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This paper describes a dynamic causal model (DCM) for induced or
spectral responses as measured with the electroencephalogram (EEG) or
the magnetoencephalogram (MEG). We model the time-varying power,
over a range of frequencies, as the response of a distributed system of
coupled electromagnetic sources to a spectral perturbation. The model
parameters encode the frequency response to exogenous input and
coupling among sources anddifferent frequencies. TheBayesian inversion
of this model, given data enables inferences about the parameters of
a particular model and allows us to compare different models, or
hypotheses. One key aspect of the model is that it differentiates between
linear and non-linear coupling; which correspond to within and between-
frequency coupling respectively. To establish the face validity of our
approach, we generate synthetic data and test the identifiability of various
parameters to ensure they can be estimated accurately, under different
levels of noise. We then apply our model to EEG data from a face-
perception experiment, to ask whether there is evidence for non-linear
coupling between early visual cortex and fusiform areas.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

The aim of this paper is to describe a dynamic causal model for
induced or spectral responses measured with the electroencephalo-
gram (EEG) or the magnetoencephalogram (MEG). Induced oscil-
lations are a hallmark of many neuronal systems (Gray et al., 1989;
Tiitinen et al., 1993; Tass et al., 1998; Singer, 1999; Tallon-Baudry
and Bertrand, 1999; Varela et al., 2001; Singh et al., 2002; Tallon-
Baudry et al., 1997; Pantev, 1995). They are ubiquitous in both the
sensory and motor systems and may play an important role in the
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functional integration of distributed brain systems. Induced
responses represent a stimulus- or task-related increase in
frequency-specific power recorded electrophysiologically (Kilner
et al., 2005). It had been shown that the modulation of frequency-
specific dynamics, reflecting functional integration within or
between neuronal sources, can be used to characterise neuronal
coupling and address questions about the underlying mechanisms in
health and disease; for example, task-related changes (Kilner et al.,
2002, 2004; Leocani et al., 1997), learning-related changes (Gerloff
and Andres, 2002) and functional deficits (Czigler et al., 2008;
Patino et al., 2006; Raethjen et al., 2007). The machinery presented
in this paper contributes to this endeavour by allowing one to make
inferences and quantify changes in either linear or non-linear
coupling, induced experientially or associated with pathophysiol-
ogy. We will demonstrate this in a future paper that asks whether
backward connections exert greater non-linear influences than
forward connections in visual processing hierarchies. These sorts
of questions are central to understanding the nature of neuronal
computations and how they are implemented in the brain. On
the clinical side, the methods reported here are currently being
applied to assess coupling in themotor system, during recovery from
stroke.

The purpose of this work was to establish a phenomenological
model of how induced responses are caused, and how they evolve
dynamically, in a distributed system of coupled electromagnetic
sources. Inversion of this model, given empirical data, furnishes
inferences about different models and the parameters of a particular
model. This allows one to disambiguate between different
connectivity architectures that may underlie induced responses
and to make quantitative inferences about the coupling among
distributed cortical regions. Furthermore, one can assess changes in
coupling that result from experimental manipulations or pathophy-
siology. Critically, this model allows one to distinguish between
changes in linear and non-linear coupling in the brain. This work
represents a further extension of dynamic causal modelling to cover
spectral responses as measured by the EEG or MEG (David et al.,
2006a; Kiebel et al., 2006; Moran et al., 2007).

There are many approaches to detecting and estimating
neuronal coupling using frequency-based analyses of electrophy-
siological recordings. These can be divided into descriptive and
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mechanistic; a distinction that is closely related to the difference
between functional and effective connectivity. In the following,
we discuss various approaches to motivate the present model. In
contrast to dynamic causal modelling, the majority of current
approaches are descriptive in nature:

Descriptive approaches: detecting functional connectivity

Functional connectivity has been defined as the statistical depen-
dence among remote neurophysiological time-series. To establish
functional connectivity one has to show that the statistical depen-
dencies are significant. This entails, in its most general formulation,
measuring the mutual information among two or more time-series
(Roulston, 1999; Quian Quiroga et al., 2002). There are several
approaches to assessing mutual information, which divide broadly
into linear and non-linear. The most common approach uses linear
systems theory and measures the correlation or coherence between
two time-series. It has been shown repeatedly that these measures
(the information in the cross-correlation function and coherence is
identical) are very useful for quantifying long-range interactions
using EEG (Bressler, 1995; Gross et al., 2001; Nunez et al., 1997).
Measures of linear dependencies can be generalised to multivariate
time-series to furnish interesting formulations in terms of directed
transfer functions and Granger causality (Brovelli et al., 2004;
Bernasconi and Konig, 1999).

Non-linear methods
In terms of non-linear approaches; the most general approach

relies upon the notion of generalised synchrony (Rulkov et al., 1995;
Schiff et al., 1996), which posits a mapping between the manifolds
containing the state-space trajectories of two time-series. These
time-series may not be correlated or indeed have any obvious for-
mal similarity in their periodic structure. These techniques usually
rely upon some form of temporal embedding or attractor recon-
struction. Generalised synchronisation exists between two dynami-
cal systems when the state of the response system is a function of the
state of the driving system. If this function is continuous, two
neighbouring points on the attractor of one system should
correspond to two nearby points on the attractor of the other. This
correspondence is used to see if the evolution of neighbouring
trajectories in one attractor can be used to predict the evolution of a
point on the other attractor (see Breakspear and Terry (2002) for an
example). Usually, generalised synchrony is used to detect non-
linear coupling by comparing the mutual predictability (informa-
tion) between time-series before and after destroying their non-linear
dependencies (by randomising their phase relationships). A special
case of generalised synchrony is phase-synchrony.

Phase-synchronisation, between two oscillators, is a ubiquitous
phenomenon, which appears when they are coupled in a broad range
of structures, including EEG sources (Pikovsky et al., 2001). Time–
frequency analysis of phase-synchronisation is popular in current
research on cortical networks (David et al., 2003; Engel et al., 2001;
Varela et al., 2001; Lee et al., 2003). Establishing phase-
synchronisation proceeds in two steps; estimation of instantaneous
phase and the quantification of the phase locking. This quantifica-
tion uses the distribution of phase differences to establish significant
mutual information between the two time-series. Both generalised
and phase-synchrony can be expressed between coupled systems
that show autonomous or indeed chaotic dynamics.

Another approach to detecting non-linear coupling is based on
non-linear system identification theory for controllable systems.
This approach formulates dependencies in terms of generalised or
non-linear transfer functions that are estimated using generalised or
poly-spectral analysis. Bispectral measures such as bicoherence
(Dumermuth et al., 1971) have been used to detect non-linear
coupling in human EEG (Jeffrey and Chamoun, 1994; Shils et al.,
1996). The key thing about non-linear coupling is that it induces
dependencies among different frequencies. We will exploit this
below (see also Friston (2000)). The same non-linear cross-
frequency coupling is seen in phase-synchrony; two principal
forms of cross-frequency phase interactions are recognized (Palva
et al., 2005): n:m phase-synchrony, which indicates amplitude-
independent phase locking of n cycles of one oscillation to m
cycles of another (Tass et al., 1998), and nested oscillations, which
reflect the locking of the amplitude fluctuations of faster oscil-
lations to the phase of a slower oscillation (Vanhatalo et al., 2004).
These forms of phase-synchronisation can be used to disclose non-
linear coupling, in which a slower frequency comes to entrain or be
entrained by a faster frequency.

In summary, there are several ways to establish the statistical
dependencies between two measured time-series (see David et al.
(2004) for a comparison of these approaches and Pereda et al. (2005)
for a comprehensive overview of non-linear methods). However,
they are all concerned principally with detecting functional connec-
tivity; they are not concerned with the mechanisms or causes that
underlie these dependencies.

