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The aim of this paper is to describe a simple procedure for electromagnetic (EEG or MEG) source
reconstruction, in the context of group studies. This entails a simple extension of existing source
reconstiruction techniques based upon the inversion of hierarchical models. The extension ensures that
evoked or induced responses are reconstructed in the same subset of sources, over subjects. Effectively, the
procedure aligns the deployment of reconstructed activity over subjects and increases, substantially, the
detection of differences between evoked or induced responses at the group or between-subject level.
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Introduction

There has been considerable progress over the past few
years in reconstructing electromagnetic source activity from
channel data (e.g., Baillet and Garnero, 1997; Phillips et al.,
2002; Phillips et al., 2005; Sato et al., 2004; Serinagaoglu et al.,
2005; Trujillo-Barreto et al., 2004; Jun et al.,, 2006; Mattout et
al., 2006; Nummenmaa et al., 2007; Wipf and Nagarajan, in
press). These advances rest upon reformulating classical
inversion approaches within a Bayesian framework and then
using hierarchical or empirical Bayes (Kass and Steffey, 1989;
Phillips et al., 2005; Wipf and Nagarajan, in press) to optimise
both the estimated sources and the constraints or priors
themselves. This optimisation uses standard sampling or
variational schemes to provide the most likely distribution of
source activity, given observed data. While these reconstruc-
tions are optimal for data from a single subject or session, they
are not optimal for detecting group differences. This is because
the hierarchical model does not include a between-subject
level and is therefore unable to exploit the fact that the same
paradigm was repeated over subjects or sessions. The analysis
described in this paper is based on two established approaches:
the summary-statistic approach to hierarchical models and the
use of a canonical mesh in source reconstruction.
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The summary-statistic approach

The problem of making inferences about population
responses is resolved by hierarchical models. In classical
statistics, these are known as random or mixed-effects models
that include random effects at the within and between-
subject level. In Bayesian inference these are known as
parametric empirical Bayes models, where between-subject
variations in parameter estimates furnish constraints on
within-subject estimation. Usually, these random effects or
hierarchical models are inverted using data from all the
subjects analysed. An alternative approach is to optimise the
parameters of subject-specific models separately and use
these optimised parameters as summary-statistics, which are
then analysed in a second-level or between-subject model.
This can be repeated until the top level of the hierarchical
model is reached. Provided the models for each subject are the
same, the summary-statistic approach gives, in expectation,
exactly the same results as a full mixed-effects analysis.
Furthermore, even if there are differences between the
models at the single-subject level; the differences between
the summary-statistic approach and a mixed-effects analysis
are trivial (see Friston et al., 2005 for example in fMRI). In
neuroimaging people generally use the summary-statistic
approach because, computationally and conceptually, it is
much simpler to implement; and because it avoids handling
all the data from all the subjects at the same time. This is
important in neuroimaging, where the size of datasets can be
very large.
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In the analysis of group EEG and MEG studies, we anticipate
that people will want to use a summary-statistic approach, in
which a summary of evoked responses (within some time and
frequency window) for each subject is optimised at the
within-subject level and then passed to a simple ANOVA
model at the second level, to produce statistical parametric
maps (SPM) of regionally significant differences among trials.
In this particular application, one would use Bayesian
estimators as the summary-statistic at the within-subject
level and classical statistics for inference at the between-
subject level. However, for this two-stage procedure to work,
the reconstructed activity at a particular source in one subject
should correspond to the same source in the other subjects.
This brings us to the notion of a canonical mesh.

The canonical mesh

To facilitate group-level analyses, we introduced the idea of
a canonical mesh (Mattout et al., 2007), which ensures that
activity is reconstructed in the same source space over
subjects (Talairach and Tournoux, 1988). Briefly, the forward
model for each subject starts with a canonical mesh, defining a
lattice of sources on the cortical surface. This mesh is then
warped using an inverse spatial normalization so that the
canonical mesh is roughly in the same place as the subject's
cortical sheet. This means that, after inversion of the ensuing
forward model, reconstructed activity can be assigned to the
same sources over subjects. One can then project this two-
dimensional manifold into a three-dimensional image and
proceed in the usual way to make inferences about regionally-
specific effects using SPM. However, for this to be efficient, one
needs to suppress inter-subject variability in the spatial
deployment of reconstructed activity. This can arise from the
underdetermined aspect of the inverse problem and calls for
formal constraints on single-subject reconstructions. These
constraints or hyperpriors are the subject of this technical
note.

