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Analysis of Large (PET) Data Sets

K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak

MRC Cyclotron Unit, Hammersmith Hospital, London, UK.

Summary: The distributed brain systems associated with
performance of a verbal fluency task were identified in a
nondirected correlational analysis of neurophysiological
data obtained with positron tomography. This analysis
used a recursive principal-component analysis developed
specifically for large data sets. This analysis is interpreted
in terms of functional connectivity, defined as the tem-
poral correlation of a neurophysiological index measured
in different brain areas. The results suggest that the vari-
ance in neurophysiological measurements, introduced ex-

perimentally, was accounted for by two independent prin-
cipal components. The first, and considerably larger,
highlighted an intentional brain system seen in previous
studies of verbal fluency. The second identified a distrib-
uted brain system including the anterior cingulate and
Wernicke's area that reflected monotonic time effects.
We propose that this system has an artentional bias. Key
Words: PET—Principal-component analysis—Functional
connectivity—Effective connectivity—Verbal fluency—
Neural networks.

Cooperative and connectionist approaches to un-
derstanding the integration of brain function are
well established (Sherrington, 1941; Hebb, 1949;
Edelman, 1978; McClelland, 1988). The nature and
organizational principles of extrinsic cortical con-
nections, particularly the long corticocortical affer-
ents (e.g., Goldman Rakic, 1988) has provided a
basis for mechanistic descriptions of brain function
(e.g., Mesulam, 1990). These descriptions refer to
parallel, massively distributed, and interconnected
(sub)cortical areas. Anatomical conneclivity is a
necessary underpinning for these models and has
been used to infer functional connectivity (e.g.,
Zeki, 1990). This article describes one way of mea-
suring functional connectivity using positron emis-
sion tomographic (PET) measurements of neural ac-
tivity.

PET is in a unique position to acquire data for this
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sort of analysis because it samples the entire brain
state in a uniform fashion. This allows all possible
functional connections to be assessed using serial
measurements of the same subject in different brain
states. The shortcomings of PET include its rela-
tively poor spatiotemporal resolution and the exact
nature of the dependency of measured regional
CBF (rCBF) on neural discharge rates. However,
PET can be used to address large scale functional
connectivity as an important supplement to obser-
vations on the gross aspects of extrinsic anatomical
connectivity and fine time scale effective connectiv-
iry defined by electrophysiology.

FUNCTIONAL AND
EFFECTIVE CONNECTIVITY

In the past two decades, the concept of functional
or effective connectivity has been most thoroughly
elaborated in the analysis of multiunit recordings of
separable neuronal spike trains, recorded simulta-
neously from different brain areas {Gerstein and
Perkel, 1969; Gerstein et al., 1989). Temporal co-
herence among the activity of different neurones is
commonly measured by cross-correlating their
spike trains. The resulting correlograms are then
interpreted as the signature of functional connectiv-
ity. In current approaches, effective connectivity is
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assessed using normalized Joint Peri Stumulus Time
Histograms (J-PSTHs). In particular, the PST coin-
cidence histogram reflects effective connectivity as
the joint probability of two neurones firing together
as a function of time in the interstimulus interval
(Aersten and Preissl, 1991). Effective connectivity
can also be measured in terms of efficacy and con-
tribution. These terms are best understood at a syn-
aptic level, where in the linear equality

x; = IW,; - x 1)

x; is the postsynaptic response to many presynaptic
inputs (x;). Here efficacy of the connection between
k and j can be thought of as the synaptic efficacy
Wi whereas the contribution reflects the effect of &
on j relative to all presynaptic inputs, i.e., W, /ZW,.
These two aspects of effective connectivity can be
estimated empirically, given certain assumptions
(e.g., Gochin et al., 1991). There is a close relation-
ship between effective connectivity and efficacy:
It 1s useful to describe the effective connectivity
with a connectivity matrix of effective synaptic
weights. Matrix elements would represent the effec-
tive influence by neurone 1 on neuron j°° (Gerstein
et al., 1989). It has also been proposed that ‘‘the
notion of effective connectivity should be under-
stood as the experiment and time-dependent, sim-
plest possible circuit diagram that would replicate
the observed timing relationships between the re-
corded neurons’’ (Aersten and Preissl, 1991). These
definitions are essential and useful abstractions but
lack operational significance. In this article, we re-
serve the term functional connectivity to mean the
observed temporal correlation between two electro/
neurophysiological measurements from different
parts of the brain. Effective connectivity will refer
to the underlying efficacy (W), which may or may
not be measurable.