Modelling approaches: estimation of effective connectivity

Effective connectivity is defined as the influence that one neural
system exerts over another. Critically, this definition posits a causal
mechanism for the dependencies described above. In a time-series
setting, these models are usually dynamic and rest on differential
equations that are causal in a control theory sense. We refer to these
models as dynamic causal models (Friston et al., 2003; David et al.,
2006b). The idea behind dynamic causal modelling is to explain
observed responses in terms of a dynamic system that is perturbed by
exogenous inputs that are either known or unknown. The model is
defined by the form and parameters of differential equations that
describe the evolution of the system states. Inversion of thesemodels
allows one to make inferences about the models and their
parameters. Critically, this allows one to compare different models
and quantify them in terms of the conditional density over both
models and parameters. These models are based on specific hypoth-
eses about putative sources and their assumed connectivity. This is a
fundamental departure from descriptive approaches to functional
connectivity because it allows one to answer questions about the
mechanisms and functional architectures that cause observed
responses. These questions are posed in terms of competing models,
which are evaluated in relation to each other; clearly, the answers
obtained are conditional on the models considered.

In contrast to the descriptive approaches, there are relatively
few causal models of spectral responses. Those that do exist can,
again, be divided into linear and non-linear. Linear models are
normally derived by linearising a neurobiologically informed non-
linear model of neuronal dynamics (e.g., a mean-field or neural-
mass model) and evaluating the spectral response under some
assumptions about the spectral composition of exogenous input
(Wright and Liley, 1994). Steady-state spectral measurements can
then be used to invert the model and infer on important biophysical
parameters such as rate constants or coupling parameters (Rowe
et al., 2005; Moran et al., 2007). In the non-linear and dynamic



1 For simplicity, we will deal with a single input and a single output.
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domain there are even fewer models. An important class is models
that are based upon loosely coupled oscillators:

Models of spectral dynamics
The theory of coupled phase oscillators has found many applica-

tions to biological, chemical and physical phenomena (Kuramoto,
1984; Kopell and Ermentrout, 1986). Under certain assumptions, the
behaviour of networks of neurons with largely oscillatory output can
be approximated by a system of equations that govern the phases of
each oscillator (Ermentrout and Kleinfeld, 2001)

:
w i ¼ xþ

X
j

f wi � wj

� �
: ð1Þ

Here ψi is the instantaneous phase of the i-th unit or population;
ω=2πν, where ν is the intrinsic frequency of the oscillators and f
(ψi−ψj) is the effective coupling, which is a non-linear [periodic]
function of the phase-difference between two oscillators. The sum runs
over all units that are connected. In these models, it is assumed that the
amplitude of the oscillations is unimportant and the key dynamics are
narrow-band. Although this equation could be used as the basis of a
dynamic causal model, it has not (to the best of our knowledge).

The model above speaks to a specific class of dynamic causal
model (DCM): DCMs can be phenomenological or biophysical.
Biophysical DCMs are constrained by the known physical or
biological processes generating the observed signals. In contrast,
phenomenological DCMs describe the causal dynamics in a purely
formal fashion. Eq. (1) is an example of this, where the form of the
effective coupling can bemotivated using neurobiological constraints
(see Ermentrout andKleinfeld (2001)) but is not formulated explicitly
in terms of neuronal processes. The DCM described in this paper is
phenomenological and complements models based on instantaneous
phase by modelling the evolution of instantaneous power:

:
g xð Þi¼

X
j

f g xð Þi; g xð Þj
� �

: ð2Þ

Here, g(ω)i is the spectral density, over frequency ω, of the i-th
unit. In this model, temporal changes of power in a source are
explained as a network function of power in all sources. This sort
of model can deal with situations in which oscillations in one area
become amplitude modulated by oscillations in another band in the
same or another areas; e.g., theta-band modulation of gamma
activity (e.g., Guderian and Duzel, 2005). Here, high levels of theta
activity would engender increases in gamma.

Thismodel is phenomenological in the sensewemake no attempt
to motivate the form of effective coupling, f(gi, gj) but simply use the
coefficients of its Taylor expansion as parameters (see below). This
is exactly the same device used in bilinear DCMs for functional
magnetic resonance imaging (fMRI) time-series (Friston et al.,
2003) and is recapitulated here for spectral responses as measured
with EEG or MEG. The ensuing simple form for the DCM is
particularly useful because it allows us to partition the effective
coupling between regions at the same frequency and between
regions across frequencies. This is important because, as noted
above, within-frequency coupling is generally mediated by linear
mechanisms, whereas cross-frequency coupling rests on non-linear
in mechanisms. This is pertinent to neuronal dynamics, where non-
linear mechanisms may predominate in functional integration.

In summary, the DCM elaborated below describes the phenom-
enological evolution of spectral densities inmultivariate time-series; it
is formulated to model coupling within and between frequencies that
are associated with linear and non-linear mechanisms respectively.
This is similar to the bilinear form adopted for fMRI, which
distinguishes between task or stimulus-invariant coupling (linear) and
context-sensitive (non-linear or bilinear) changes in that coupling.

Overview

This paper comprises four sections. In the first, we reprise,
briefly, a generalised convolution model of neuronal coupling
(Friston, 2000) to demonstrate the link between cross-frequency
coupling and non-linear mechanisms. We illustrate these phenom-
ena using a neural-mass model that is the basis of biophysical DCMs
for ERPs (David et al., 2006b). In the second section, we describe a
DCM for induced responses and relate its parameterisation to the
generalised convolution models of the first section. The model
provides the likelihood function of a generative model, which is
inverted using standard variational techniques. This inversion is
summarized briefly in the last part of this section. In the third section,
we try to establish the face validity of ourmodel using synthetic data,
where the true inputs and architecture are known. We generated
synthetic data and compared linear and non-linear models to identify
the veridical model. This enabled us to establish face validity and see
how the inversion behaves under different noise levels. The fourth
section provides a demonstration of the model and its inversion
using real EEG data acquired during face perception.

Non-linear and cross-frequency coupling

In this section, we show why non-linear mechanisms are manda-
tory for coupling across frequencies. We have dealt with this issue in
a series of papers on the theoretical neurobiology of functional
integration (e.g., Friston, 1997, 2000, 2001) and summarize themain
points here. The results in this section are not necessary to derive the
dynamic causal model of the next section; they are used to highlight
the sorts of behaviours that this model has to accommodate.

Generalised convolution models

In what follows, we treat any neuronal system or electro-
magnetic source as an input-state-output system. We will show that
if this neuronal system is non-linear, the energy at one frequency in
the inputs (from other sources) manifests at different frequencies in
the outputs. This induces cross-frequency coupling between any
two sources, when the output of one serves as the input the other.
The Fliess fundamental formula (Fliess et al., 1983) describes the
causal relationship between system outputs and the history of
its inputs. This relationship conforms to a Volterra series, which
expresses the output as a generalised convolution of the input,
critically without reference to any hidden states. This series is a
functional Taylor expansion of the outputs, y(t) with respect to the
inputs u(t) (Bendat, 1990). The reason it is a functional expansion
is that the inputs are a function of time.1

y tð Þ ¼
X
i

R
N
R
ji r1; N ; rið Þu t � r1ð Þ; N ; u t � rið Þdr1; N ; dri

ji r1; N ; rið Þ ¼ Aiy tð Þ
Au t � r1ð Þ; N ;Au t � rið Þ

ð3Þ
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where κi(σ1,…σi) is the i-th order kernel. The integrals are over
the past or history of the inputs, which renders the system causal.
Introducing the spectral representation in terms of the unitary
Fourier transform pair2

u tð Þ ¼
R
su xð Þe jxtdx

su xð Þ ¼
R
u tð Þe�jxtdt

ð4Þ

where, gu(ω)= 〈su(ω), su(−ω)〉 is spectral density; we can rewrite
the Volterra expansion and it transform as