Hyperpriors

The importance of hierarchical or empirical models for
single-subject data rests upon optimising not just the
parameters of the model (like source activity) but also the
priors themselves. This optimisation proceeds under hyper-
priors, which can be regarded as priors or constraints on the
prior expectations about the pattern of source expression.
Critically, the hyperpriors can also be optimised to select the
best hyperprior or models (c.f, model selection). A simple
example of different models would be the distinction between
a conventional minimum norm prior and multiple sparse
priors. In the former, the prior constraint is that activity has
exactly the same variance at every source and, furthermore, is
independent. This is encoded by a prior covariance on source
space that corresponds to the identity matrix; ie., QY=L
Conversely, in multiple sparse priors the hyperprior is that
activity can be expressed in multiple patches or covariance
components, QY....,QY, each of which has an associated
hyperparameter (Friston et al., 2008a). The difference
between minimum norm and multiple sparse prior models
rests on the form or number of prior covariance components
or, equivalently, the number of hyperparameters. These
hyperparameters can be optimised using a variety of techni-
ques. Recently we introduced a modelling approach that is

formally identical to restricted maximum likelihood for
optimising hundreds of hyperparameters, under multiple
sparse priors. The sparse aspect speaks to the fact that many
of these prior covariance components are unnecessary or
irrelevant and can be switched off (c.f, automatic relevance
determination; ARD; Neal, 1998). This automatic hyperprior or
model selection depends on choosing the right objective
function (a variational bound on the model's log-evidence that
includes weakly informative hyperpriors). An alternative
approach to optimising the hyperpriors is to use a greedy
search as described in Friston et al. (2008b). The distinction
between ARD and greedy search optimisation of models is
relatively simple: in ARD one assumes that every hyperpara-
meter has a different value. These hyperparameters are then
optimised so that many fall to zero, leaving a small number of
relevant or important empirical priors (Tipping, 2001). In a
greedy search, one starts by assuming all the hyperparameters
have the same value and then splits the set of hyperpara-
meters recursively, until the objective function stops increas-
ing (Friston et al., 2008b). We will see examples of minimum
norm, ARD and greedy search schemes later.

The particular hyperprior we propose here imposes
consistency on the source reconstruction over subjects or
sessions. It is a formal constraint that assumes that the prior
variance at any particular source in any particular subject can
be factorised into a subject-specific and source-specific term.
In other words, we assume that the unknown empirical prior
variance is proportionally the same over sources but the
variance per se is scaled in a subject-specific fashion. This
simple assumption allows us to estimate source-specific
hyperparameters by pooling the data from all trial types and
subjects to optimise the form of the prior covariance over
sources. This empirical spatial prior then enters a series of
single-subject inversions, which optimises the weight
afforded to this prior, in relation to subject-specific measure-
ment noise. This formal constraint ensures that the source
reconstruction in each individual analysis is confined to the
same sources, without biasing the parameter estimates
themselves. This means that we can use the parameter
estimates as summary-statistics for valid inference at the
between-subject level. Note that this does not represent an
inversion of a full hierarchical model. Our objective is to
finesse the first-level Bayesian inversion to provide useful
summary-statistics for classical inference at the second level.
By pooling the data to estimate empirical priors on source
space, we can meet this objective simply and effectively.

This paper comprises two sections. In the first, we present
the details of the model inversion. This inversion has two
stages. The first optimises the empirical prior covariance over
subjects. The second entails inverting the data from each
subject using the empirical prior from the pooled analysis. We
will briefly describe the implicit hierarchical models and the
optimisation scheme that we use. In the second section, we
will present comparative analyses of between-subject or
group-level inference with and without between-subject
constraints. We would also take the opportunity to compare
the performance of three hyperpriors: a minimum norm
hyperprior with a single hyperparameter (this can be regarded
as the baseline hyperprior). Second, we will look at multiple
sparse priors that have been optimised using ARD. Finally, we
will consider the hyperpriors furnished by a greedy search
over successive partitions of multiple sparse priors. The
formal details concerning these sparse priors will be found
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in Friston et al. (2008a) and the technical details of the greedy
search will be found in Friston et al. (2008b). In short, we will
compare three hyperprior models of source activity with and
without between-subject constraints. The outcome measures
we use reflect the quality of each model at the within-subject
level and the efficiency of detecting group effects at the
between-subject level. The within-subject measure is simply
the log-evidence for each of the six (2x3) models for each
subject (actually five models because the minimum norm is
the same with and without constraints — see below). For the
between-subject analysis we use two measures based on
between-subject SPMs from each of the models. These
measures reflect sensitivity (peak t-values) and spatial
accuracy (location of peaks). The dataset we use involves a
simple sensory evoked response following median nerve
stimulation. We chose these data because the location of the
underlying sources is well known and allows us to interpret
our comparative analyses with greater confidence.