With respect to PET neuroimaging, the measure-
ment of functional connectivity therefore requires
the repeated assessment of neurophysiology over
time in the same subject(s). This sort of data is ob-
tained from activation or longitudinal studies. We
defer a discussion of the relationship between
within-subject and between-subject correlations un-
til the discussion. .

An exposition of functional connectivity based on
PET neurophysiological data reduces to an exami-
nation of its correlation structure. Correlation
structure refers to the correlations observed over
time in the same subject(s) (e.g., Friston et al.
1991a; Lagreze et al., 1991). Principal component
analysis (PCA), as a first step, is most suited to this
examination. PCA extracts the important features
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of the correlation matrix in terms of principal com-
poneats or eigenvectors. These vectors are the lin-
ear combinations that account for independent or
orthogonal amounts of variance in the observed
data. Only a few principal components are usually
required to explain the majority of observed vari-
ance. In terms of functional connectivity, a princi-
pal component represents a truly distributed brain
system within which there are high intercorrela-
tions. Furthermore, because any one component is
orthogonal to the remaining, these systems are
functionally unconnected from each other. How-
ever, any single area may be implicated in more
than one system.

The PCA of PET data is not straightforward. PET
data sets are usually large. Large here has a special
meaning, namely a very high dimensionality but a
low sample size, where sample size is the number of
repeated observation in the same brain(s) at differ-
ent times and dimensionality is the number of ob-
servations (voxels). Usually, a low sample size:di-
mensionality ratio is considered undesirable; how-
ever, in this special case of PCA, it can be used to
advantage. Typically, the number of voxels can ex-
ceed 10°. This requires the PCA of a correlation
matrix with 10® elements. This is beyond the capac-
ity of most workstations available. However, we
have developed a recursive PCA technique that can
handle these large data sets with a vast reduction in
computational overhead.

This recursive PCA technique is described and
applied 1o data obtained from a study of six subjects
each scanned 12 times during two word generation
tasks. The functional connectivity revealed and the
orthogonal brain systems identified are presented as
an example of this approach.

METHODS

Recursive PCA Analysis

The technique 1s modeled on “*L" systems or string
rewriting systems used in the construction of fractal and
self similar patterns. L systems were introduced by
Linenmayer in 1968 to mode! the growth of living organ-
1sms. In these systems, a pattern {(axiom) is defined that is
composed of line segments. According to (production)
rules, each segment is replaced by the pattern primitive.
This primitive 1s itself constructed from line segments
that are recursively replaced with smaller scaled primi-
tives. No *‘drawing’” actually occurs until the scale
reaches a specified lower limit [see Voss (1988) for a full
discussion}. The charm of these systems is that the algo-
rithm that replaces each line segment of the primitive with
smaller versions calls itself recursively but only imple-
ments pattern drawing at the smallest scale. In a similar
way, the recursive PCA used here recursively calls itself
untl the size of subpartitions of the original data matrix
reach a lawer imit. Let 6(A) denote the operation of the
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PCA operator 6{-} on a data matix A where M can be
bisected (M = [M M,}]). The algorithm is defined by the
following equivalence (where - denotes matrix multipli-
cation):

oM} = (g{Ml}e{Mg) S O{(My - 8{M} M, - 6{M})