y tð Þ ¼
X
i

Z p

�p
N
Z p

�p
e j x1þ; N ;þxið ÞtCi x1; N ;xið Þsu x1ð Þ; N ; su xið Þdx1; N ; dxi

sy xð Þ¼
X
i

Z p

�p
N
Z p

�p
Ci x1; N ;xið Þsu x1ð Þ; N ; su x� x1 N � xið Þdx1; N ; dxi�1

ð5Þ
where the functions

C1 x1ð Þ ¼
Z l

0
e�jx1r1j1 r1ð Þdr1

C2 x1;x2ð Þ ¼
Z l

0

Z l

0
e�j x1r1þx2r2ð Þj2 r1; r2ð Þdr1dr2

: : :

are the Fourier transforms of the kernels. These functions are called
generalised transfer functions and mediate the expression of
frequencies in the output given those in the input. Critically, the
influence of higher order kernels, or equivalently generalised
transfer functions means that a given frequency in the input can
induce a different frequency in the output. A simple example of this
would be squaring a sine-wave input to produce an output of twice
the frequency (Friston, 2001). Generalised transfer functions are
usually estimated through estimates of polyspectra. For example, the
spectral form of Eq. (5) and its high-order counterparts are3

guy �x1ð Þ ¼ C1 x1ð Þgu x1ð Þ
guuy �x1;�x2ð Þ ¼ 2C2 x1;x2ð Þgu x1ð Þgu x2ð Þ

v
gu N y �x1; N ;�xnð Þ ¼ n!Cn x1; N ;xnð Þgu x1ð Þ N gu xnð Þ

: ð6Þ

Coherence (sometimes called coherency), guy(ω) is simply the
second-order cross-spectrum between the input and output and is
related to first-order effects (i.e., the first-order kernel or transfer
function). Coherence is therefore a surrogate for first-order or linear
connectivity. Bicoherence or the cross-bi-spectrum guuy(ω1,ω2) is
the third-order cross-poly-spectrum and implies a non-zero second-
order kernel or transfer function. See Friston (2000), Jeffrey and
Chamoun (1994) and Shils et al (1996) for examples of detecting
non-linear coupling with bi-spectral analyses and Priestley (1988)
for the mathematical background.

In the present context, the thing we need to take from this formu-
lation is that the only way one frequency in the input can modulate
another frequency in the output is through second or higher-order
kernels. This means that dependencies between different frequencies
are mediated by non-linear coupling. We can express this in terms of
2 Omitting constants of proportionality for clarity.
3 These equalities hold only when the Volterra expansion contains just the

n-th order term and are a generalisation of the classical results for the
transfer function of a linear system.
the changes in the spectral density of the response, induced by
changes in the input; where, under linear coupling

Agy x1ð Þ
Agu x2ð Þ ¼

jC1 x1ð Þj2 x1 ¼ x2

0 x1px2
:

�
ð7Þ

An illustration using a non-linear neural-mass model
To illustrate the induction of responses across different frequency

bands, we evaluated the time–frequency power of the input and
response of a non-linear neural-massmodel of electromagnetic sources
(Jansen and Rit, 1995). The neural-mass model is the samemodel used
inDavid et al. (2006b) and is used inDCM for event-related potentials.

Briefly, the model is based on linear post-synaptic responses to
pre-synaptic input. Three different populations are coupled using their
mean firing rates, which are a static non-linear function of voltage as
shown in Fig. 1. The dynamics of each neuronal subpopulation i are
governed by second-order differential equations in voltage of the form

V
::
i þ 2ji

:
V i þ j2i Vi ¼ jiHi

X
j

gijS Vj

� �
: ð8Þ

The form of the implicit response kernel and non-linear voltage-
firing curve, S(Vj) is shown in Fig. 2. The three subpopulations
correspond roughly to the supragranular, infragranular and granular
layers of cortex and are interconnected (with coupling parameters, γij)
according to known connectivity rules. The non-linearity in Eq. (8)
makes this a useful model of weak non-linear coupling among
neuronal sources (Jansen and Rit, 1995). Figs. 3 and 4 such show the
results of perturbing this model of neural masses; the time–frequency
profile of the input and responses shows how non-linear transforma-
tions induce frequencies not present in the input:

The top panels of Fig. 3 show the input (left) and output (right) in
the time-domain and the lower panels show the same data in time–
frequency format. The response at each time and frequency was
estimated using a Fourier transform with a sliding Gaussian window

gy x; tð Þ ¼ j
R
y s� tð Þexp �s2=2r2ð Þe�jxsdsj2 ð9Þ

where σ=256ms specifies the width of the window. The input was a
four second box-car function plus random fluctuations, sampled
from aGaussian density with a standard deviation of one sixteenth of
the box-cars amplitude. It can be seen that the response has a very
different spectral profile to the input, with marked power in the 10–
20 Hz range. However, this response could be meditated by linear
effects and represent a filtering of the broad-band input. To illustrate
non-linearity, we repeated the simulation but using a four second
pure sine-wave input at 16 Hz. The left-hand panels of Fig. 4 show
clearly that this single frequency induces structured responses at
much higher frequencies. To ensure that this cross-frequency
induction was mediated by non-linear mechanisms, we repeated
the simulation but scaled the input down by a factor of 128; this
keeps neuronal states within the linear regime of the models
depolarisation-firing curve and suppresses non-linearity (see Fig. 2,
right). Following this single change, the spectral output is now a
quasi-copy of the input (see right-hand panels). It is this sort of linear
and non-linear neuronal coupling, among neuronal populations, we
want to model and make inferences about.

In the next section, we describe our dynamic causal model for
induced responses, where the states of each neuronal source are
summarized in terms of their spectral profiles. We will see that a
simple parameterisation of this model allows for a partitioning of
within and between-frequency coupling and, implicitly, a partition-



Fig. 1. Non-linear neural-mass model used to illustrate non-linear transformations (see David et al. (2003) for details). This model comprises three interconnected
subpopulations. The model uses a transmembrane potential state-space model at the synaptic level and a non-linear sigmoid transformation S(V) at the soma of
neurons to model spike rates.
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ing into dynamics that can be attributed to linear and non-linear
effects.

A dynamic causal model

This section describes the dynamic causal model, which we will
invert in subsequent sections to make inferences about synthetic
and real data. Probabilistic model inversion requires a generative
model. A probabilistic generative model requires the specification
of a likelihood model and its priors. The likelihood model simply
describes the probability of obtaining some data features (in our
case spectra) given a model and its parameters, while the priors
place constraints on the parameters.
Fig. 2. The implicit form of the linear impulse response function of transme
A model for spectral features

The generalised convolution model of the previous section
assumes that neuronal dynamics are stationary; i.e., they express
the same power over time. This model is fine for continuous
steady-state electrophysiological recordings and has been used as a
DCM for steady-state local field potential recordings (Moran et al.,
2007). However, evoked brain dynamics are non-stationary and
evolve over peristimulus time. This means we need a DCM of
time-dependent changes in spectral energy. The model described
below assumes that the spectral energy at one frequency in a source
causes changes in the same (linear coupling) or different (non-
linear coupling) frequencies, in other sources. It is fairly simple to
mbrane potential (left) and the sigmoid firing-input curve S(V) (right).



Fig. 3. The input–output relation of the neural-mass model (Fig. 1) in the time–frequency domain. Left: deterministic input comprising a four second box-car
function plus random fluctuations (top) and its spectral profile (bottom). Right: response time course (top) and its spectral profile (bottom).
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show that, under a linear state-space model of these changes in
spectral density, the coupling between changes in frequency
determines the coupling between frequencies at steady-state. This
means that between-frequency coupling in the DCM must be
mediated by non-linear mechanisms (by Eq. (7) of the previous
section).