Theory
Covariance function models

We start with a hierarchical generative model for data
Y; = R" over ¢ channels and n peristimulus time-bins,
from i=1,...,N trials or subjects1. We assume that random
effects on the sources factorise onto subject-specific P(1*) and
source-specific terms U(1Y), such that their covariance is
P®U. Here, v' are unknown scale parameters that control the
covariance or amplitude of random effects in source space.
This assumption engenders a probabilistic generative or
forward model with empirical (ie., hierarchical) priors on
sources J. These sources are mapped to channels by subject-
specific lead-field or gain matrices, L,,...,y to give the following
linear model; Y=1J+¢

Yy Ly Ji &1
3 I | (1)
Yn Ly | [In EN

Where, under Gaussian assumptions about random effects,

p(Y|J.A) = N(lJ,V,C)
p(J) = N(0,V, PQU)
p(\) =N(,R)

C =diag(+§, ....v§)®Q°
U= v%’Qlu + .o+ vf\},,Qﬁ
P =diag(Zi, ... WR)

v =exp(A)

Here, p(¢)=N(0,V,C) denotes a zero-mean Gaussian density on
a matrix with temporal correlations, V and spatial covariances
among channels, C. In this model, Q° represents a single
covariance component over channels, which is scaled by a
subject-specific covariance parameter or hyperparameter
to give the covariance of channel noise?. Similarly, QS’
represent covariance components in source space that are

! We will treat trials and subjects as interchangeable for simplicity. In practice, one
would normally invert several trial types (i.e., conditions) from several subjects by
holding the subject-specific quantities constant over trials.

2 The scheme can be extended easily to model multiple covariance components for
channel noise.

scaled by vf1/ to give the contribution of the j-th component
to the i-th subject's source activity. This scaling by a product of
two scale parameters embodies the formal hyperprior that
source activity factorises into source and subject-specific
components.

Note that the unknown hyperparameters A; = In(v; ) have
their own prior densities, p(A; ), which place non-negative
lognormal hyperpriors on the corresponding scale parameters
v;. In what follows, we assume that V is a fixed Gaussian
autocorrelation matrix with a smoothness that corresponds to
any filtering applied during pre-processing. We will also
assume that Q=] and select the source components QY,...,Q%
according to the model m required (e.g., multiple sparse
priors, minimum norm etc.). We use weakly informative
hyperpriors with 11=-16 and R=32] that tend to eliminate
unnecessary components.

Gaussian process models

This model may look complicated but it can be reduced to a
very simple form, which is easy to invert. This form is a
Gaussian process or covariance function model, which
effectively expresses the expected sample covariance of the
data as a covariance function of the hyperparameters. Note
that in this form, the parameters are eliminated and we have
only to optimise the hyperparameters. For a single subject, the
sample covariance of spatiotemporally ‘normalised’ responses
S(Y;) and its expectation X (A;) are

- 1o 457

Sy =YV,

SO0 = (W QY+ e+ Q) 446 QS 7
QY = Golc
Qf = AQCA

Essentially, this says that_ that the predicted covariance of
normalised channel data, Y; = A;Y; over time, is a mixture of
covariance components from source space and measurement
space. The normalization matrix A;=GL/(LLT) '<ALi=G
effectively re-samples the channel data to return what
would have been observed if the gain-matrix was an arbitrary
matrix, G. We usually use the gain-matrix from the first
subject; i.e., G=L. This re-sampling is useful because it allows
us to specify a covariance function model for the sample
covariance over subjects

S(Y) = ¥ S(Y,)
S = QY+ . +7HQY QT+ + QY (4)
vy =Y

=0k

Again, the covariance function 3(\) is a mixture of components
from source and measurement space; these are a mixture of M
source-specific spatial components and N subject-specific
sensor-noise components. In this model, the hyperparameters
)\,ﬂ’ = Inv{ encoding contributions from source space are the
same over subjects; it is these we seek to provide an empirical
prior on source space that is conserved over subjects. We now
have a Gaussian process model for a group of subjects that is
easy to invert or optimise.
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Optimising Gaussian process models