2

until the size of M reaches a lower limit (§); then,
8{M} = {C{M}} = O, 3

where Q, are the largest S/2 eigenvectors of the covari-
ance matrix of M (= C{M}). The operator 6{-} recursively
calls itself until the multiply bisected subpartitions reach
a stopping criterion in terms of size (§). The recursion
relationship (2) essentially implies the splitting of a data
matrix, the rotation of the observed scores of each half
into principal component (PC) scores and the elimination
of the half of these (redundant) scores before computing
the eigenvectors of C{M}. The eigenvector solution is ob-
tained by postmultiplying the original transformation ma-
trix with the eigenvectors of the rotated and reduced data
matrix. This elimination or reduction means that the larg-
est matrix actually operated on by 6{} never exceeds size
S. This holds for any size of M. The justification for elim-
inating half of the PC scores {implicit in Eq. (3)] relates to
the sample size to dimensionality ratio. The subspace
spanned by the data can only be an (n — 1)-dimensional
subspace of the S-dimensional space defined by the PCs.
In other words, the PC scores, although S in number,
only describe variance in the n — 1 (<S8/2) eigenvectors
with nonzero eigenvalues. The rest, being zero, can be
eliminated with no loss of mformation. The algorithm
used is provided in PRO-MATLAB in Table 1 and a
worked example 1s given in the Appendix. The saving in
terms of computational overhead is illustrated in Fig. 1.
As the size of M increases, the number of computational
steps in a normal PCA increases geometrically. For the
recursive approach, these increments are more arithmet-

TABLE 1. An example of the algorithm 9(-) for a data
matrix M of O X 2" elements where O < 16

function {e.v} = theta(M)
% recursive PCA analysis
% format [e,v] = theta(M)
%o M = data matrix with 2 n columns and O rows where 0 < k = 16
% e—eigenveclors
% w—eigenvalues
{r.y] = size(M)
k=16
o s—stopping criteria
s = 2%
fy= =75
[e.v] = eig( cov(M) ); {v ] = sort{ diag(v) ): e(:.i) = e:
e = e(:,[(1 + kyish); v = v([(1 + &)is));
return
end
¥ = y/2;
x = {yly = {Iy] +
el = thetal M(:.x) ); 2 = theta( M(:3) ).
{e,v} = theta( [M(x)*el M(y)"e2 1 ):
e = { el zeros(el) ; e2 zeros(e) |%e:

%, comment; *, matrix multiplication; eig, returns the matnx of eigen-
vectors and cigenvalues; cov, return the covanance matnx; sort, returns
values in ascending order and the indices used; diag, returns a vector
carresponding to the leading diagonal of a matrix; zeros, returns a matrix
of a given size whose elements arc zera.
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FIG. 1. Regression of number of floating point operations on
size x of data matrix {4, x} for normal {nonrecursive) PCA
{broken line) and recursive PCA {solid line). This regression
is plotted in fog space.

ical. This is seen in Fig. 2, which is a regression (in log
space) of the number of floating point operations required
on the size of the data matrix. In practice, the PCA takes
about 14 s for a {6,2048} data matrix on a contemporary
(SPARC) workstation.

See Moler et al. (1987) and Smith et al. (1976) for a
description of the eigenvector solution (e{-}) implemented
when the stopping criterion is reached.

We have presented an algorithm that uses bisection of
M. This requires the number of columns to be a multiple
of 2. More elaborate schemes are possible using n-way
splits.

A recursive PCA analysis was applied to the mean
{analysis of covariance (ANCOVA) adjusted] rCBF of six
subjects time locked to the same stimuli or tasks. It is
perfectly natural to apply the technique to individuals but
we presented an analysis of mean data for two reasoans: (1)
the derived functional connectivity patterns have greater
generic validity, being common to all subjects, and (ii) the
elements of M are the mean of six independent observa-
tions and, by the central limit theorem, more normally
distributed over the 12 observations.

Data acquisition

Six normal male volunteers with no neurological or
psychiatric history were scanned 12 times in the same
session whilst performing one. of two verbal tasks. Per-
mission to perform these studies was obtained from the
local ethical committee and Advisory Committee for the
Administration of Radioactive Substances (U.K.).

Scans were obtained with a CTI (model 953B CTI
Knoxville, TN, U.S.A.) PET camera (as a fully three-
dimensional acquisition). Reconstructed (Townsend et
al., 1991) images had a resolution of 5.2 mm (Spinks et al..
1992). The volume images contained 128 x 128 X 31 vox-
els corresponding to 2 X 2 % 3.1 mm. **0O was adminis-
tered intravenously as radiolabeled water infused over 2
min. The total counts per pixel during the buildup phase
of radioactivity served as an estimate of rCBF (Fox and
Mintun, 1989).

