

that Equation 4 is a special case of Equation 6, when there is only

one (infinitely slow) path.

Summary
In summary, changing the state of a system necessarily entails a

change in Helmholtz free energy that is equivalent to the work

done on the system. Under isothermal conditions, this changes the

thermodynamic entropy, which can be regarded as the average

uncertainty or information we have about the (microscopic) state

of the system. So is this sufficient to establish the link between

thermodynamic free energy and information processing? Not

really: because the information here is about the (microscopic)

state of the system in question. This does not speak to

representational information of the sort associated with biological

computations or communication: information of this sort reflects

how one system represents another. In the next section, we

consider a purely information theoretic perspective on computa-

tion that invokes free energy and entropy of a fundamentally

different sort.

The Free-Energy Principle

Equation 4 shows how the basic laws of classical thermody-

namics connect the Helmholtz free energy of a system to its

entropy, where entropy corresponds to the disorder or average

uncertainty about its state. In biological systems, there is a natural

tendency to resist disorder—at multiple levels of organisation. The

maintenance of sensory and physiological states within character-

istic bounds is typical of biological systems and usually relies on

some sort of regulatory process, i.e., homeostasis [9,10]. Mathe-

matically, this can be expressed by saying that the (sensory) states

of biological systems have characteristically low Shannon entropy,

where—under ergodic assumptions—Shannon entropy is (almost

surely) the long-term average of self information or surprise (see

below). An ergodic system has an invariant phase volume [11],

which is a necessary condition for an organism to exist—in the

sense that it would otherwise transgress phase boundaries and

cease to exist [12].

Here, the Shannon entropy plays the same role as thermody-

namic entropy but measures the dispersion not over microstates of

a thermodynamic (canonical) ensemble, but over some phase

functions or macroscopic variables that change with time. These

variables can take values that are relatively frequent (low surprise)

or infrequent (high surprise). Shannon entropy reflects the average

surprise of these variables as they fluctuate over time. By

minimising the surprise associated with environmental fluctuations

(sensory input), an organism can maintain its physiological states

within bounds [13,14].

To evaluate surprise, biological systems need to infer the

probability of each sensory fluctuation they encounter. In systems

like the brain, these inferences need to be made in the blink of an

eye. However, calculating the requisite probabilities can be an

intricate and lengthy process, making such computations practi-

cally intractable. In 1972, the physicist Richard Feynman came up

with a clever trick for calculating probabilities (approximately but

very efficiently) using variational free energy [15]. The trick is to

convert a difficult probability density integration problem into an

easy optimisation problem by minimising a free energy bound on

the quantity of interest—in our case, the surprise of sensory input.

In brief, this entails adjusting probability distributions over the

causes of sensory input until they minimise the free energy of

sensory input. Notice that we have introduced the notion of causes

or hidden states of the world that are responsible for generating

sensory samples. Heuristically, this means the system or agent has

a model of the world that it uses to evaluate the likelihood or

surprise of a sensation. Mathematically, hidden states are fictive

variables that are necessary to construct a variational free energy

bound on surprise, as we will see next.

Let us assume that self-organising systems like the brain

represent their environment probabilistically, in terms of hidden

states that cause sensory input. For example, an agent might

believe its visual sensations were caused by a bird flying across its

field of view. These beliefs can be regarded as real-valued, time-
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dependent internal or representational states m(t)[R. These

internal states encode a conditional probability density q(yDm)
over hidden states in the world y(t)[Y—such as the motion,

colour, and size of the bird. The objective is to minimise the

surprise {ln p(sDm) of sensations s(t)[S. Here, m denotes a model

entailed by a system or an agent, and p(sDm) is the probability of

observing a particular state under that model. The model is

effectively used to generate hypotheses that explain sensory input

in terms of hidden states or representations—such as a bird in

flight.

As noted above, minimising surprise directly is an intractable

problem, so surprise is replaced with its variational free energy

bound [15]. This free energy is a function of sensory and internal

states and can now be minimised with respect to the internal states:

F tð Þ~Eq U s,yð Þ½ �{H q y mjð Þ½ �

~{ln p s mjð ÞzD q yð Þ p y s,mjð Þk½ �
ð7Þ

Here, U(t) = 2ln p(s(t), y(t)|m) corresponds to an internal energy

under a generative model of the world, described in terms of the

density over sensory and hidden states p(s,y|m). In Equation 7 and

throughout H[p] = Ep[2ln p] denotes the entropy of a probability

distribution. Comparison with Equation 4 explains why F(t) is

called free energy—by analogy with its thermodynamic homo-

logue that is defined as internal energy minus entropy. However, it

is important to note that variational free energy is not the

Helmholtz free energy in Equation 4—it is a functional of a

probability distribution over hidden (fictive) states encoded by

internal states q(y|m), not the probability distribution over the

(physical) internal states. This is why variational free energy

pertains to information about hidden states that are represented,

not the internal states that represent them. In other words, the

variational free energy measures the information represented by

internal states, not internal states per se. Later, we will try to

establish the link between variational and Helmholtz free energies.

First, we consider the computational implications of minimising

variational free energy.