Covariance function formulations of linear models are
important because their hyperparameters can be optimised
using standard covariance component estimation techniques
to maximise the model evidence, p(Y|m) for any data Y under
model m>. Once the hyperparameters have been optimised
the conditional density of the parameters is easy to compute,
either for the group average or each subject (see below). In
this context, optimisation uses an augmented restricted
maximum likelihood scheme (Harville, 1977), as described in
Friston et al. (2007). This scheme is formally equivalent to a
variational inversion under the mean-field assumption that
the conditional density q(J,A\)=q(J)g(\) factorises into Gaus-
sian marginals. Here, q(J)=N(/,/), where 1/ and ¥/ are the
conditional expectation and covariance of parameters; simi-
larly for the hyperparameters, q(A\)=N(u3"). Under this
Gaussian or Laplace assumption, the hyperparameters of any
Gaussian process model maximise a variational free-energy
bound on the log-evidence*

D /w1y D 1 1
F==Ztr(37'S)=Z |3 + S nfSM =5 (' -n) TI(-) - (5)

Where, D represents the total number of samples used to
evaluate the sample covariance matrix® and m=R! is the prior
precision of the hyperparameters from Eq. (2). This bound is a
function of sample and predicted covariances, S(Y) and 3(u)
respectively. Optimisation is relatively simple and involves
iterating

D
Fy = —Etr(Pi(S—z))_nii(ﬂ?mi)
D
Faij = = tr(P3P3)-Tl; (6)
AN = -F\F
st = -Fa)

until convergence. The matrix P; is the derivative of the
precision, 3(u)~! with respect to the i-th hyperparameter. Fy
and F,, are the gradient and expected curvature of the free-
energy. Note that this scheme deals with relatively small cxc
matrices whose size corresponds to the number of channels.
In other words, computational load does not scale with the
number of time-bins, trials or subjects.

Put simply, this procedure optimises the amount of each
covariance component iteratively, to minimise the difference
between the sample covariance and the ensuing mixture of
components. The difference is essentially the Kullback-Leibler
divergence between the sample and predicted Gaussian
densities encoded by the covariances (Harville, 1977).

A two-stage optimisation

The hyperparameters of our hierarchical model can be
optimised in two stages. First, we estimate the hyperpara-
meters of X(N), using the sample covariance over subjects

3 Here, a model m is defined in terms of the number and form of covariance
components.

4 This is formally related to the restricted maximum likelihood (ReML) objective
function (Harville, 1977) and is essentially the Kullback-Leibler divergence between the
observed and expected Gaussian densities (ignoring hyperpriors and constants).

5 For the single subject D = n and for the group, D = nN.

S (Y) to furnish the conditional estimates of source-specific
scale parameters, v¥,...7};. These define an empirical prior
covariance on the sources U =7v/QY + ... +7vQf that is
common to all subjects (to within a scaling factor). Second,
we optimise subject-specific hyperparameters using the
sample covariance of single-subject data S(Y;) and the
covariance function model

Si(A) = LULT ++v£Q° (7)

Here, the only unknowns are the subject-specific error
covariance and source-prior hyperparameters. These are
optimised in exactly the same way as above to give the
conditional estimates of \;={v}f}. These specify the maxi-
mum a-posterior (MAP) estimates of source activity using the
matrix inversion lemma.

1w = MY, 8)
S = U-MLU;.

M;=ULTs;' is a MAP projector, where the covariance
function 3(\) and empirical prior covariance U;(\;) =+'U
are evaluated at the conditional modes of A;.

Time-frequency contrasts of these subject and trial-
specific source reconstructions can then be used to summarise
the subject-specific responses to each trial type. These
contrasts generally test for specific time-frequency compo-
nents by defining a temporal subspace of interest (e.g., gamma
oscillations between 300 and 400 ms after stimulus onset).
The contrast matrix can be a simple vector; for example a
Gaussian window We®R™! over a short period of peristimulus
time or cover specified frequency ranges (with one frequency
per column) over extended periods of peristimulus time
(Kiebel and Friston, 2004). The conditional expectation of the
energy in a contrast is

E(WwwWTJT) = mewTY,-TMiT + Shr(WTvw) 9)

See Friston et al. (2006) for details. The conditional estimates
of contrast energy can then be used as summaries of
condition-specific responses for each subject and entered
into statistical models of between-subject responses in the
usual way. Eq. (9) provides more accurate estimates than
classical beam-forming approaches because uncertainty about
the activity enters the estimate of power or energy in a
contrast. In other words, the expected energy is not just the
energy of expected activity (as assumed in beam-forming) but
involves an extra term that accounts for variability in the
expected activity (the second term above). In the next section,
we will use the equations above to estimate summary-
statistics for evoked responses using a series of different
models that are defined by the prior covariance components
employed.