Consider J sources in the brain, each described by a state vector
gj x; tð ÞaRK�1 of spectral densities at K frequencies

gj x; tð Þ ¼
gj x1; tð Þ

v
gj xK ; tð Þ

2
4

3
5: ð10Þ

We will treat these spectral states as perturbations around their
expected levels, in the absence of exogenous input. We can model
the dynamics of these spectral states using a first-order Taylor
expansion of Eq. (2) to give

s
:
g tð Þ ¼ s

:
g1

v
:
gJ

2
4

3
5 ¼

A11
: : : A1J

v O v
AJ1

: : : AJJ

2
4

3
5g tð Þ þ

C1

v
CJ

2
4

3
5u tð Þ ð11Þ
where the matrices A and C contain coupling parameters that
control changes in spectral activity induced by other sources and
exogenous (e.g., stimulus) inputs, u(t)

Aij ¼
a11ij

: : : a1Kij
v O v

aK1ij
: : : aKKij

2
4

3
5 Ci ¼

c1i
v
cKi

2
4

3
5 : ð12Þ

Under this model, the scalar aij
kl encodes how changes in the

k-th frequency in the i-th source depend on the l-th frequency in the
j-th source. The leading diagonal elements are aii

kk=−1; this means
that each frequency has an intrinsic tendency to decay or dissipate.
Similarly, ci

k controls the frequency-specific influence of exogenous
inputs on the k-th frequency in the i-th source. This enables within and
between-frequency coupling within and between sources. In later
work, we will generalise the above model, τġ=Ag+Cu to a bilinear
approximation, in which experimental effects v, (e.g., condition or
trial-type under which the responses were elicited) can change the
coupling. This involves the inclusion of a bilinear term in Eq. (11) to
give

s
:
g ¼ Aþ vBð Þg þ Cu: ð13Þ



Fig. 4. The time–frequency profiles of inputs and responses of the neural-mass model in previous figures, showing non-linear and linear effects. Left panel: High input amplitude engages the non-linear regime of the
neuronal mass model, such that narrow-band input induces structured responses at higher frequencies. Right panel: after scaling the input down by 128, the system operates in the linear regime and the spectral output
is a simple copy of the input.
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Table 1
Priors on model parameters

Parameter θ Description Prior density p(θ)

α=θμ
2/θσ Input (Gamma)

parameter
p h1ð Þ ¼ N 0; 1

16

� �
β=θμ/θσ p h2ð Þ ¼ N 0; 1

16

� �
θμ=80 exp(θ1)
θμ=1024 exp(θ2)
τ=1/16 exp(κ) Convergence

time
p jð Þ ¼ N 0; 14

� �
Aij
kl Internal

coupling
p Akl

ij

� �
¼

N 0; 1ð Þ present
N 0; 0ð Þ absent
N �1; 0ð Þ i ¼ j1k ¼ l

8<
:

Ci
k External

coupling
p Ck

i

� � ¼ N 0;
1
16

� �
i ¼ input

N 0; 0ð Þ ipinput

8<
:

Gi=exp(θi
G) Power scaling p hGi

� � ¼ N 0; 1
512

� �
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In this paper we will focus on the modelling of induced responses
for a single trial-type and ignore trial-specific influences.

Steady-states responses
This simple first-order DCM can be related to the spectral

representation of input–output systems of the preceding section by
considering its equilibrium solution; in other words, the states to
which the DCM converges. Under these steady-state conditions,
g· =0 and Ag=−Cu. Recall that aii

kk=−1; this means that when the
DCM is at equilibrium, the within-frequency coupling aij

kk between
sources plays the same role as the first-order transfer function of
the previous section (c.f., Eq. (5)).

:
gi xkð Þ ¼ 0

¼
X
j;l

aklij gj xlð Þ þ cki uZ

gi xkð Þ ¼
X
j;lpi;k

aklij gj xlð Þ þ cki u

Z
Agi xkð Þ
Agj xlð Þ ¼

akkij xk ¼ xl

aklij xkpxl
:

( ð14Þ

Eq. (14) says that if the inputs are changing slowly (and we can
assume g· ≈0), we would see that long-term fluctuations in the k-th
frequency in the i-th source scale with fluctuations in the l-th
frequency of the j-th source in proportion to aij

kl. However, we know
from the previous section that any dependencies among frequencies
are mediated by non-linear mechanisms. This means that, under
linear coupling, all the cross-frequency coupling parameters must be
zero; ∀i≠ j : aijkl=0. If any are not; ∃i≠ j : aijkl≠0, we can infer a non-
linear coupling between sources i and j. Clearly, we are not sug-
gesting that steady-state is actually attained by the brain; but we can
assume that convergence, following perturbation, is fast relative
to changes in exogenous input. The rate of convergence can be
arbitrarily fast, depending on the free parameter τ in Eq. (11), which
is estimated from the data.

In summary, if we discount all the between-frequency couplings
and consider the equilibrium solution of spectral dynamics (i.e.,
when the rate of change frequency is zero): the spectral power at a
given frequency in one region is determined by the power at the
same frequency in other regions. This is the sort of coupling that
would be expected under linear mechanisms. Conversely, between-
frequency coupling can be attributed to non-linear coupling.

The spectral dynamics of sources
Having established a model of spectral responses of the sources it

is now necessary to specify how these responses are expressed in
measurement space. In some instances this would not be necessary;
for example, in local field potential or intracranial recordings obtained
directly from each source. However, we will assume that the mea-
surements have been obtained non-invasively using EEG or MEG.
Consider the conventional linear forward model for electromagnetic
sources x(t)=[x1(t),…xJ(t)]

T and the corresponding lead-field matrix
L formulti-channel of data, d(t). The observed response is amixture of
activity over all sources

d tð Þ ¼ Lx tð ÞZ
sd xð Þ ¼ Ls xð Þ
gd xð Þ ¼ Lhs xð Þs �xð ÞT iLT

: ð15Þ

This means that spectral responses in channel space are a
mixture of the inner product of Fourier coefficients. Unfortunately,
our DCM does not model these coefficients; this would require
modelling both the power and phase of source activity, so that the
coherence among sources 〈s(ω)s(−w)T〉 could be generated. To
circumnavigate this problem, we project the data from channel
space to the sources and then compute the spectral density

x tð Þ ¼ L�d tð Þ
g̃i x; tð Þ ¼ jR xi s� tð Þexp �s2=2r2ð Þe�jxsdsj2 ð16Þ

where g̃ x; tð Þ are the spectral responses modelled by our DCM and
L− is the generalised inverse of the lead-field matrix for our chosen
sources. Eq. (16) is formally equivalent to a Morlet wavelet
transform, where the window width scales inversely with the
frequency. In our work we use σ=kω−1, which covers about k
cycles; where kN5 is usually entertained in wavelet analyses.

This is unconventional for DCM, where one usually includes
the spatial electromagnetic model within the DCM, so that both the
neuronal and electromagnetic parts of the model are inverted
together. In this application, we can regard the inversion of the
electromagnetic part as feature selection, in the sense that Eq. (16)
is a deterministic non-linear function of channel data that returns
spectral features associated with specific source locations. The
advantage is that there is a unique solution for the features because
the prior specification of source locations means the inverse
problem is not ill-posed; provided the number of (ECD) sources in
small relative to the number of channels. Typically, the questions
addressed by DCM are framed using, at most, eight sources. Note
that the generalised inverse of the lead-field in Eq. (16) is one of
many inversion schemes that one can use to project data from
channel to source space (Darvas et al., 2004; Michel et al., 2004;
Friston et al., 2008; Kiebel et al., 2008). The generalised inverse is
an appropriate projector if one knows a priori where the sources are
located. In other words, when there is no source localisation
problem. Several colleagues have asked about extracting spectral
features using beam-formers (Singh et al 2003). This would be a
useful strategy if one did not know where the spectral signals were
coming from. Beam-formers could then be used to localise the
sources of predominant spectral dynamics. However, once these
locations have been established, the generalised inverse of the
associated lead-field matrix furnishes a near-optimum ECD sum-
mary of activity that avoids suppression of local correlated activity.
In this paper, we assume that the source locations are specified and
leave optimisation of these spatial parameters to another paper.