In short, free energy finesses the evaluation of surprise—where

an agent can evaluate free energy fairly easily, given the internal

energy or a generative model of its environment. The second

equality in Equation 7 says that free energy is always greater than

surprise, because the second term (Kullback-Leibler divergence) is

nonnegative. This means that when free energy is minimised with

respect to the internal states, free energy approximates surprise

and the conditional density approximates the posterior density

over hidden states:

D q y mjð Þ p y s,mjð Þk½ �&0[q y mjð Þ&p y s,mjð Þ ð8Þ

This is known as approximate Bayesian inference, which becomes

exact when the conditional and posterior densities have the same

form [16]. Intuitively, minimising free energy renders the

conditional density the true posterior density over hidden states,

where both are informed by—or conditioned on—sensory

information. In Bayesian parlance, a posterior density describes

a belief after sampling some data—in contrast to a prior belief that

existed before the data were available. Minimising variational free

energy can therefore be regarded using sensory evidence to update

prior beliefs to approximate posterior beliefs.

How can we place a concept like variational free energy in the

context of neuronal computation? This has a long history—

originating in Geoffrey Hinton [17,18] and Douglas Hofstadter’s

[19] work using Ising models for inference in artificial neural

networks. Hinton and colleagues realised that variational free

energy was mathematically equivalent to the cost function for

inference in a neural network, such as a Hopfield model [20]—the

difference between the prediction made by the neural network and

what it actually produced as an output, i.e., the prediction error.

These ideas were subsequently absorbed into the free-energy

principle [21,22], whose key insight was that to reduce the entropy

of sensations, the system had to act on the environment. The

solution is to assume that both the internal states of the system and

its action minimise variational free energy (and implicitly surprise).

This dual minimisation maps nicely onto perception and action,

where variational free energy can be reduced by optimising

internal (representational) states or sensory states through active

sensory sampling. This is known as active inference and essentially

compels organisms to selectively sample what they expect to

sample.

Under certain statistical assumptions, free energy is essentially

the difference between the agent’s predictions and the actual

sensations sampled [22]. Therefore, minimising the free energy is

equivalent to reducing prediction error and hence surprise [14].

To minimise free energy or prediction error, the brain can either

change its prediction to match sensory input or it can change what

it samples to match its predictions [21]. This suggests that the

brain is continually making predictions and reevaluating them by

comparing inputs with internal predictions to make sense of the

world. Is there any empirical evidence that this scheme operates in

the nervous system?

Volunteers in a magnetic resonance imaging (MRI) scanner

watched two sets of moving dots—one random and the other

moving coherently. They showed patterns of distributed brain

activation that could only be explained in terms of top-down

predictions from deep in the brain to visual centres in the occipital

cortex. In other words, top-down predictions from the extrastriate

cortex appeared to suppress prediction errors in the striate cortex

[23]. Assuming the visual system is a hierarchy of cortical areas,

such predictive coding enables predictions about hidden states of

the world—like coherent motion—to influence processing at lower

levels [23]. Similarly, in the auditory cortex, electroencephalo-

graphic signals from higher processing centres change brain

activity in lower areas [24]. Using dynamic causal modelling,

Garrido et al. [24] found that models with top-down connections

explained empirical electrophysiological data far better than the

models with only bottom-up connections. Garrido et al. [24]

argued that these neuronal responses were consistent with the

brain’s attempt to conciliate predictions at one level with those in

other levels—in other words, to reduce hierarchical prediction

error.

What sort of neuronal architectures mediate this prediction

error minimisation—or predictive coding? In mammalian brains,

cortical areas are organised hierarchically [25,26], wherein

populations of neurons can encode expected states of the world

and provide top-down predictions to lower or sensory levels

[27,28]. For example, top-down connections from pyramidal

neurons in the deeper layers of the cortex are thought to provide

predictions to superficial pyramidal populations of a lower area.

This enables forward connections from superficial pyramidal

neurons to convey prediction errors, creating recurrent dynamics

that suppress prediction errors at each level of the cortical

hierarchy [29–31]. The precision of these errors can be modulated

by neuromodulation [32]. Such rescaling of prediction errors in

proportion to their precision is simply a form of gain control

[33,34] and may mediate attention. In short, the wetware

necessary to minimise free energy appears to be available and is

remarkably consistent with its known functional anatomy.
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In summary, biological organisms are open self-organising

systems that operate far from thermodynamic equilibrium [35].

The free-energy principle suggests that organisms avoid phase

transitions by minimising (a variational free energy bound on) the

Shannon entropy of their sensory states. But how does one

reconcile the need of an animal to survive (by avoiding phase

transitions) with its innate tendency to forage or explore? This

apparent paradox is resolved by noting that active inference is

driven by prior beliefs—and these beliefs can entail exploration. In

other words, agents expect to explore and would be surprised if

they did not. We will return to the central role of priors in the last

section.

Summary
Perception minimises prediction error by optimising synaptic

activity (perceptual inference), synaptic efficacy (learning and

memory), and synaptic gain (attention and salience) [14]. In doing

so, we form an optimal representation of the sensorium. Such

strategies of optimisation are mathematically equivalent to

predictive coding [36,37] or, as we will see later, maximising the

mutual information between sensations and the responses they

evoke [38,39]. In the embodied context of action on the

environment, free-energy minimisation can also explain active

inference in the exteroceptive domain [40] and homoeostasis

through minimising interoceptive prediction errors. In short, the

idea of free-energy minimisation, stemming from Feynman’s

beautiful piece of mathematics, allows us to consider perception

and action under a general framework—and produce testable

hypotheses.