Prior covariance components

For the minimum norm model there is only one prior
covariance component that corresponds to the identity
matrix, QY=I. In this simplest case, the between-subject
constraint should make no difference to the within-subject
estimates of activity. However, for the ARD and greedy search
schemes, which use multiple prior components, the effects of
between-subject constraints could be quite profound. The
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multiple sparse priors we use in this paper are described in
Friston et al. (2008a) Briefly, they comprise 256 small patches
with compact spatial support in each hemisphere and a
further 256 components corresponding to a bilateral deploy-
ment of homologous patches. Each patch is formed by
diffusing a point source on the cortical mesh, using a graph
Laplacian with a diffusion coefficient of 0.6. This coefficient is
basically a smoothness parameter and can vary between zero
and one. In practice, we do not use the data from all
peristimulus times but project the responses onto a temporal
subspace using a modified Kaiser criterion. This subspace is
defined by singular value decomposition of the temporal
responses over trials and subjects. This usually identified
about four to eight temporal modes that span more than 95%
of the data variance. This temporal subspace also precludes
frequencies lower than 1 Hz and higher than 64 Hz. This
concludes the theoretical background. In the next section, we
evaluate the between-subject constraint under the three
different hyperprior models detailed above.

Comparative analyses

In this section, we present comparative analyses of the
source reconstructions at the within and between-subject
level. Data were acquired as a part of previously published
study (Litvak et al., 2007). The original study examined the
effect of combined somatosensory and transcranial magnetic
stimulation (TMS) on median nerve somatosensory evoked
potentials (MN-SSEP). The MN-SSEP were recorded before and
after TMS. Each of eleven healthy volunteers (eight men and
three women), aged 20.9 to 44.5 (mean 26.3+7.2 years)
participated in five experiments, which differed in the TMS
parameters. For the present analysis, we use only MN-SSEP
recorded before TMS. Thus, our dataset consisted of five MN-
SSEP recordings per subject.

Data acquisition and pre-processing

The recordings were performed under identical conditions
with intervals of several days to one year between sessions.
Median nerve stimulation was performed using an electrical
stimulator (Digitimer D7AH, Digitimer, Welwyn Garden,
Hertfordshire, UK) with a standard stimulation block (cathode
proximal), pulse width 200 ps at a frequency of 3 Hz and a
stimulation intensity of 300% of the individual perceptual
threshold. Eighteen hundred stimuli were delivered. Electro-
encephalographic (EEG) signals were recorded from the scalp
with a 64-channel Quickamp system (Brain Products GmbH,
Munich, Germany). The electrodes were placed at extended
10-20 system locations and fixed on the subject's head with
an elastic cap (EASYCAP GmbH, Herrsching-Breitbrunn,
Germany). The electrode impedance was maintained below
5 kQ. Electrode positions and anatomic reference points were
measured for each experiment with a 3D navigation system
(Brainsight, Rogue research, Montreal, Canada). The brain
signals were average referenced in hardware, filtered between
0 and 560 Hz and sampled at 2000 Hz.

The data were processed with the SPM software package
(http://www.filion.ucl.ac.uk/spm). The continuous EEG data
were high-pass filtered (above a cut-off frequency 20 Hz) and
epoched between —50 and 50 ms relative to the median nerve
stimulus. Trials were rejected if they contained deflections
exceeding 50 pV. Channels were marked as bad if they

contained such deflections in more than 20% of the trials. The
number of trials retained for analysis was 1545+242. No
channels were excluded in 34 out of 55 experiments, 1
channel in 12 cases, 2 channels in 5 cases, 3 channels in 2 cases
and 6 channels in 2 cases. Retained trials were averaged to
obtain MN-SSEP waveforms and used, in combination with
measured positions of the retained sensors and the fiducials,
as input for SPM source reconstruction.

We chose this dataset for the present study for two reasons.
The first is that MN-SSEP sources have been studied
extensively with invasive and non-invasive recordings in
humans and animals; they are known to reside in the hand
area of the primary somatosensory cortex (S1), principally in
Brodmann area 3b, which is located at the posterior wall of the
central sulcus; with a weaker and slightly delayed source in
adjacent Brodmann area 1, which is located on the top of the
postcentral gyrus (Allison et al., 1991). The second reason is
that this particular dataset is especially suitable for testing
source reconstruction with group constraints. By selecting one
of the five experiments from each of the eleven subjects, 5'
different group MN-SSEP datasets can be formed. Ideally,
source reconstructions and statistical tests performed on
these group-data should yield consistent results. By looking at
how variable the results are, under different hyperpriors, the
utility of these models can be assessed. In what follows, an
‘experiment’ means a single recoding session subtending a
subject-specific MN-SSEP and ‘group’ refers to collection of
experiments from eleven different subjects.