Each scan lasted 2 min followed by an 8 min interscan
interval. The tasks began 20 s prior to delivery of radio-
labeled water. Subjects performed two tasks alternatively
(order balanced across subjects). The first task served as

I Cered Blood Flow Metab, Vol 13 Nao_ 1. 1987
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baseline and involved repeating a heard letter. Letters
were presented aurally at one per 2 s. The letter was
changed four times during the task. The second task cor-
responded to a paced verbal fluency with the same stimuli
(but different letters) that the subjects responded to by
generating a word that began with that letter. Subjects
had their eyes closed in all conditions.
Data analysis

Data were stereotactically normalized (Friston et al.,
1989, 19914) and mean rCBF equivalents derived for each
condition in parallel for every voxel. These mean rCBFs
were adjusted for the confounding effect of whole brain
differences using ANCOVA (Friston et al., 1990). Only
voxels in which significant differences between the 12
scans were detected (ANCOVA F > 1.971, df 11,54, p <
0.05) were subjected to further analysis. The reason for
using this subset was primarily that of computational ex-
pediency: however, it is easily justfied by noting that
voxels that do not contribute significantly to measured
variance are unlikely to contribute to measured covari-
ance. Stability of the PCA results was assessed by repeat-
ing the analysis using voxels with the highest F values
with three different lower limits. Recursive PCA of these
ANCOV A-adjusted mean rCBF data generated a series of
PCs, the corresponding eigenvalues, and the PC scores
for each condition. A PC score reflects how much a PC
contributed to any given condition (Hope, 1968). The
loadings on PCs for each voxel were displayed as a sta-
tistical parametric map as a volume image showing the
brightest voxel along the line of view.

RESULTS
The number of voxels for which F > 1.971 (fol-
fowing an ANCOVA) was 8,277, The total number

J Cereb Blood Flow Metab, Vol T3, No ] jods

FIG. 2. First and second PC loadings for all vox-
els entered into the analysis. Each set of three
projections views these voxels from three differ-
ent directions (from the back, from the right,
and from the top). The brightest (highest posi-
tive or negative) loading along any line of view is
disptayed. The same, but selected, data are dis-
played on drawings of the cortical surface to atd
interpretation. Positive and negative loadings
are shown for the first PC. Only positive foad-
ings are displayed for the second PC. ac, ante-
rior cingulate, fc, teft prefrontal cortex.

of voxels analyzed was 65,186. We would have ex-
pected 3,259 by chance. We observed over 2.5
times the expected number of voxels reaching cri-
teria (p < 0.001). The 2'3, 2'2, and 2'" voxels with
the highest F values were subject to recursive PCA
(i.e., the largest numbers that were less than 8,277
that could be divided by 2). The results of these
three analyses were stable and very similar (relative
contributions of the PCs varying by only a few per-
cent). The results of the middle (2'%) solution are
presented.

The first two PCs accounted for almost all of the
variance (86%). The first PC accounted for 71% and
the second 15% of variance. The third accounted
for only 4%. The corresponding profiles (loadings)
are seen in Fig. 2. The PC scores are shown in Fig.
3 for each of the 12 alternating conditions (baseline—
fluency-baseline—fluency . . .). The first PC had
positive loadings in the anterior cingulate {Brod-
mann’s area (BA) 24, 321, the left dorsolateral pre-
frontal cortex (DLPFC BA 46), Broca’s area (BA
44), the thalamic nuclei, and the cerebellum. Neg-
ative loadings were seen bitemporally and in the
posterior cingulate. This profile is a verbal fluency
profile we have observed in two previous indepen-
dent studies (Friston et al., 1991a; Frith et al.,
1991). We have not observed subcortical activation
to be so reliable in previous data. The PC scores
(Fig. 3) testify to this interpretation with universally
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FIG. 3. PC scores for the first two components.

high loading on the verbal fluency tasks and low
scores on the baseline. Furthermore, these scores
are largely invariant over time. The second PC had
its highest positive loading in the anterior cingulate
and appeared to correspond to a monotonic time
effect with greatest prominence in the first three
conditions (Fig. 4). It is interesting that the second
PC included bitemporal regions, but on the left
there was a selective involvement of Wernicke's

area in the posterior superior temporal region (BA
22).