Information Efficiency

In the previous section, we described how variational free

energy is intricately linked to surprise—the free-energy principle

tells us that an organism should strive to reduce its prediction error

thereby reducing free energy. The connection between free energy

and information—although obvious—is seldom commented upon

(see Table 1 in [41]). To minimise free energy, the expected

prediction error has to be minimised while, at the same time, the

entropy of the conditional density is maximised. This is slightly

paradoxical because the purpose of free-energy minimisation is to

reduce sensory entropy. However, Equation 7 shows that if the

entropy of sensory states H[p(s|m)] is minimised vicariously by

minimising free energy over time, then the entropy of the

conditional density H[q(y|m)]must be maximised at each point

in time. This follows from a need to balance accuracy and

complexity of the sort seen in Occam’s razor. We will return to this

in a later section in the context of the principle of maximum

entropy [42]. In this section, we focus on information theory as a

way of describing the quality of representations and the constraints

under which these representations are formed.

We know that all animals process and transmit information to

survive and reproduce in an uncertain environment. A principled

way to understand such signal processing was absent until Claude

Shannon’s seminal work on information theory [43]. To

understand how messages can be transferred efficiently via

telegraphic wires, Shannon derived powerful formalisms that

provided fundamental limits on communication [43]. On one

hand, information theory allowed optimisation of complicated

devices like satellite communication systems. On the other hand, it

fitted comfortably with the bounds established by thermodynamics

[44]. Some years after its inception, biologists used information

theory to study the efficiency of processing in the nervous system.

It was realised that efficient representations were permitted by

statistical regularities in the sensorium, i.e., hidden states and their

sensory consequences that have low entropy (see [45]). However,

the influence of random fluctuations and other constraints prohibit

a completely efficient encoding of hidden states in the world.

In the nervous system, limited bandwidth and dynamic range

create an information bottleneck due to the limited response

ranges of the neurons in sensory epithelia [46–48]. Atick [45]

suggests that these bottlenecks can also result from computational

limitations at higher levels of sensory processing—citing as an

example the ‘‘attention bottleneck,’’ where there is constriction of

information processing—in bits per unit time—somewhere

between area V4 and the inferotemporal cortex. In brief, sensory

receptors are required to compress an enormous range of

statistically redundant sensory data into their limited range. One

way to achieve this is by compression —imagine an architect’s

plan of your office. This does not include the dimensions of every

brick, just the information necessary to build the office. It has been

proposed that sensory systems also apply the principle of

compression. They sieve redundant information, such that only

information that is necessary to encode hidden states is retained

[46]—in engineering this is called a factorial code. Of course there

are many ways to describe such sensory encoding. Others include

but are not restricted to feature detection, filtering, etc. Among

these, schemes like linear predictive coding and minimum

description length formulations have a particularly close and

formal relationship with variational formulations.

Sensory receptors (mechanoreceptors, photoreceptors, and the

like) are thought to build a factorial representation of the world—

such that only independent bits of information are sampled

(Figure 1). Interestingly, this has been observed in the large

monopolar cells (LMC) in the blowfly compound eye [49].

Laughlin [49] measured the distribution of the fly’s natural

environment from horizontal scans of dry woodland and lake-side

vegetation and quantified the responses of light-adapted LMCs.

Laughlin [49] found that the LMC—known to respond to contrast

signals—is most sensitive around the most probable input

contrast—with sensitivity dropping to zero as the input became

more improbable.

The application of information theory to the nervous system is

formally pleasing and has provided some compelling insights.

However, it does have limits [50]: although it allows one to

quantify the transmission of information, it has no notion of

semantics. It only cares about how much information is present

but not about what that information represents. A widely used

information theoretic metric in neuroscience is the mutual

information, which measures how much a random variable tells

us about another random variable [51]. If s[S is a stimulus and

m[R is the representational response, the mutual information is

defined as:

I S; Rð Þ~D p s,m mjð Þ p s mjð Þp m mjð Þk½ �

~

ðð
p s,m mjð Þln p s,m mjð Þ

p s mjð Þp m mjð Þ dsdm
ð9Þ

Note that the joint density p(s,m|m) is not the generative model

p(s,y|m) of the previous section—it describes the joint distribution

of sensory and internal states, not the joint distribution of sensory

and hidden states. Equation 9 simply describes the divergence or

relative entropy between the joint density and the product of its

marginals. The mutual information is zero when the neuronal

representation is statistically independent of the stimulus and is

equal to the entropy of the stimulus when the representation

faithfully encodes the stimulus. Since the mutual information must
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lie between zero and channel capacity, it is only the channel

capacity that limits the information transfer between stimulus and

neuronal response.

Estimating channel capacity by maximising empirical estimates

of mutual information can be a difficult task, especially when the

experimenter has only an informed guess about the stimuli that

evoke responses. One way to finesse this problem is to use adaptive

sampling of inputs, which hones in on stimuli that are maximally

informative about observed responses [52]. Assuming one knows

the stimuli to use, the next problem is the curse of dimensionality.