Source reconstruction

The somatosensory evoked activity was reconstructed from
10 to 40 ms after stimulation. This reconstruction proceeded
under the three hyperprior models: minimum norm (MN),
multiple sparse priors optimised with ARD and multiple
sparse prior partitions optimised with a greedy search (GS).
Note that the ARD and GS implicitly optimise both the
empirical priors and the model itself. This is because when a
prior component is switched on or off, the form of the model
changes. Conversely, minimum norm reconstructions with
and without group constraints are identical. Thus ARD and GS
reconstruction schemes were repeated with and without the
formal constraint that imposes the same empirical spatial
prior over subjects. In total, we examined five source
reconstruction schemes: MN, ARD, GS, ARD with group
constraints (gARD) and GS with group constraints (gGS).

Reconstruction without group constraints was performed
once for each experiment and each hyperprior model. For
reconstruction with group constraints, 100 groups of experi-
ments (each with N=11 subjects) were randomly sampled from
the 5" possible groups. Thus, each experiment was used in
approximately one fifth of group reconstructions (ie., ~20
reconstructions per hyperprior model). The same 100 groups
were used for all reconstruction schemes and t-tests (see
below). The reconstructions with and without group constraints
used exactly the same two-stage procedure but the uncon-
strained reconstruction used only one subject per group (our
software implementation uses just one routine that can be
called with one or more subjects). Critically, this means that the
final reconstruction (stage 2; in Fig. 1) used just two covariance
components (an empirical source prior and sensor noise). This
means that models, with and without constraints had the same
number of unknown parameters and hyperparameters.
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Subject-specific data
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Fig. 1. Schematic of the two-stage source reconstruction scheme for group studies. See
main text for a detailed explanation of the variables.

Model comparison at the within-subject level

The reconstructed activities per experiment were summar-
ized with a Gaussian time-window centred at 20 ms (with a
standard deviation of 8 ms), which is about the time the
maximum sensory evoked response is expressed in somato-
sensory cortex. For each reconstruction, we recorded the free-
energy bound on log-evidence (F). In the case of reconstruc-
tions with group constraints, the values of F for each
experiment were averaged over all reconstructions in which
that experiment was used. The log-evidence provides a
measure of the model quality that accommodates both
accuracy and complexity (i.e., number of priors). Critically, it
pertains to the ability of models to explain the data from each
experiment but does not reflect those models' generalisability
over different datasets. We expected that ARD and GS schemes
would provide much better explanations of data, relative to the
rather unlikely priors entailed by the MN model. Furthermore,
we anticipated that the group constants would reduce the log-
evidence for ARD and GS, because they constrain the optimisa-

tion of subject-specific parameters, when trying to explain a
particular experiment. In other words, the advantage of group
constraints should only be evident at the between-subject or
group level and may even compromise the optimisation at the
within-subject or experiment level.

We were interested in relative, rather than absolute values
of the free-energy and primarily in the comparison between
the GS and ARD schemes, with and without group constraints.
Therefore, we analysed the differences between the F-values
for minimum norm and for the other four schemes for each
experiment. We also subjected the F-values obtained with GS
and ARD to an ANOVA with two factors (hyperprior model,
ARD vs. GS and between-subject constraint; with vs. without).
This allowed us to assess the overall effect of different models,
group constraints and how the model-effect depends on
group constraints.

Model comparison at the between-subject level

To assess the quality of reconstructed source activity we
performed paired samples t-tests using conventional statis-
tical parametric mapping (SPM) procedures to compare the
original contrast images and the same images flipped across
the midsagittal plane. This is a device to assess the lateralisa-
tion of responses evoked by unilateral median nerve stimula-
tion. The contrast images were constructed after diffusion on
the canonical mesh and projection into three-dimensional
anatomical space.

For each reconstruction scheme 100 t-tests were per-
formed using the 100 group-datasets. The statistical images
produced by SPM were assessed with respect to two criteria:
the maximal t-value in each SPM and the distance of this
maximum from the maximum in the average SPM, over the
100 replications of the same reconstruction scheme (we will
refer to this as the mean location). These two measures, the
height of the maximum t-value and its distance from the
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Fig. 2. (A) Distributions of the values of free-energy bound to the log-evidence for the
four reconstruction methods compared in the present study relative to minimum norm.
The distributions are presented as box-plots with lines at the lower quartile, median,
and upper quartile values. Values beyond the 1.5 interquartile range from the median
are shown as outliers. For gGS and gARD the value for each experiment is an average of
~20 values obtained when that experiment participated in reconstructions with group
constraints. (B) Distributions of differences between the average log-evidences and the
value obtained for source reconstruction without group constraints.
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mean location, quantify the sensitivity of the between-subject
analysis and its spatial precision. We anticipated that the best
model would co-localise reconstructed activity in a consistent
way over subjects and produce the largest t-values with the
least dispersion across repetitions in unilateral somatosensory
cortex. To exploit the fact that we had 100 realisations of
group data, we present the distribution of these two metrics in
terms of their cumulative sample density.