Note that the model generates time-varying power at each
source, whereas the spectral features we extract in Eq. (16) have



Fig. 5. Schematic illustration of the analysis procedure. Upper panel: The spectral dynamics in the sources, g̃j tð Þ, are first evaluated from observations in sensor
space; they are projected onto source space using the pseudo-inverse of the lead-field, L−. The spectral densities obtain by squaring the absolute values after
Morlet wavelet transform. Lower panel: the linear form of state equations. At the neuronal level, the DCM comprises a vector of states for each electromagnetic
source, allowing for linear and non-linear coupling.
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three moments. It would be simple to include free parameters that
map the predicted source power to these three moments but these
parameters are of no interest. Therefore, we simply add the power
over the moments and estimate a single free parameter, Gi, which
scales the power of underlying neuronal dynamics to give the
observed mixture g̃i x; tð Þ.

The probabilistic model

We now have, under Gaussian assumptions about observation
error, ε, a likelihood model for observed spectral activity in sources
g̃i xj; tk
� �

that can be expressed as a mixture of predicted activity
gi(ωj, tk), baseline power and random fluctuations:

g̃i xj; tk
� � ¼ Gigi xj; tk

� �þ rij þ eijkfp g̃ j
i tkð Þjh

� �
¼ N Gig

j
i tkð Þ þ rij; k

�1V
� �

: ð17Þ

The predicted activity was obtained by integrating Eq. (11),
given the parameters, θ⊃τ, A, C, G and input u(t). The scalar γij
models baseline power over time at the i-th source and j-th
frequency.4 A likelihood model furnishes a way of measuring the
likelihood of observed data; put simply, one generates a prediction
using the model parameters and input. The probability of getting the
observed data features is then specified by the amplitude of the
prediction errors, relative to the precision (inverse variance) of the
random fluctuations. λ is the precision of this measurement noise in
4 In practice, we estimate the baseline power as the frequency at the first
time-bin.
feature-space (power over sources and frequency) and is estimated
as a free parameter. This scale parameter scales a temporal cor-
relation matrix Vencoding serial correlations among the observation
noise. Because the time–frequency analysis necessarily smoothes
random effects, we made Va Gaussian autocorrelation matrix, with a
standard deviation of 32 ms. The standard deviation of the noise
autocorrelation σVNσ is bound by the window width, σ in the time–
frequency analysis in Eq. (16). This window imposes serial corre-
lations on spectral data features and implicitly any random fluctua-
tions. We chose a value that corresponds to the correlations induced
by evaluating frequencies at f≈σV

−1≈30 Hz.
In this work, the priors p(θ) on the model parameters were

Gaussian shrinkage priors. Table 1 lists their prior densities and
Fig. 5 provides a graphical summary of the ensuing model. Note
that non-negative scale parameters have log-normal priors.5

Exogenous input
The predicted power was obtained by integrating Eq. (11). This

requires the stimulus input to be specified. This exogenous input
causes a burst of power in the network of sources. The frequency
selectivity of this perturbation is encoded by the free parameters C
above. This input models changes in source activity, caused by
putative subcortical afferents whose activities are time-locked to
stimuli. The frequencies induced depend on the model's free param-
eters, which are optimised during inversion. From the point of view
of each source, there is no real difference between the effects of
5 We also used weakly informative log-normal hyperpriors on the
precision hyperparameter.
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exogenous input and input from other sources (see Eq. (11)).
Typically, only a few sources are allowed to receive exogenous
input, which can have an arbitrary and source-specific frequency
profile. Sources that do not receive input have their input parameters
‘switched off’ by priors that are precisely zero. The temporal form of
the input is not known and has to be estimated. In this paper, we use a
simple parameterisation, which assumes that the spectral perturba-
tion has the form of a gamma distribution.

u tð Þ ¼ bata�1e�bt

C að Þ ð18Þ

where Γ(α) is the gamma function and priors on the input param-
eters, α, β are chosen such that the peak of the input is at about 80ms,
with a dispersion of about 32 ms (see Table 1). The free parameters
now comprise, θ⊇α, β, τ, A, C, G.

The choice of 80 ms as the prior latency of the input is motivated
by known latencies from single-unit electrode recording studies of
visual and inferotemporal cortex (e.g., Hirsch et al., 2002). It takes
this amount of time for visual input to reach secondary and higher
visual areas. This is also the time when evoked sensory potentials
start to express themselves in cortical sources (i.e., the N1 com-
ponent). Note that the latency is a free parameter, so that suboptimal
priors (within some reasonable bound), will be corrected during
model inversion.

Frequency bands and modes
Hitherto, we have considered the states as spectral densities at a

discrete number of frequencies or frequency bands. These states can be
regarded as the coefficients of narrow-band spectral basis functions or
frequency modes. In practice, we actually use the orthonormal prin-
cipal modes of the source data,U=[U1,…,UK], obtained by a singular
value decomposition of the spectral responses over time and sources,
where g̃ ¼ UKVT and Λ is a leading diagonal matrix of singular
values. Thismeans that instead ofworkingwithK′ frequencies,we can
reduce the problem to modelling the coupling among KbK′ modes
that cover all frequencies in different proportions.

In this context, the states gi
k represent the contribution of the k-th

frequency mode, Uk(ω) to the spectral dynamics of the i-th region.
We can project the predicted spectral dynamics in the state-space of
frequency modes to frequency space using, gi(ω)=Ugi. Similarly,
one can characterise the coupling as functions of frequency; i.e.,
Aij(ωk, ωl)=UAijU

T and Ci(ω)=UCi. These projections are possible
because the frequency modes are orthonormal and we are using a
linear DCM. We typically use between two and four modes, which
account for about 90% of the observed variance in spectral re-
sponses. We have specified the likelihood and priors of our gen-
erative model and can now turn to model inversion and comparison.

Bayesian inversion of DCMs

In this section, we review briefly model inversion and selection.
For a given DCM, say model m; parameter estimation corresponds
to approximating the moments of the conditional or posterior
distribution given by Bayes rule

p hjg̃;mð Þ ¼ p g̃jh;mð Þp h;mð Þ
p g̃jmð Þ : ð19Þ

The estimation procedure employed in DCM is described in
Friston et al. (2006). The posterior moments (conditional mean
μ and covariance Σ) are updated iteratively using Variational
Bayes under a fixed-form Laplace (i.e., Gaussian) approximation
to the conditional density q(θ)=N(μ, Σ). This is equivalent to
Expectation–Maximization (EM) that employs a local linearisation
of the predicted responses about the current conditional expectation
of the parameters. The E-step conforms to a Fisher-scoring scheme
that optimises the variational free energy F(q, λ, m) with respect to
the conditional moments. In the M-step, the precision parameters λ
are updated in exactly the same way to provide their maximum
likelihood estimates. The estimation scheme can be summarized as
follows:

E�step qpmax
q

F q; k;mð Þ
M�step kpmax

k
F q; k;mð Þ

F q; k;mð Þ ¼ hln p g̃jh; kð Þ þ ln p hð Þ � lnq hð Þiq
¼ ln p g̃jkð Þ � D q jj p hjg̃; kð Þð Þ

: ð20Þ

The free energy is simply a function of the log-likelihood and
the log-prior and q(θ), which is an approximation to the posterior
density p hjg̃; k;mð Þ we require. The last line of Eq. (20) shows that
the free energy is the log-evidence or marginal likelihood minus
the Kullback–Leibler divergence between the real and approximate
conditional density. This means that the variational parameters
(conditional moments and precision) maximize the log-evidence,
while minimising the discrepancy between the true and approx-
imate conditional density. This scheme is identical to that em-
ployed by DCM for fMRI and ERP.