In other words, one requires an enormous amount of data to

estimate the probability densities required to quantify mutual

information. Although, sophisticated machine learning tools try to

estimate mutual information from limited data [53–55], the

numerics of mutual information are fraught with difficulties.

Summary
Irrespective of the thermodynamic or computational impera-

tives for a biological system, the simple observation that there

should be some statistical dependency between sensory samples

and the internal states that encode them means that sensory and

internal states should have a high mutual information. This leads

to the principles of maximum information transfer (a.k.a. infomax)

and related principles of minimum redundancy and maximum

efficiency [46–48]. Later, we will see how minimising variational

free energy maximises mutual information and what this implies

for metabolic costs in terms of Helmholtz free energy. First, we will

briefly review the biophysical and metabolic constraints on the

information processing that underlies active inference.

Is Inference Costly?

Hitherto, we have considered the strategies that neurons might

use for abstracting information from the sensorium. A reliable

representation is necessary for an animal to make decisions and

act. Such information processing comes at a price, irrespective of

whether the animal is at rest or not [56]. Cellular respiration

enables an organism to liberate the energy stored in the chemical

bonds of glucose (via pyruvate)—the energy in glucose is used to

produce ATP. Approximately 90% of mammalian oxygen

consumption is mitochondrial, of which approximately 20% is

uncoupled by the mitochondrial proton leak and 80% is coupled

to ATP synthesis [57]. Cells use ATP for cellular maintenance and

signalling purposes, via ion channels that use ATP hydrolysis to

transport protons against the electromotive force. Given that the

biophysical ‘‘cash-register’’ of a cell (the ATPases) can only handle

ATP—and not glucose—we will discuss brain metabolism in terms

of ATP.

In man, the brain constitutes just 2% of the body mass, while

consuming approximately 20% of the body’s energy expenditure

for housekeeping functions like protein synthesis, maintenance of

membrane potentials, etc. [58]. What consumes such remarkable

amounts of energy? Assuming a mean action potential (AP) rate of

4 Hz, a comprehensive breakdown of signalling costs suggests that

action potentials use around 47% of the energy consumed—

mainly to drive the Na+/K+ pump (Figure 2) [59]. This pump

actively pumps Na+ ions out of the neuron and K+ ions inside [60].

In doing so, the pump consumes a single ATP molecule for

transporting three Na+ ions out and two K+ ions in [61–63].

Measurements of ATP consumption from intracellular recordings

in fly photoreceptors show similar energy consumption to costs

obtained from whole retina oxygen consumption [64,65]. Indeed,

in the absence of signalling, the dominant cost of maintaining the

resting potential is attributable to the Na+/K+ pump. Attwell and

Laughlin [59] further estimated that out of 3.296109 ATP/s

consumed by a neuron with a mean firing rate of 4 Hz, 47% was

distributed for producing APs, while postsynaptic receptors

accounted for around 40% of the energy consumption (Figure 2).

These figures suggest that action potentials and synapses are the

main consumers of energy and that they determine the energy cost

in the nervous system.

Experimental studies have shown that neuronal performance is

related to energy consumption, both during rest and while

signalling [65]. What these studies show is obvious—there is no

free lunch. Neurons have to invest metabolic energy to process

information. The finite availability of ATP and the heavy demand

of neuronal activity suggest neuronal processing has enjoyed great

selective pressure. Metabolic energy costs limit not only the

possible behavioural repertoire but also the structure and function

of many organs, including the brain [3,66,67]. The nervous system

can use many tricks to promote energy efficiency. Neurons that use

sparse (or factorial) codes for communication [48,68] save on the

number of action potentials required to encode information, or

Figure 1. Redundancy reduction. The sensory environment of an animal is highly correlated (redundant). The animal’s job is to map such signals
as efficiently as possible to its neuronal representations, which are limited by their dynamic range. One way to solve this problem rests on de-
correlating the input to provide a minimum entropy description, followed by a gain controller. This form of sensory processing has been observed in
the experiments by Laughlin [49], where the circuit maps the de-correlated signal via its cumulative probability distribution to a neuronal response,
thereby avoiding saturation. Modified from [45].
doi:10.1371/journal.pcbi.1003157.g001
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have topographical connectivity schemes to reduce the surface

area of axons connecting different brain areas [69–71]. Neurons

may also alter their receptor characteristics to match the

probability of inputs to form a matched filter [49]. Alternatively,

specialised signal processing could be employed to convert signals

from analogue representation to pulsatile—prohibiting accumula-

tion of noise during information transfer [72,73].

In short, nature can use various means to achieve the objective

of energy efficiency—see Box 1 for a summary of some strategies.

Energy consumption in single neurons depends on the types and

the numbers of ion-channels expressed on the lipid bilayer, their

kinetics, the cell’s size, and the external milieu that changes the

equilibrium conditions of the cell. Experimental measures from the

blowfly retina show that metabolic efficiency in graded potentials

(lacking voltage-gated Na+ channels) is at least as expensive as in

those neurons displaying action potentials—with the former

capable of higher transmission rates [74]. Similarly, in Drosophila

melanogaster photoreceptors, absence of Shaker K+ conductance

increases energetic costs by almost two-fold [75,76]. It has also

been suggested that the precise mix of synaptic receptors (AMPA,

NMDA, mGlu, Kainate, etc.)—that determine synaptic time

constants—influences the energetic cost of the single neuron [77].