DISCUSSION

Functional connectivity has been defined as the
temporal correlation between neurophysiological
(functional) measurements made n different brain
areas. We have used a recursive PCA of such data
obtained longitudinally from the same subjects with
PET to demonstrate orthogonal (independent) func-
tionally connected brain systems. The two systems
evident in our data may represent an intentional
system critical for the intrinsic generation of words
and a second system whose physiology changes
monotonically with time irrespective of the tasks
the subject was engaged in. It is possible that this
fepresents a more attentionally orientated system,
which reflects the declining need for acquisition of
perceptual set as the tasks become more familiar.

The system corresponding to the first PC ac-
counted for 71% of the observable differences in
adjusted mean rCBF from the [2 scans. This is a
remarkable observation in that 719 of the variance
in brain physiology was introduced by experimental
design. This is a clear vindication of the PET tech-
nique in the investigation of functional anatomy and
connectivity. Furthermore, the distributed system
highlighted is in exact accord with that which hag

been predicted from anatomical connectivity. All of
the components of this system (anterior cingulate,
DLPFC, posterior cingulate, and superior temporal
region) have dense and reciprocal connections
(Goldman-Rakic, 1986, 1988).

The second system centered on the anterior cin-
gulate seems to be involved in time-dependent
changes; probably of altentional or perceptual set
[see Wise (1989) for a brief discussion of set]. We
infer this from previous PET studies on attention
(Petersenet al., 1989; Pardo et al_, 1990; Corbetta et
al., 1991) and other ideas relating to the distribution
of attentional systems (Posner et ai., 1990). The an-
terior cingulate is an interesting example of an area
that belongs, coincidentally, to two functionally un-
connected systems (in this experiment). In other
words, the activity of this area increases during the
verbal fluency task and declines with time (possibly
with acquisition of perceptual set). Yet these two
effects are totally independent (see Fig. 4 for the
effects on rCBF in the anterior cingulate and com-
pare the time effects with rCBF in the DLPFC,
where the absolute levels are relatively stable over
trials).

These results highlight the simple point that the
measured functional connectivity is implicitly de-
pendent on the functional states of the brain at the
time of measurement. The neurophysiological vari-
ance-covariance introduced experimentally forms
the basis of functional connectivity and this de-
pends on the tasks chosen.

Functional connectivity: electrophysiological and
PET neurophysiological approaches

Separable spike trains can be interpreted in terms
of single unit activity. PET rCBF reflects the activ-
ity of large neuronal populations. This distinction is
not fundamental given the fact that multiclectrode
studies are striving to delineate population or “‘as-

I Cereb Blood Flow Mewb, Vol 13, No. I, ]993
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sembly’” (Gerstein et al., 1989) dynamics. Indeed.
population thinking is central to some interpreta-
tions of neuronal correlations (e.g., Sporns et al.,
1989).

A key difference between electrophysiological
and PET indices of physiology is time scaling. This
is important given the possible functional signifi-
cance of high-frequency stimulus-specific oscilla-
tory events in extended regions of visual cortex
(Eckhorn et al., 1988; Gray and Singer, 1989).
Functional connectivity using the two techniques,
however, can be linked at two levels: (1) A unifying
concept is provided by coherence {o{w)]. Coher-
ence is a measure of the correlation at a particular

7 Cereb Blood Flow Metab, Vol 13, Na. 1. 1993

frequency (w) (Cox and Miller, 1980). Conse-
quently, coherence and functional connectivity at a
frequency w [fc(w)] are directly related:

few) = aw) = |g, w)Hg, (w) - g;fw) (41
where g;{w) is the cross-spectral density and g, (i1
and g, {w) are the autospectral densities of the neu-
rophysiological processes in question. Equation (4
explicitly relates functional connectivity 1o EEG
coherence. Multielectrode recording and EEG mea-
sures deal with coherence at frequencies with peri-
ods of milliseconds whereas PET covers the low-
frequency component of the coherence profile on =
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time scale of minutes. There is no requirement or
expectation that coherence is invariant over fre-
quencies. Indeed, even on very small time scales,
the typically nonuniform characteristics of the PST
coincidence histogram suggest that ‘‘near-
coincidence firing is strongly modulated as time
proceeds through the stimulus cycle with . . .
switching, in a stimulus-locked fashion from a con-
dition of incoherent firing to coherent firing™ (Aer-
sten and Preissl, 1991).