Results
Model comparison at the within-subject level

As expected, the log-evidence for the reconstruction
schemes using multiple sparse priors, significantly exceeded
the evidence for conventional minimum norm models (mean
difference+SEM GS: 85.4%7.8, ARD: 47.0+7.4, gGS: 56.0+£6.4,

Exemplar SPM {¢}; thresholded at p< 0.001 (uncorrected)

Minimum norm (MN)

Greedy search (GS)

SPM (T, ,}

ARD

SPM (T, o}

SPM {"I‘1 0}

with group constraints (gGS)

q;‘r '5

SPM (T}

with group constraints (gARD)

¢ Sim

SPM (T ,,}

Fig. 3. Results of paired t-tests comparing the reconstructed images with the midsagittal-flipped version of the same images. All models show maximal activation around the left
sensorimotor area. However they differ greatly with respect to the number of suprathreshold voxels. These SPMs have been thresholded at the same level (p<0.001; uncorrected) and
the location of the maximum t-value is marked by a red pointer in each SPM.
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gARD: 64.2+6.8; Fig. 2A). An analysis of variance of the log-
evidences from the experiment-specific inversions showed a
significant cross-over interaction between the model and the
effect of group constraints (F, 54)=258.78, p<0.001). For GS F
was significantly higher without group constraints (p<0.001)
whereas for ARD, F was higher with group constraints
(p<0.001) (Fig. 2B). On average, the model with the largest
evidence was returned by the greedy search without group
constraints. For the GS models, this is exactly what we had
expected, in that the group constraints compromise the
optimisation of the parameters and hyperparameters, in
relation to any one dataset. Furthermore, in the absence of
group constraints, the superiority of the greedy search over
the ARD was not surprising, in that the ARD model is very over
parameterised and can easily get stuck in local maxima (see
Wipf and Nagarajan, in press for an analysis of convexity of
these sorts of objective functions).

What was surprising is the fact that group constraints im-
proved the evidence for ARD models. Strictly speaking, this is
impossible because any empirical source priors, furnished by
group constraints, should have been discovered during the
ARD. The only explanation is that ARD finds local maxima in
its very high-dimensional search space and that these local
maxima are suppressed by group constraints. In other words,
the group constraints remove local maxima and allow the ARD
scheme to find better solutions. This is encouraging because it
means the group constraints must be partly veridical; if they
are not, there would have been no improvement in the
evidence for ARD models.

Finally, the interaction between model and group con-
straints makes sense from this perspective; in that ARD
benefits much more from constraints than the GS, because it
has a much higher dimensional search space to navigate. We
were slightly surprised that ARD outperformed GS with group
constraints, given our anecdotal experience with these
schemes. However, it may be the case that the focal responses
evoked by median nerve stimulation do not require the
models of distributed responses afforded by the partitions
(sets of ARD priors) optimised during the greedy search.

Model comparison at the between-subject level

Five one-sample t-test SPMs testing for a sensory evoked
response from one of the randomly selected groups are shown
in Fig. 3. These illustrate the similarities and differences across
the five reconstruction schemes we evaluated. Fig. 4 shows
the cumulative distributions of maximal t-values (4A) and the
distribution of distance of the voxel with the maximal t-value
from the mean location for the same reconstruction scheme
(4B).

Interestingly, on average, the maximum t-values for the
ARD and GS schemes were lower than for minimum norm, but
for GS with group constraints the difference was not
significant (GS: p<0.001, ARD: p<0.001, GS group: p=0.07,
ARD group: p=0.001). Repeated measures two-way ANOVA®

6 Strictly speaking the t-value summary statistics cannot be treated as independent
summaries, over the 100 realisations of the group analyses, because these realisations
borrowed data from the same five experiments in each subject. However, we appeal to
the sphericity of mildly correlated but uniform correlations, among the ensuing errors
over groups, to eschew a correction for non-sphericity. Heuristically, each of the 100
distinct combinations of the five experiments brings a degree of freedom to the
inference about effects over groups.
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Fig. 4. Cumulative distributions of the ‘quality measures’ for the t-test SPMs, such
as shown in Fig. 2, across 100 repetitions using randomly selected groups of 11
experiments with the same 11 subjects. (A) The maximal t-value in the image.
(B) The distance of the voxel with the maximal t-value from the ‘mean location’ over the
100 group analyses, with the same reconstruction scheme.