Recent evidence indicates that the biophysical properties gener-

ating an action potential can be matched to make them energy

efficient [78–81]. Fast Na+ current decay and delayed K+ current

onset during APs in nonmyelinated mossy fibres in the rat

hippocampus minimise the overlap between the inward and

outward currents, resulting in a reduction of metabolic costs [81].

Similarly, incomplete Na+ channel inactivation in fast-spiking

GABAergic neurons during the falling phase of the AP reduces

metabolic efficiency of these neurons [78]. Applying numerical

optimisation to published data from a disparate range of APs,

Sengupta et al. [80] showed that there is no direct relationship

between size and shape of APs and their energy consumption. This

study further established that the temporal profile of the currents

underlying APs of some mammalian neurons are nearly perfectly

matched to the optimised properties of ionic conductances, so as to

minimise the ATP cost. All of these studies show that experimen-

tally measured APs are in fact more efficient than suggested by the

previous estimates of Attwell and Laughlin [59]. This was because

until 2001 experimental measurements of membrane currents

were scant, impeding the study of the overlap between Na+ and K+

currents. The effects of energy-efficient APs on cortical processing

were gauged by recalculating Attwell and Laughlin’s (2001)

estimates by first using the overlap factor of 1.2—found in mouse

cortical pyramidal cells—and then assuming the probability that a

synaptic bouton releases a vesicle in response to an incoming spike

remains at 0.25 [80]. Neurons that are 80% efficient have two

notable effects (Figure 3). First of all, the specific metabolic rate of

the cortical grey matter increases by 60%, and second, the balance

of expenditure shifts from action potentials to synapses (Figure 3,

cf. Figure 2) [80].

The principle of energy efficiency is not just linked to single

neurons. Energy budgets have been calculated for the cortex [82],

olfactory glomerulus [83], rod photoreceptors [84], cerebellum

[85], and CNS white matter [86], among others. These studies

highlight the fact that the movement of ions across the cell

membrane is a dominant cost, defined by the numbers and cellular

makeup of the neurons and the proportion of synaptic machinery

embedded in the cell membrane (Figure 4). Niven and Laughlin

[3] have argued that when signalling costs are high and resting

costs are low, representations will be sparse; such that neurons in a

population preferentially represent single nonoverlapping events

(also see [87]). Similarly, when resting costs are high and signalling

costs are low, the nervous system will favour the formation of

denser codes, where greater numbers of neurons within the

population are necessary to represent events [3].

Experimental studies of mammalian cortex suggest that the

cortex organises itself to minimise total wiring length, while

maximising various connectivity metrics [88]. Minimising wiring

lengths decreases the surface area of neuronal processes, reducing

the energy required for charging the capacitive cell membrane—to

sustain and propagate action potentials. In fact, theoretical

analyses in pyramidal and Purkinje cells have shown that the

dimensions and branching structure of dendritic arbours in these

neurons can be explained by minimising the dendritic cost for a

potential synaptic connectivity [89,90]. This can result from

increasing the repertoire of possible connectivity patterns among

different dendrites, while keeping the metabolic cost low [89,90].

Summary
In summary, we have reviewed several lines of evidence that

evolution tries to minimise metabolic costs, where—in the brain—

Figure 2. Attwell and Laughlin’s energy budget. Energy use by various neuronal (cellular) processes that produce, on average, 4 spikes per
second. Modified from [59].
doi:10.1371/journal.pcbi.1003157.g002
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Box 1. Some principles of computational anatomy.

Dimensionality reduction: Sensory input is high dimen-
sional—a visual scene comprises differences in brightness,
colours, numbers of edges, etc. If the retina did not
preprocess this visual information, we would have to handle
around 36 Gb/s of broadband information, instead of
20 Mb/s of useful data [73]. Preprocessing increases the
metabolic efficiency of the brain by about 1,500 times. The
requisite dimensionality reduction is closely related to
minimising complexity—it is self-evident that internal
representations or models of the sensorium that use a small
number of dimensions or hidden states will have a lower
complexity and incur smaller metabolic costs.
Energy-efficient signalling: Action potentials (APs) are
expensive commodities, whether they are used for local
computation or long-distance communication [59]. Energy-
efficient APs are characterised by Na+ channel inactivation,
voltage-dependent channel kinetics, and corporative K+

channels—as described by multiple gating currents, in-
ward-rectifying K+ channels, and high channel densities [7].
These biophysical innovations enable a neuron to produce
efficient APs that use the minimal currents necessary to
generate a given depolarisation.
Component size and numbers: Action potentials travel
considerable distances along densely packed axons, collat-
erals, and dendrites. The capacitance that must be charged
by APs increases with membrane area [101], constraining the
number and length of neuronal processes. It is fairly
straightforward to show that—to maintain information
transfer—the optimal solution is to decrease the number
of components. Assuming all neurons have the same
thresholds and energy consumption, the energy-efficient
solution is to minimise the number of components, under
computational constraints dictated by the ecological niche
of the animal [101].
Modular design: Very-large-scale integration circuits sug-
gest an isometric scaling relation between the number of
processing elements and the number of connections (Rent’s
rule [102]). Neuronal networks have been shown to obey