If functional connectivity is distributed over tem-
poral frequencies, then electrophysiological and
PET neurophysiological assessments can be com-
plementary, each sensitized to different frequency
domains of coherence.

We know of no empirical evidence 1o suggest that
short-term (millisecond) coherence and long-term
(minutes) coherence are dependent; however, sim-
ulations have shed some light on this relationship:
to explore the notion that modulation of short-term
functional connectivity might be an “‘emergent
property of dynamic cooperativity,” Aersten and
Preissl (1991) investigated the behavior of artificial
networks, analytically and through simulation.
They concluded that the short-term effective con-
nectivity varies strongly with, or is modulated by,
pool activity. Pool activity is the product of the
number of neurones in the pool and the mean firing
rate. The mechanism is simple; the efficacy of sub-
threshold excitatory postsynaptic potentials in es-
tablishing dynamic interactions is a function of
postsynaptic depolarization, which in turn depends
on the tonic background of pool acuvity.

This sort of analysis suggests the second and
more fundamental link between short- and long-
term coherence, namely (ii) that slow (co)vanation
in mean activity may be a necessary condition for
the emergence of fast dynamic correlations.

Anatomical, effective, and functional connectivity

These three connectivities are at the same time
interdependent and yet different concepts. Neuro-
nal interactions can receive contributions from di-
rect connections (possibly mono- or polysynaptic)
or contributions from shared input (Gerstein et al_,
1989} originating in a stimulus-related or modulating
source. Although direct or indirect anatomical con-
nectivity is necessary for effective conneotivity,
there is no simple one-to-one mapping. A similar
fiecessary, but not sufficient, relationship exists be-
tween effective connectivity and functional connec-
tivity, in that context-dependent and dynamic mod-
ulation of functional connectivity has been demon-
strated (by simuiation) in the context of constant
efficacy W, (Aersten and Preissl, 1991).

If functional connectivity was modulated by dif-
fuse and divergent anatomical connectivity, e.g.,
the thalamocortical system in “‘the generation of
internal functional modes" (Llinas and Pare, 19915,
then the relationship between functional and ana-
tomical connectivity would be tenuous by virtue of
its nonspecificity. However, empirical evidence
from studies of EEG coherence is consistent with
the notion that measured coherence is medjated by
long corticocortical association fibers (Thatcher et
al., 1986). Whether this is the case for PET func-
tional connectivity remains to be seen; however,
observations in our laboratory suggest a correspon-
dence between (PET) functional connectivity and
major anatomical pathways delineated in nonhuman
primates.

Hitherto, we have dealt with the correlational
analysis of longitudinal data collected over time
from a single subject (or the mean from several sub-
Jects time locked to the same stimuli). This is in
contradistinction to correlations between observa-
tions on different subjects in the same state. Corre-
lational analyses of these cross-sectional data have
been an important theme in PET data analysis for
many years [e.g., Horwitz et al., 1984, interregional
correlations; Metter et al., 1984; Moeller et al.,
(1987), Scaled Subprofile Model; Friston et al..
(1992a), canonical correlational analysis]. Usually.
the objective of these analyses is to uncover the
characteristic profile or pattern of cerebral physiol-
ogy that underlies a neuropathophysiology or par-
ticular brain state. These distributed profiles cer-
tainly depend on the concept of functional connec-
tivity for interpretation but are not direct measures
of functional connectiviry. We mean this in the
sense that temporal correlations cannot be mea-
sured without a time series of observations. There
have been promising attempts to abstract a measure
of effective connectivity from cross-sectional data
(e.g., Horwitz et al., 1991). The wnterpretation of
these correlations relies on a number of assump-
tions and is best understood with reference to spe-
cific models (e.g., Horwitz, 1990).