showed no interaction between the hyperprior model and the
effect of group constraints (F, 99y=0.52, p=0.47). Main effects
of both factors were significant (hyperprior type: Fy, 99=7.78,
p=0.006, group constraints: F, 99y=512.5, p<0.001). Maximal
t-values were higher for GS, than for ARD and higher with
group constraints, than without. The highest t-values (except
for minimum norm) were attained with GS with group
constraints. However, the difference between GS with group
constraints and ARD with group constraints was not sig-
nificant (p=0.29).

It might seem paradoxical for the minimum norm solutions
to yield the highest t-values, given their models had the
lowest evidence on a per subject basis. The reason for this is
that the MN solutions deploy reconstructed activity in a non-
focal fashion, with very little spatial specificity. This is evident
when we consider the evaluation of spatial precision: The
dispersion of maxima under GS (p<0.001), gGS (p<0.001) and
gARD (p<0.001) was much smaller than for minimum norm
models. ARD without group constraints was not significantly
different from minimum norm, with respect to this measure
(p=0.55). The cumulative densities in Fig. 4B shows that 50%
of the SPMs obtained with GS under group constraints
furnished a maximum within about 10 mm of the mean
location. This contrasts with the MN solutions, where 50% of
maxima were only within about 30 mm of their mean
location. ANOVA showed a significant interaction between
the model and the effect of group constraints (F, 99)=42.01,
p<0.001). For GS there was no significant effect of the group
constraints on dispersion (p=0.6). For ARD, however, the
effect of group constraints was highly significant (p<0.001).
The best results (lowest distance) were attained using ARD
with group constraints. These results were significantly better
than for GS with group constraints (p=0.008). Again, ARD
benefits significantly more from group constraints, relative to
GS. In fact, in terms of spatial precision it outperformed GS
(but not in terms of sensitivity), provided it has access to
group constraints. As above this may reflect the focal nature of
sensory evoked potentials in this paradigm.
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Discussion

Source reconstructions with multiple sparse priors (Friston
et al., 2008a) yield solutions which are much more focal than
those provided by classical minimum norm models. Further-
more, they have significantly higher model evidences in
relation to single-subject data. However, the regional speci-
ficity of these solutions turns into a disadvantage when
contrast images are pooled across different experiments. This
is because inter-subject variability in regional effects can lead
to low t-values, when sources do not overlap. One way to
solve this problem is through spatial smoothing of recon-
structed images. However this compromises spatial resolution
and subverts the main advantage of multiple sparse priors.
Our present study shows that introduction of group con-
straints makes it possible to attain t-values close to those of
minimum norm (Fig. 4A); with solutions that remain focal and
consistent across subjects (Fig. 4B).

Group constraints may lead to a reduction of model
evidence for individual subject data. In the present study,
however, this was observed only for GS. For ARD the evidence
was actually higher with group constraints (Fig. 2B), suggest-
ing exploration of hyperparameter or model space was
somehow finessed by information from other subjects. On
comparing the two methods with group constraints, GS and
ARD, we conclude that both yield similar t-values (close to
those of minimum norm case). The largest t-values were
provided by GS with group constraints; however, for ARD with
group constraints the solutions were, anatomically, more
consistent across replications. ARD benefited much more than
GS from group constraints and this may reflect the large
number of hyperparameters it has to optimise. Without group
constraints GS is clearly better according to all the three
criteria: model evidence, t-values and spatial precision.

Conclusion

We have described a simple device that allows one to place
constraints on reconstructed source activity in the context of
group studies. This is not a full hierarchical inversion but
finesses single-subject source reconstruction; as a prelude to
summarizing subject-specific responses for classical inference
at the group level. Our analyses suggest that this between-
subject constraint markedly increases the reliability of
detecting systematic responses over subjects, in terms of
their functional anatomy. The inversion procedure is based
upon generic variational techniques and yet proceeds quickly
and efficiently, using only second-order statistics in channel
space. This means the entire inversion for several subjects
takes seconds (as opposed to minutes).
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Software note

The algorithm and schemes introduced in this paper are
available as academic freeware as part of the SPM software
package (http://www.fil.ion.ucl.ac.uk/spm). The group inver-
sion scheme can be accessed through the 3D-source recon-
struction by selecting “group inversion”. Forward models will
then be built automatically and the group inversion described
in this paper implemented. All the user has to supply is the
names of the data files and the locations of the sensors and
fiducials.
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