Rent’s rule, exhibiting hierarchical modularity that optimises
a trade-off between physical cost and topological complex-
ity—wherein these networks are cost-efficiently wired [103].
A modular design balances the savings in metabolic costs,
while preserving computational capacities. Hierarchical
modularity also emerges under predictive coding [33]. In
this context, the brain becomes a model of its environment,
which through the separation of temporal scales necessarily
requires a hierarchical connectivity.
Parallel architecture: The brain processes information in
parallel—be it frequency analysis in the inner ear or
analysing different attributes of a visual scene using
functional segregation. This parallel architecture mirrors
those used in modern-day microprocessors. For example, a
fast single-core microprocessor may consume 5 Watts and
execute a program in 10 seconds. If we bring together two
single cores, power will double and execution time will
halve, still consuming 50 Joules. Alternatively, a slow double-
core microprocessor that expends 2.5 Watts of power to
execute the program in 15 seconds could consume only 7.5
Joules. This energy saving works because power is propor-
tional to frequency cubed; therefore, halving the frequency
reduces the speed by two but conserves eight times the
power, making the microprocessor four times as efficient. In
short, if parallel architectures are combined with slow
computing speeds, the resulting system is energetically
more efficient.
Analogue versus digital: If analogue computing is so
efficient [104], why don’t neurons operate on an all analogue
basis? The obvious answer is signal processing in the digital
(such as AP) domain enables noise suppression. Noise
accumulation in analogue systems [73] speaks to hybrid
processing—the use of analogue preprocessing before
optimal digitisation. APs are useful in this context because
they have an inbuilt threshold mechanism that attenuates
noise. If a presynaptic signal is encoded as an AP and
transmitted, there is hardly any conduction loss, thereby
enabling a reliable transfer of information.

Figure 3. A revised energy budget for signalling in the grey matter of the rat brain. Incorporating the increased efficiency of APs in
mammalian neurons into Attwell and Laughlin’s (Figure 2) original energy budget—for grey matter in the rat brain—reduces the proportion of the
energy budget consumed by APs. Modified from [80].
doi:10.1371/journal.pcbi.1003157.g003
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these costs are primarily incurred by the restoration of transmem-

brane potentials, whose fluctuations encode or represent hidden

states of the world. This raises a question: is energy the only

constraint in the evolution of animals? Of course not—functional

constraints like reliability, speed, precision, etc. [67] and structural

constraints like optimal wiring [91] are equally important. For

example, a single action potential in the squid giant axon

consumes orders of magnitude more energy than a hippocampal

or a pyramidal neuron, yet evolution has invested that extra Joule

to buy speed [80,92]. In short, structure and function interact to

determine the fitness of an animal. Having surveyed the key

metabolic constraints under which neuronal processing must

proceed, we now try to integrate the information theoretic and

metabolic perspectives.

Thermodynamic Efficiency and Free-Energy
Minimisation

In this section, we gather together the imperatives for biological

self-organisation reviewed above. We hope to show that minimis-

ing variational free energy necessarily entails a metabolically

efficient encoding that is consistent with the principles of minimum

redundancy and maximum information transfer. In brief, we will

show that maximising mutual information and minimising

metabolic costs are two sides of the same coin: by decomposing

variational free energy into accuracy and complexity, one can

derive the principle of maximum mutual information as a special

case of maximising accuracy, while minimising complexity

translates into minimising metabolic costs.

Metabolic Efficiency and Free Energy
To connect the thermodynamic work or metabolic energy

required to represent hidden states to the variational free energy of

those representations, we need to consider the relationship

between representational internal states and the underlying

thermodynamic microstates. Recall that internal states m(t) are

deterministic quantities that encode a conditional density over

hidden states of the world. These macroscopic states can be

regarded as unconstrained internal variables of a biophysical system; for

example, the molar fractions of different molecules in a cellular

compartment. The underlying biophysical system can then be

associated with a (thermodynamic) canonical ensemble with

internal energy:

U~
X

i

piE mð Þi ð10Þ

Here, pi corresponds to the probability of a particular microscopic

state and Ei(m)to its corresponding energy. Given that the total

energy is conserved, this probability is given by the Gibbs measure

or Boltzmann distribution:

pi~exp
A{E mð Þi

kT

� �
~

1

Z
exp {

E mð Þi
kT

� �

A T ,mð Þ~{kT ln Z

~U{kTH pi½ �~U{TS

ð11Þ

Figure 4. Elements defining metabolic efficiency. Speed and precision defines the representational capacity of a neuron. Speed or bandwidth
is dependent on the membrane time constant and/or the spike rate of the neuron, while precision relies mainly on the types, numbers, and kinetics
of synapses and the channels, neuron volume, etc. An efficient brain will maximise speed and precision under energetic constraints.
doi:10.1371/journal.pcbi.1003157.g004
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The partition function Z(T, m) ensures the probabilities sum to one,

while the last equality follows simply from the definition of entropy

H[pi] = Ei[2ln pi]. The Boltzmann distribution describes a system

that can exchange energy with a heat bath (or a large number of

similar systems) so that its temperature remains constant. The

Helmholtz free energy A(T, m) measures the work obtainable from

a closed thermodynamic system at a constant temperature and

volume—where a closed system can exchange energy with other

systems (but not mass).