Model comparison and selection
Inference on the parameters of a particular model uses the con-

ditional density, q(θ). Usually, this involves specifying a parameter
or compound of parameters as a contrast, cTμ. Inferences about this
contrast are made using its conditional covariance, cTΣ(λ)c. For
example, one can compute the probability that a contrast is greater
than zero. This inference is conditioned on the particular model
specified. However, in many situations one wants to compare
different models, for example models with and without particular
connections. This entails Bayesian model comparison. Different
models are compared using their evidence (Penny et al., 2004). The
model evidence or marginal likelihood is

p g̃jmð Þ ¼
R
p g̃jh;mð Þp hjmð Þdh: ð21Þ

The evidence can be decomposed into two components: an
accuracy term, which quantifies the data fit, and a complexity term,
which penalizes models with a large number of parameters. In the
following, we approximate the model evidence for model m, with
its free energy bound. After convergence, the divergence above is
minimised and this bound become tight such that

ln p g̃jmð ÞcF mð Þ: ð22Þ
The most likely model is the one with the largest log-evidence.

This enables Bayesian model selection. Model comparison rests on
the likelihood ratio of the evidence for two models. This ratio is the
Bayes factor Bij. For models i and j

ln Bij ¼ ln
p g̃jm ¼ ið Þ
p g̃jm ¼ jð Þ ¼ F m ¼ ið Þ � F m ¼ jð Þ: ð23Þ

Conventionally, strong evidence in favour of one model requires
the difference in log-evidence to be about three or more (i.e., a



Fig. 6. Visualizing the estimated coupling parameters. These images represent the coupling strength between different frequencies and obtain by projecting the coupling matrices in mode-space to frequency space.
Upper panels: linear components; lower panel: non-linear components; we will use this form in subsequent figures.
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Table 2
First simulations: results of inverting a linear and non-linear model using
linear and non-linear data (SNR=19.46 dB)

p(A) indicates the conditional probability that the coupling parameter is
greater than zero. F is the log-evidence of each model and data pair. The
winning model for each data set is indicated by a grey box.
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relative probability of about twenty). In what follows, wewill use the
model comparison to compare models with and without various
sorts of connections. By assuming uniform priors on the models we
can convert the model evidence into a conditional probability over
models by normalising the evidences so that they sum to one. Under
this assumption, two models with a log-evidence of three imply that
we can be 95% confident that the better model is more likely, given
the data features.

Summary

Fig. 5 summarizes DCM for induced responses, which entails
two steps. The first is to specify the model; i.e., the source locations
and the network, based on prior knowledge or beliefs about the
functional anatomy of the paradigm. For source locations, one can
employ conventional source-reconstruction methods; for example,
source imaging (Mattout et al., 2006) or equivalent current dipole
(ECD) models (Kiebel et al., 2006, 2008). In terms of the network
architecture, one needs to specify whether directed connections exist
and whether they are linear or non-linear (i.e., whether the cross-
frequency terms in are, a priori precisely zero or not).

The second step is to invert themodel given someobserved spectral
features. The source spectra were obtained by projecting the channel
data, d(t), to source space and evaluating the spectral density over K′
frequency bins using Eq. (16). These spectral features are reduced
in number, using orthonormal frequency modes U=[Ui,…, UK] to
encode spectral dynamics. These dynamics are modelled using linear
state equations (Eq. (14)), where the elements of the coupling matrix
aij
kl comprise the within (i= j) and between (i≠ j) source coupling
parameters, which can be either within (k= l) or between (k≠ l) fre-
quencies. The coupling between two regions can then be characterised
as a function of source and target frequencies; Aij(ωk,ωl)=UAijU

T and
displayed as a matrix or image. Linear coupling matrices have strong
coupling among the same frequencies so that large coupling values are
deployed along the leading diagonal. Conversely, non-linear coupling
entails between-frequency effects with large off-diagonal terms
(see Fig. 6). Because we use a small number of frequency modes,
these coupling matrices encode broad-band coupling among the
modes. This means that linear coupling can ‘diffuse’ away from the
leading diagonal but retains its symmetrical form.

The above procedure can be repeated for several models or
hypotheses about the underling architecture generating induced
activity and the competing models compared using their differ-
ences in log-evidence.

We have now covered the specification, estimation and com-
parison of DCMs for induced responses. In the next section we try
to establish their validity using synthetic data.

Simulations

This section addresses the face validity of the DCM described in
the previous section. First we generated synthetic data to show that,
using model comparison, the scheme can disambiguate competing
models correctly. We use a very simple example to demonstrate the
basic features of model selection. In the second simulations we used
a more realistic model (based on the analysis of real data in the next
section) to establish the identifiability of various parameters and
ensure they can be estimated accurately under typical levels of noise.
In all simulations, data were generated by integrating Eq. (11) given
known model parameters (which also specify exogenous input). We
then added noise to create synthetic data that were generated by a
known architecture and known parameters. Critically, we used
parameters that were based on the estimates from the analysis of real
EEG data. This ensured that the simulations were biologically
plausible. Observation noise was created by evaluating the time–
frequency power of a white noise process, using the same wavelet
transform employed in the empirical analyses. This ensured the
serial correlations in the noise matched those observed empirically.
Simulated noise processes were scaled and mixed with synthetic
signal to give the desired signal-to-noise ratio (SNR).

Model selection: distinguishing between linear and
non-linear coupling

In these simulations, we generated data using a very simple DCM
under linear and non-linear coupling, with a SNR of 19.46 dB. The
model comprised two sources with two frequency modes in each
source, where the first source projected to the second. See Table 2 for
the values of the coupling parameters used (other parameters were
set to their prior expectations in Table 1). The input to the systemwas
a bump function that elicited responses in bothmodes in, and only in,
the first region. The first DCM modelled all the connections as
linear. The second used the same coupling parameters but allowed
for fairly weak non-linear coupling from the second to the first
frequency mode. We used two DCMs to invert these two data sets:
The first modelled linear coupling only and the second allowed for
non-linear coupling between the two sources. The model parameters
and results of Bayesian inversion of these two simulated datasets are



Fig. 7. Real EEG data analysis. Left (a): System or graph underlying the DCM (RV— right visual; RF— right fusiform; LV— left visual; RF— right fusiform). Right (b): the frequency modes, Ui(ω), identified
using singular value decomposition of spectral dynamics in source space (over time and sources).
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Fig. 8. Inputs to the DCM of real EEG data: (a): estimated time course of
inputs to RV and LV based on the conditional means of the input function
(Eq. (18)). (b). Spectral response to input in the same areas. These profiles
correspond to UCi.