It is hoped that the method presented in this ar-
ticle will allow, if not a paradigm shift, a balance
between categorical “‘cognitive subtraction” tech-
niques and correlational approaches (o cognitive di-
mensions using graded tasks. See Friston and
Frackowiak (1991) for a discussion of the implica-
tions for activation study design. The data used to
illustrate the recursive PCA algorithm represent
“‘state-of-the-art™ in that they were three-
dimensional reconstructions and acquired with a
system sensitive enough to permit 12 repeated mea-
surements. We are now routinely applying the al-

J Cerels Blood Flow Metab, Vol. 13, No LA
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gorithm to more conventional data (with six obser-
vations per subject) and getting valid results com-
parable to those presented here.

We end on a different note by suggesting that the
same mechanics of a self-similar embedding of a
local PCA transformation may provide an interest-
ing metaphor for neural connections themselves. In
some respects, the problem faced by the analyzer of
PET data resembles those faced by the brain itself:
the abstraction of PCs and reduction to a small
number of perceptual dimensions of sensory input
sequences distributed over a vast number of affer-
ents. Connectionist models of elemental PCA-like
transformations have already been described (e.g.,
Oja, 1982, 1989; Linsker, 1988; Foldiak, 1989). In
the case of brain-like function, redundant dimen-
sions can result not from the limited sample size,
but from significant intercorrelations in the input
sequence that underlie functional segregation and
specialization. The constraint on the number of di-
mensions (columns of M) that can be operated on is
imposed by the limited spatial extent of intrinsic
connectivity and finally the elimination of redun-
dant dimensions may be reflected in the inequality
between the number of inputs (afferent extrinsic ax-
ons) to a small cortical region and the number of
outputs (initial segments of projection neurons).
See Friston et al. (19924) for further discussion. In
this context, the title of this article takes on a com-
pletely different, but not inappropriate, meaning.
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APPENDIX

Worked example

To illustrate how the algorithm 6{-} works, the
calculations implicit in the recursive scheme are
presented for a simple data matrix M. Let us sup-
pose that we are required to find the eigenvector
solution (PCs) of the covariance matrix of a data
matrix M with size {x,v}, where x < y. We have at
our disposal two operators €{-} andC{-} that return
the eigenvectors (and eigenvalues) and covanance
matrix of their respective operands. In the normal
course of things, our solution is simply Q =
e{C{M}}. However, the solution must now be ob-
tained subject to the constraint that the number of
columns (or rows) of any operand of ¢{-} or C{:}
must not exceed S, where S < y. This is effectively
the memory constraint for large y. The example be-
low starts uses a {2,16} data matrix M representing
16 measurements made twice (e.g., 16 voxels from
two consecutive scans). S must be greater than or
equalto 2 - x. Let S be 4. Because x = 2, there will
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be only one eigenvector [describing the hine passing
through the x (=2) points in & l6-dimensional
space]. This is the simplest example illustrating the
recursive nature of the algorithm.

To help the reader follow the arithmetic, variable
names are subscripted according to the appropriate
level.T denotes transposition

M =
0.29 —0.10 —029 —1.39 0.15 —1.65 021 —0.65
-0.24 ~1.16 =0.50 —0.02 —0.01 227 -1.05 1.02-

~183 190 -1.78 0.4 -0.13 168 -130 0.30
~1.79 0.63 —1.66 0.82 —0.98 -0.03 128 -0.15

the desired solution 0 = ([C(M)} =

0.0964
0.1782
0.0362
—0.2288
0.0281
—0.6556
0.2130
—0.2811
—0.0067
0.2136
—-0.0202
~0.0965
0.1423
0.2887
—0.4319
0.0771

with an eigenvalue of 17.9077. The algorithm pro-
ceeds as follows:

Q = o{M}

As the number of columns = 16 > S = 4. M is spitt
into two subpartitions M, and M,. Both are resub-
mitted to O{}:

Q1 - G{Ml}

M, =
029 —0.10 —0.29 ~1.39  0.15 —~1.65 0.21 ~0.65
—0.24 —1.16 —0.50 —0.02 —0.01 2.27 -1.05 1.02

Again the number of columns = 8 > § and M, 1s
split into M, and M ,. Both are resubmitted to 6{:

O = G{Mn}

M, =
0.29 —0.10 ~0.29 —1.35
—0.24 —-1.16 ~0.50 —-0.02

Now the stopping criterion is satisfied and the num-
ber of columns = 5. The covariance matrix 1s de-
rived:
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CIM,} = 014 028 005 -0.37
0.28 0.5 0.11 ~0.73
0.05 0.11 0.02 —0.14

-037 -0.73 -0.14 0.93

and the §/2 = 2 eigenvectors with the largest eigen-
values are returned. The remaining eigenvalues are
Zero, SO no variance/covariance is lost:

0 = lC{M )} = —0.45 -0.29

-0.33 —-0.58
-0.62 -0.11
-0.54 0.74

_return to previous level
Now M, is submitted:

Qi = 6{M,5}
Again the number of columns = § = 4. The x (=2)
eigenvectors are given by O, = €{C{M,,}}; return
to previous level.
A reduced form of M, is now obtained by taking
the component scores over §/2 = 2 PCs for both
M,, and M, to make a new, smaller matrix M;:

M =My - 0Oy My, -0yl =
0.84 —1.030.28 —1.77
0.84 0.79028 2.68

M|’ is an orthogonal transformation of M, where
My = M,-L,and L, has @, and Q, in the up-
per left and lower right quadrants, respectively
{and zeros elsewhere). The S/2 eigenvector solu-
tions of C{M,} are the columns of Q, where
0," - C{M}- O, = V, and V, has S/2 eigenvalues
on its leading diagonal. Now C{M|} =
LT+ C{M,} - L, and the S$/2 cigenvector solutions
are Qf, where = Q;' - L' - C{M}- L, - 0, = V;
=V, = 0,"- C{M,}- Q,. The equivalence be-
tween V| and V| is assured because the eliminated
columns of M| were zero and account for no vari-
ance.

Therefore, O, = L, - Q). L, is known and Q] is
obtained by submitting M| to 6{}:

Q1 = My}
The number of columns of M} = § = 450 Q) =
e{C{M1}}; return to previous level:

Compute

O, =Ly
027 —-0.11 045 ~029 0 0 0 0
053 —0.22 -0.33 ~058 0 0 x =092 0.37
010 —0.04 —0.62 ~-0.11 0 0 9 0
-069 028 = -054 074 0 0 037 0.9
-0.01  -0.03 0 0 ~0.03 -0.03
033 0.81 0 0 -0.21 088
~0.10  —~0.26 0 0 ~0.95 —0.28
014 0.34 0 0 -0.22 037

return to previous level

The above 1s now repeated for M,:
0> = 6{M,}

The number of columns > § therefore split M, into
M,, and M,, and invoke 6{-}:

Qar = 8{My}
number of columns = § calculate Q,,
return to previous level

Now compute Q,,:

0 = 6{My}
return to previous level

Derive the reduced formof M, = M, = [M,, - 0,,
My, - 05,1 and compute Q3:

0; = O{M3}
return to previous level
Compute 9, = L, - (5
return 1o previous level

Derive the reduced form of M; M' = (M, - Q,
M, - Q0,] and compute Q':

Q' = oM}

return to previous level

Compute
Q=L-Q =
0 -0.09 027 -0.41 0 0 0 -0
0 -017 053 —022 0 0 x 0 080
0 -003 010 -0.04 0 0 -1 0
0 022 ~0.69 028 O 0 0 -0.59
0 -0 ~0.01 -003 O 0
0 0.65 033 081 0 0
0 -021 ~0.10 -026 0 0
0 028 = 014 034 0 0
-0.04  0.00 0 0 0.04 —0.01
036 —0.21 0 0 -036 036
-0.14  0.02 0 0 0.14 -0.03
083 0.09 0 0 -083 -0.16
0.00 —0.14 0 0  -0.01 024
0.03 -0.28 0 0 -003 048
0.09 043 0 0 009 -0.72
036 ~0.07 0 0 -036 0.3

The right hand column of @ has a real positive
eigenvector and is the required solution. At no point
did either €{'} or C{-} have an operand with more
than four columns.
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