The key result we will use from statistical thermodynamics is

that the Helmholtz free energy is minimised at equilibrium with

respect to any unconstrained internal variables for a closed system

at constant temperature T0,

A0~minm A0 T0,mð Þ ð12Þ

where A0(T0, m) is the free energy of the system at equilibrium or

steady state (i.e., constant entropy). This motivates the following

Lemma:

Lemma: (complexity minimisation) Minimising the complexity of a

conditional distribution—whose sufficient statistics are (strictly increasing

functions of) some unconstrained internal variables of a thermodynamic

system—minimises the Helmholtz free energy of that system.

Proof: Using standard results from Bayesian statistics [16], we

can express free energy as complexity minus accuracy

F mð Þ~D q y mjð Þ p y mjð Þk½ �{Eq ln p s y,mjð Þ½ �

p y mjð Þ~q y m0jð Þ
ð13Þ

The first complexity term is the divergence between the

conditional distribution and the prior distribution under the

generative model. This effectively counts the degrees of freedom

used to encode or predict sensory input. The accuracy is simply

the expected log likelihood of the sensory input under the

conditional density encoded by internal states. The prior

distribution represents beliefs in the absence of sensory input.

This corresponds to the distribution encoded by internal states

m = m0 when deprived of input for a suitably long time—at which

point, we can assume thermodynamic equilibrium, such that

Helmholtz free energy is minimised (see Equation 12):

A0 T0,m0ð Þ~minm A0 T0,mð Þ[

m0~argminm A0 T0,mð Þ
ð14Þ

However, in the absence of input, variational free energy reduces

to complexity F0(m)$0, which—by Gibbs inequality—has a

minimum of zero. This means that complexity is also minimised.

F0 mð Þ~D q y mjð Þ q y m0jð Þk½ �[

m0~argminm F0 mð Þ
ð15Þ

In sum, the internal states encoding prior beliefs about hidden

states of the world are those that minimise Helmholtz free energy

and the complexity defined by variational free energy.

Remarks: All we are saying here is that if a (neuronal) system

is deprived of sensory inputs it will obtain thermodynamic

equilibrium (or at least a nonequilibrium steady state) and will

therefore minimise Helmholtz free energy. This assumes, not

implausibly, a constant temperature and volume. Crucially, this is

precisely the brain state encoding prior beliefs about sensory input,

which means that it is the state of minimum computational

complexity. Heuristically, this means that one can associate the

complexity cost of variational free energy with metabolic cost—in

the sense that they share the same minimum. Crucially,

minimising fluctuations in Helmholtz free energy reduces meta-

bolic work by Equation 6. Interestingly, complexity cost also plays

a central role in free-energy formulations of optimal control and

economic theory [93,94]. Still et al. arrive at the same conclusions

by treating the thermodynamic system as having an implicit model

of its inputs—allowing them to establish the fundamental

equivalence between model inefficiency or complexity and

thermodynamic inefficiency [95]. However, both of these com-

pelling treatments consider homologues of Helmholtz free

energy—not variational free energy, which is a functional of a

probabilistic model (the conditional distribution).

Computational Efficiency and Free Energy
The complexity minimisation lemma suggests that commonly

occurring representational states—that are a priori most proba-

ble—are the least costly; for example, resting levels of transmem-

brane voltage or baseline firing rates. Rare excursions from these

states are associated with a high metabolic cost. But how does

minimising complexity relate to principles of minimum redun-

dancy? Because representations do not change sensory inputs, they

are only required to minimise the free energy of the conditional

density. Assuming conditional uncertainty is small, the conditional

density can be approximated with a point mass at ~mm tð Þ, such that

q yð Þ~d y{~mmð Þ and the free energy becomes (from Equation 13)

F tð Þ~{ln p s tð Þ m tð Þjð Þ{ln p m tð Þ mjð Þ[ð
dtF tð Þ!H p s m,mjð Þ½ �zH p m mjð Þ½ �

ð16Þ

The first equality expresses free energy is terms of accuracy and

complexity, where the second complexity term just reports the

surprise about the conditional representation under prior beliefs.

The second equality is the corresponding path integral of free

energy (known as free action). Under ergodic assumptions [12,96]

this can be expressed as the conditional entropy of sensory input,

given the representations and the entropy of the internal states.

Equation 11 has two important implications. First, it shows that

minimising free energy, at each point in time, is equivalent to

minimising free action —by the fundamental lemma of variational

calculus. In other words, Equation 11 is just a restatement of the

principle of least action. Second, it shows that minimising free

energy maximises the accuracy of representations or minimises

their conditional uncertainty (entropy) over time. This is simply a

restatement of the principle of minimum redundancy or maximum

mutual information [97]. This follows because minimising

uncertainty about sensory inputs, given internal states, implicitly

maximises the mutual information between sensory and internal

states (for any given sensations):

I S,Rð Þ~H p s mjð Þ½ �{H p s m,mjð Þ½ � ð17Þ

This suggests that the infomax principle [97] is a special case of the

free-energy principle that is obtained when we discount uncer-

tainty and represent sensory input with point estimates of their

causes. In this context, high mutual information is assured by

maximising accuracy (e.g., minimising prediction error) and prior

beliefs are enforced by minimising complexity. Crucially, mini-

mising complexity minimises metabolic cost.