Table 3
Second simulations: the impact of noise level on estimation accuracy of the
parameters

Non-linear DCM SNR (dB)

20.38 14.80 10.83 4.54

A1,1
3,1 =1.89 1.89 1.89 1.84 1.75

A1,1
4,2 =2.05 2.05 2.05 2.00 1.94

A1,1
3,4 =−1.05 −1.05 −1.05 −1.03 −1.19

A2,1
3,1 =−1.62 −1.62 −1.62 −1.60 −1.49

A1,3
4,2 =0.10 0.10 0.10 0.08 0.09

A1,2
3,4 =0.65 0.62 0.65 0.62 0.64

A2,1
4,3 =−1.75 −1.75 −1.75 −1.76 −1.70

A2,1
2,4 =−0.97 −0.97 −0.97 −0.88⁎

p b 0.95
−0.94

A1,2
4,3 =0 0.00 0.00 0.00 0.48⁎

p N 0.95
Average error for linear

coupling parameters (%)
b0.1% b0.1% 2.33% 8.60%

Average error for non-linear
coupling parameters (%)

b0.1% b0.1% 25.3% 20.9%

Average error for all
parameters (%)

b0.1% b0.1% 13.8% 14.8%

The first column displays the true parameters for a selected subset of linear
and non-linear parameters. Each subsequent column shows their posterior
mean for decreasing signal-to-noise ratios (SNR). The last three rows
display the errors of the linear and non-linear parameters, averaged over
connections and expressed as a percent. A typical SNR of 20 to 15 dB gives
veridical estimates, whereas higher noise levels (i.e., SNR of 10 to 5) can
lead to inappropriate inferences (as indicated by the asterisked entries, with a
posterior inference that the coupling parameter was greater or less than zero).
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summarized in Table 2. For non-linear data, the non-linear DCMhad
a greater model evidence than the linear DCM (ln B21=126) and vice
versa, for linear data, where the linear DCM has the higher model
evidence (ln B12=66). When data are generated under a non-linear
model, the linear model simply cannot explain them, which is
reflected in the relatively large difference in log-model evidences.
For linear data, this difference is much smaller (ln B12=66), because
the non-linear fit to the data is as good as the linear one. However, the
non-linear model has more parameters, which decrease the model
evidence relative to the linear model, rendering it a less likely model.
The agreement between the true and conditional estimates of
coupling is self-evident and, under this level of noise, we would be
very confident that this coupling was not zero.

Model inversion under different levels of noise

In these simulations, we use the posterior expectations computed
for real EEG data set as generating model parameters. The archi-
tecture was based on the model used to analyse the data in the next
section obtained during a face-presentation paradigm. This model
comprised two pairs of homologous regions in the right and left
hemispheres, corresponding to early visual and fusiform sources.
The sources within each hemisphere were connected reciprocally,
whereas only the fusiform sources were connected between
hemispheres. The spectral activity in each source was expressed in
four frequency modes (identified by a singular value decomposition
of the real EEG data; see Fig. 7). The input enters bilaterally at the
visual sources. This exogenous input introduces a burst of power
that perturbs the network at a time corresponding roughly to the
arrival of subcortical input conveying sensory information (about
60 ms after stimulus onset). The responses were generated as
described above by integrating Eq. (11) to give, for each source,
dynamics in the state-space of frequency modes.

To produce observation noise at the source level we generated
sensor level white noise at four different variances. We then projected
these random effects to source space using the pseudo-inverse of the
lead-field and finally transformed it into the time–frequency domain
(c.f., Eq. (16)). After projection onto the frequency modes we added
the resulting noise spectra to the simulated source spectra. We
quantified the resulting noise levels, in source space, in terms of
signal-to-noise ratio (SNR) at 20.38, 14.8, 10.83, and 4.54 dB; where
we take 14.8 dB as representative of typical data. For example, our
real EEGdata had an estimated SNRof 19.74 dB. Table 3 summarizes



Fig. 9. Results for non-linear DCM of real EEG data: The arrows show the directed connections from one source to another. The coupling strengths are
represented as coupling functions of frequency, which show the effects the spectral density in one source has on the density in another. The source names are as in
Fig. 7.
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the results of model inversion in terms of (i) selected posterior
expectations and (ii) average errors on the linear and non-linear
coupling parameters (i.e., differences between the true values and
conditional expectations). These results suggest that, when the SNR is
greater than 15 dB, the connection strengths are estimated with a high
degree of accuracy. As anticipated, the errors increase with noise.
When the SNR is too low, inference can change in a qualitative sense.
For example, at 4.54 dB, we found that one non-linear coupling was
a posteriori very likely to be present (pN0.95), although the true
parameter was zero.

Analyses of real EEG data

In this section, we demonstrate DCM for induced responses
using EEG data. The data represents a single-subject data set from a
study by Henson et al. (2003).6 The subject performed a judgement
task on faces and scrambled faces. The data were sampled at 200 Hz
using a whole-head, 128-channel ActiveTwo system. Bipolar hori-
6 These data are available from http://www.fil.ion.ucl.ac.uk/spm/data/
mmfaces.html.
zontal and vertical electro-oculograms (EOG) were obtained using
electrodes placed at the bilateral outer canthi and the left eye
respectively to exclude trials with an EOG artefact. The data used
here comprise time–frequency responses averaged over 86 trials.

The lead-field or gain matrix was computed for a canonical mesh
(Mattout et al., 2007) and co-registered channel locations, using a
three-sphere headmodel as encoded inBrainStorm (http://neuroimage.
usc.edu/brainstorm/). The co-registration and forward model was
computed within SPM5 (http://www.fil.ion.ucl.ac.uk/spm).

Exemplar analysis using DCM

Note that this single-subject analysis is used only to illustrate
DCM for induced responses; we will not attempt a neurobiological
interpretation of our results. Furthermore, face perception is not
necessarily the most interesting paradigm, in terms of induced
responses. We used these data because they are easily available
(from http://www.fil.ion.ucl.ac.uk/spm), which means other people
can reproduce the analysis reported below.

The specification of aDCM, i.e., the network and source locations,
is a critical step. We envisage that, for a given study, there would be

http://neuroimage.usc.edu/brainstorm/
http://neuroimage.usc.edu/brainstorm/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces.html
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces.html


Fig. 10. Results for linear DCM of real EEG data: As for Fig. 8 but for a
reduced linear model. The source names are as in Fig. 7.
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several competing models that one might want to test. In the current
framework, one does this by specifying models in terms of their
connections and whether these connections are linear or non-linear.
Model comparison7 can then be used to select the best model and
inferences about the parameters of the selected model can proceed
using the conditional mean and covariance of the coupling
parameters. Here, we will simply test two models to illustrate model
specification, comparison, and inference. We used prior knowledge
about sources in visual and fusiform cortices and employed source
reconstruction implemented in SPM5 to localise four sources from a
conventional ERP analysis of the data (Friston et al., 2008). These
source comprised the left and right visual cortex (LVandRV), and left
and right fusiform area (LF and RF). The locations of these sources
are provided in Fig. 7a, in canonical space. For these sources, spectral
changes, in several frequency bands, have been found during face
processing (Klopp et al., 1999). Spectra were constructed from
−100 ms to 400 ms. We used a Morlet wavelet transform with a
coefficient, k=7, over 4 to 64 Hz. The resulting spectra were de-
trended and reduced using four principal modes as described above
(see Fig. 7b). In the first (non-linear) DCM, we allowed bi-directional
cross-frequency coupling between source pairs LF–RF, LV–LF, and
RV–RF. In the second (linear) model, we allowed only within-
frequency interactions among these sources. We use two exogenous
inputs toLVandRV. The (estimated) temporal dynamics and spectral
effects of these inputs on both visual sources are shown in Fig. 8.

Results

Fig. 9 summarizes the results based on the non-linear DCM. The
arrows indicate directed connections. Coupling strengths are
represented as functions of source and target frequency (c.f., Fig. 6).
We only show coupling matrices for which one or more of the
underlying coupling parameters was greater than zero, with 95%
confidence or more. These matrices encode the coupling among
frequencies; for example, there are several cross-frequency influences
in the forward connection from RV to RF, in which alpha (8–12 Hz)
in the fusiform source is induced by alpha in the visual source.
However, the same alpha suppresses beta (16 Hz), while increasing
fusiform gamma power. These changes recapitulate the simulations in
Fig. 4, where low frequencies in the input produce high frequency
responses.