In short, the infomax principle can be understood in terms of

the decomposition of free energy into complexity and accuracy:
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mutual information or statistical efficiency is optimised when

conditional expectations maximise accuracy (or minimise predic-

tion error), while thermodynamic efficiency is assured by

minimising complexity. This minimisation ensures that the

generative model is not over-parameterized and leads to a

parsimonious representation of sensory data that conforms to

prior beliefs about their causes. Interestingly, advanced model

optimisation techniques use free-energy optimisation to eliminate

redundant model parameters [98], suggesting that free-energy

optimisation might provide a nice explanation for synaptic

pruning and homeostasis in the brain during neurodevelopment

[99] and sleep [100]. In developing the link between metabolic

and statistical efficiency, we have assumed that internal neuronal

states encode hidden states in terms of their most likely value or

expectation. Is there any principled reason to assume this form of

neuronal code?

The Maximum Entropy Principle and the Laplace
Assumption

Notice from Equation 7 that minimising variational free energy

entails maximising the entropy of the conditional density.

Intuitively, this is like keeping one’s options open when trying to

find hypotheses or explanations for sensory input. If we admit an

encoding of the conditional density up to second order moments,

then the maximum entropy principle [42], implicit in the

definition of free energy, requires q y ~mmjð Þ~N ~mm,Sð Þ to be

Gaussian. This is because a Gaussian density has the maximum

entropy of all forms that can be specified with two moments.

Assuming a Gaussian form is known as the Laplace assumption

and enables us to express the entropy of the conditional density in

terms of its first moment or expectation. This follows because we

can minimise free energy with respect to the conditional

covariance as follows:

F~U s,mð Þz 1

2
tr S:LmmU
� 	

{
1

2
ln Sj j[LSF~

1

2
LmmU{

1

2
P

LSF~0[
P~LmmU

F~U s,mð Þz 1
2

ln LmmU


 



( ð18Þ

Here, the conditional precision P(m) is the inverse of the

conditional covariance S(m). Equation 18 means the free energy

becomes a function of conditional expectations and sensory states.

This is important because it suggests the brain may represent

hidden states of the world in terms of their expected values. This

leads to the Laplace code (defined as neuronal encoding under the

Laplace assumption), which is arguably the simplest and most

flexible of all neuronal codes [13,14]. Furthermore, under the

Laplace code, one can minimise free energy efficiently using

predictive coding [29,31]. Predictive coding has become one of the

most popular ways of understanding message passing in the

brain—particularly in the setting of hierarchical perceptual

inference. In short, the free-energy principle entails the principle

of maximum entropy and leads, in a principled way, to a neuronal

encoding of representations in terms of conditional expectations.

The specific nature of the neural code may be exclusive to a

species or underlying neural function. Whatever its makeup—

expected latency, firing rate, spike timing, phase, etc.—it will exist

to harmonize the dialogue between perception and action. In

practice, we usually have in mind the instantaneous rate of firing of

neuronal populations, which means the internal states encoding

posterior beliefs are ensemble averages of ensemble averages—for

example, the expectation of (a function of) depolarisation over the

neuronal ensemble, where the depolarisation of a single neuron is

(a function of) the internal variables of a canonical ensemble.

Conclusion

We have reviewed the thermodynamic and computational

(statistical) imperatives for biological self-organisation, with a

special focus on neuronal circuits. We have considered the role of

classical thermodynamics and the notion of metabolic efficiency—

that appears to be an important constraint, under which

neurophysiology and neuroanatomy have evolved. From a

computational perspective, we have looked at variational free-

energy minimisation as the basis for active Bayesian inference and

modelling of the environment. The ability to represent and predict

hidden environmental states efficiently can be quantified in terms

of mutual information. Our synthesis suggests that minimising

variational free energy is a sufficient account of the tendency to

maximise both metabolic and statistical efficiency. The motivation

for minimising variational free energy is to minimise its long-term

average to maintain a constant external milieu—as measured by

the entropy of an organism’s sensory samples over time. By

decomposing variational free energy into accuracy and complexity

one can understand metabolic efficiency in terms of minimising

complexity (which minimises Helmholtz free energy), under the

computational constraint that sensory inputs are represented

accurately. Conversely, statistical efficiency can be understood in

terms of maximising the accuracy (which maximises mutual

information), under the constraint that representations have

minimal complexity. The link between complexity and metabolic

cost rests on the simple observation that, in the absence of sensory

input, prior beliefs are encoded by physical variables that minimise

Helmholtz free energy.

The nice thing about this formulation is that, under active

inference, organisms will selectively sample sensory inputs that

conform to their prior beliefs and minimise the complexity of their

representations. This means that biological systems will appear to

act in a way that minimises fluctuations in Helmholtz free

energy—and will aspire to the nonequilibrium steady state that has

been assigned to them by evolution.
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