Fig. 10 shows the equivalent results for the linear DCM. In this
case, only the forward connections and one transcallosal connection
contained parameters that were greater then zero (at 95% confidence).
This model is largely constrained to predicting the dynamics of alpha
power and is unable to account for any cross-frequency effects.

Bayesianmodel comparison clearly favoured the non-linearmodel
with a log-Bayes factor of 392. Fig. 11 shows the observed and
predicted spectral densities of the selected (non-linear) model. Using
these spectral densities, we estimated the SNR to be 19.74 dB.
Interestingly, the coupling strengths in the right hemisphere were
stronger than those in the left. Previous studies have found a right
lateralisation for face processing (Kanwisher and Yovel, 2006). One
can directly test this with DCM, using contrasts; for example, we
found that the difference between the left and right (right minus left),
averaged over all cross-frequency coupling parameters, is greater than
zero, with a posterior confidence of 99%. In summary, using DCM
7 Note that due to the feature selection (Eq. (16)) one cannot compare
models based on different lead-fields. In other words, models can only be
compared if they include the same sources.
and model comparison we find strong evidence for right-lateralised
non-linear coupling among early visual and fusiform sources.

Discussion

Non-linearities in neuronal activity are an important aspect of
processing in large-scale neuronal networks and have led to many
different proposals of how to best characterise them given some
data (e.g., David et al., 2004). As we have illustrated above, linear
coupling is mediated by first-order transfer functions that transfer
energy in the source to the target, while non-linear mechanisms
express themselves as cross-frequency interactions, through high-
order, generalised transfer functions. A simple example of this is
frequency doubling when one squares a sinusoid; i.e., exp(jωt)2 =
exp(j2ωt) (see Friston (2001)). Biological evidence speaks to the
prevalence of non-linear interactions among cortical areas during
cognitive tasks (e.g., Bullock et al., 1997; Schack et al., 2002).
We have shown that second-order features of the data (i.e., the
spectrum) can be modelled by DCM for induced responses in a



Fig. 11. Upper panels: Observed EEG time–frequency power data for all four sources. Lower panels: Fitted data. It can be seen that the model captures the main
spectral dynamics fairly well. There is pronounced alpha activity around 140 ms with a partial return to pre-stimulus levels by 260 ms. This corresponds largely to
the evoked components. Although not very easy to see, there is also a late increase in gamma power that starts around 250 ms (arrow). The images correspond to
the observed and predicted quantities U g̃i tð Þ and Ugi(t) respectively.
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way that can disambiguate between linear and non-linear coupling.
DCM is not for a surrogate for widely used linear models (e.g.,
coherence, correlations) but represents a complementary approach
to disclose cross-frequency interactions among areas (see also
Pereda et al. (2005)).

In this paper, we have assumed that the locations of the sources
are known. This means there is no source-reconstruction problem
and no spatial parameters to optimise. The specification of source
locations is itself a large area both in terms of evoked (Baillet and
Garnero, 1997) and induced responses (Singh et al., 2003). In this
work, our source locations were based on previous analyses of the
data used using multiple sparse priors on distributed forward
models (Friston et al., 2008). We would advocate that whatever
source-reconstruction technique is used, only the locations should
be retained and used to re-estimate source activity using the
forward model provided by ensuing the ECD forward model. This
is because the assumptions implicit in distributed forward models
can introduce (e.g., though smoothness constraints) or remove
(e.g., through beam-forming assumptions; Singh et al., 2003)
correlations among neighbouring sources. Inverting a simple ECD
forward model also ensures the DCM is insensitive to the
reconstruction scheme used to define the ECD locations.

Our model furnishes a framework within which one can make
inferences about causal coupling. Note that model-free approaches
cannot be used to make causal inferences in a control theory sense.
For example, coherence and mutual information measure inter-



Fig. 12. Model comparison: The effect of using a different number of modes
on the log-evidence for the linear and non-linear DCM. Importantly, the
relative log-evidence remain stable when we change the number of modes.
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dependency between time-series obtained from two sources but
provide no information about directionality. Despite their names,
extensions of these methods, such as Granger causality and transfer
entropy, do not provide evidence for causality in a formal sense
because they are based on multivariate autoregressive models,
which may be causal or acausal. However, an advantage of model-
free approaches8 is that they can usually be applied in an ex-
ploratory fashion. Hypotheses about coupling, generated by these
analyses, can then be tested formally using a DCM.

An important feature of DCM for induced responses is that it
models the full time–frequency spectrum. This differs from typical
approaches, which select a priori a few specific frequency bands.We
model spectral dynamics in terms of a mixture of frequency modes
(obtained with singular value decomposition). The dynamics of each
mode are encoded by the evolution of a state. It is this multi-state
vector, for each source, that captures how the energy in different
frequencies interacts, either linearly or non-linearly, among sources.
A critical issue is whether inferences differ with the number of
frequency modes per source. In Fig. 12, we show that the exact
number does not seem to have an effect on inference. Using a
synthetic dataset (the second set of simulations with an SNR of 15),
generated with three modes, we find that the non-linear DCM is
always the best model for different numbers of modes. In principle,
choosing too many modes should not affect inference (as shown
above; Fig. 12), because parameters that relate to superfluous states
will not explain data but only decrease the evidence of the model. In
practice, we suggest people use as many modes as necessary to
8 By model-free we mean any technique based simply on probability
distributions; noting that these distributions may be parameterised with a
model (e.g., autoregressive models).
represent 99% of the data variance. The obvious minimum to model
interesting dynamics is two modes. Note that one cannot compare
models with different number of modes (because the log-evidence is
a function of the data features, which are defined in terms of modes).

Oscillatory activity is a widespread feature of many neuronal
systems. Fluctuations in power and phase-synchronisation have been
shown to be essential aspects of network function. It is widely
believed that changes in the synchronous discharge of neuronal
assemblies contribute to the increase or decrease of power within task-
related frequencies (Kilner et al., 2003; Pfurtscheller and Lopes da
Silva, 1999). Conversely, methods for analysing phase-synchrony
assess the stability of the phase-differencewithin a certain period (e.g.,
Lachaux et al., 1999; Rosenblum et al., 1996). High phase-
synchronisation is thought to indicate transient functional coupling
among cortical areas (Kopell et al., 2000); c.f., the “binding problem”

(Gray et al., 1989; Varela et al., 2001). Although phase and power
appear to be two different phenomena, they must of course be related
by some common generative model. This paper presents the first step
towards generative models of changes in power and the nature of the
implicit coupling. Over the next year, we hope to complement DCM
for induced power with a DCM for phase-coupling. The overall
approach will be to recapitulate the developments in this paper but
replacing the spectral power with instantaneous phase (using the
phase of the integral in Eq. (9), as opposed to its absolute value). We
can then use non-linear [periodic] functions of the phase-difference
between two sources (c.f., Eq. (1)) as the basis of a likelihood model.
By modelling electromagnetic sources as an ensemble of oscillators
with different intrinsic frequencies, we can ask question about phase-
entrainment, nested oscillations and other key phenomena that have
been used to study non-linear coupling in the brain.

Conclusion

Non-linear interactions are an important phenomenon in the
brain and are expressed as cross-frequency coupling in spectral
characterisations of EEG and MEG time-series. Dynamic causal
modelling for induced responses exploits this to model dynamic
broad-band power changes as a consequence of linear and non-linear
coupling among brain sources. The ensuing scheme might be useful
when trying to disambiguate linear and non-linear contributions to
distributed processing in a network of electromagnetic sources.

Software note

The scheme described in this note has been implemented as
Matlab (MathWorks) code. The source code is available as a toolbox
(‘api_erp’) in the Statistical Parametric Mapping package (SPM5)
from http://www.fil.ion.ucl.ac.uk/spm/ as academic freeware.
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