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Dynamical causal modeling (DCM) of evoked responses is a new

approach to making inferences about connectivity changes in hierar-

chical networks measured with electro- and magnetoencephalography

(EEG and MEG). In a previous paper, we illustrated this concept using

a lead field that was specified with infinite prior precision. With this

prior, the spatial expression of each source area, in the sensors, is fixed.

In this paper, we show that using lead field parameters with finite

precision enables the data to inform the network’s spatial configuration

and its expression at the sensors. This means that lead field and

coupling parameters can be estimated simultaneously. Alternatively,

one can also view DCM for evoked responses as a source reconstruction

approach with temporal, physiologically informed constraints. We will

illustrate this idea using, for each area, a 4-shell equivalent current

dipole (ECD) model with three location and three orientation

parameters. Using synthetic and real data, we show that this approach

furnishes accurate and robust conditional estimates of coupling among

sources and their orientations.
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Introduction

In David et al. (2006), we described dynamic causal modeling

(DCM) for event-related fields (ERFs) and potentials (ERPs). This

new approach is grounded on a neuronally plausible, generative

model that can be used to estimate and make inferences about

category- or context-specific coupling among cortical regions.

Context-specific coupling changes as a function of condition (i.e.,

experimental context such as ‘‘new’’ vs. ‘‘old’’ in memory

paradigms) or stimulus-bound attributes (i.e., ‘‘house’’ vs. ‘‘face’’).

These changes can reconfigure neuronal interactions and produce

different evoked responses for each category or context. The
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coupling parameters embody bottom-up, top-down, and lateral

connections among remote cortical regions. Parameters are

estimated with a Bayesian procedure using empirical data (ERPs/

ERFs). With Bayesian model selection, one can use model

evidences to compare competing models and identify the model

that best explains the data.

In David et al. (2006), we constructed the spatial forward model

using distributed dipole modeling on the grey matter surface. This

procedure has the advantage of using the precise anatomical

structure of the head. The subject’s anatomy was derived from the

high-resolution structural magnetic resonance imaging (sMRI).

Critically, each area’s lead field was predetermined so that each

area had a fixed spatial expression in the sensors. Although this

approach provides spatially precise expressions in the sensors, the

true spatial configuration of an area may be different from our

model and lead to biased conditional estimates of other [e.g.,

coupling] parameters. For example, the spatial model can be wrong

because its parameters like location, orientation, or extent are

specified inaccurately.

Alternatively, each lead field or its underlying spatial param-

eters can be regarded as a parameter of the model. In a Bayesian

context, the above procedure is equivalent to using zero prior

variance (i.e., infinite precision which expresses our belief that the

specified lead field mediated the sensor data). If this belief is not

supported by the data, the optimization algorithm will, at worst,

fail to provide a good solution and compensate for the mis-

specified spatial model by biasing conditional estimates of other

parameters like coupling. A way to avoid this is to decrease our

strong belief in a specific lead field and use finite precision priors

on the lead field parameters. There are several ways to

parameterize the lead field. Although we could employ a

surface-based forward model, we use equivalent current dipoles

(ECDs). This has distinct advantages over other models. First,

ECDs’ spatial expression is analytic, i.e., the forward model

computation is fast (Mosher et al., 1999). Secondly, the model is

based on electrode positions only and does not need information

from a structural MRI. Thirdly, many authors reported ECD

location and orientation for specific ERP/ERF experiments in the

peer-reviewed literature (e.g., Valeriani et al., 2001): Within our
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approach, these locations and orientations could be employed as

prior expectations on ECD parameters. Finally, ECDs are a natural

way to specify nodes in the probabilistic graphs that DCMs

represent.

One can also view DCM for evoked responses as a source

reconstruction approach with temporal, physiologically informed

constraints imposed by our assumption that a hierarchical network

of discrete areas generated the data. The reconstructed source

activities over time fall out naturally as the system’s states.

Typically, most current source reconstruction approaches for EEG/

MEG data are based exclusively on constraints given by the spatial

forward model (Darvas et al., 2004). However, recently models

have been proposed which use (spatio-) temporal constraints to

invert the model (Darvas et al., 2001; Galka et al., 2004). These

spatiotemporal approaches are closer to DCM but use generic

constraints derived from temporal smoothness considerations and

autoregressive modeling.

This paper is structured as follows. In the Theory section, we

will describe briefly the temporal generative model for ERP/ERFs

(for a detailed description, see David et al., 2005). This is followed

by a description of the spatial forward model, its parameterization

and typical prior distributions we adopt for ERP data. In the

Results section, we illustrate the operational details of the

procedures on two ERP datasets. In the first ERP experiment, we

repeat the analysis of an auditory oddball dataset (David et al.,

2006) to show that the mismatch negativity can be explained by

changes in connectivity to and from the primary auditory cortex.

This analysis shows that biologically meaningful results can be

obtained in terms of the parameters governing the neuronal

architectures generating ERPs. In the second experiment, we

establish face validity in terms of the spatial parameters; we

analyze sensory-evoked potentials (SEPs) elicited by unilateral

median nerve stimulation and measured with EEG. With this

model, we can explain the observed SEP to 200 ms. We find strong

connectivity among areas during the course of the SEP. The

estimated orientations of these sources conform almost exactly to

classical estimates in the literature. Furthermore, we observe short

transmission delays among sources within the contralateral

hemisphere (¨6 ms) but long delays (¨50 ms) between

homologous sources in both hemispheres. Finally, using synthetic

data, we show that finite precision priors on lead field parameters

result in models with greater evidence and more accurate and

robust conditional estimates, in relation to models with infinitely

precise priors.
Theory

Intuitively, the DCM scheme regards an experiment as a

designed perturbation of neuronal dynamics that are promulgated

and distributed throughout a system of coupled anatomical sources

to produce region-specific responses. This system is modeled using

a dynamic input–state–output system with multiple inputs and

outputs. Responses are evoked by deterministic inputs that

correspond to experimental manipulations (i.e., presentation of

stimuli). Experimental factors (i.e., stimulus attributes or context)

can also change the parameters or causal architecture of the system

producing these responses. The state variables cover both the

neuronal activities and other neurophysiological or biophysical

variables needed to form the outputs. Outputs are those compo-

nents of neuronal responses that can be detected by MEG/EEG
sensors. In our model, these components are depolarizations of a

Fneural mass’ of pyramidal cells.

DCM starts with a reasonably realistic neuronal model of

interacting cortical regions. This model is then supplemented with

a spatial forward model of how neuronal activity is transformed

into measured responses, here, MEG/EEG scalp-averaged

responses. This enables the parameters of the neuronal model

(i.e., effective connectivity) to be estimated from observed data.

For MEG/EEG data, this spatial model is a forward model of

electromagnetic measurements that accounts for volume conduc-

tion effects (Mosher et al., 1999).

Hierarchical MEG/EEG neural mass model

We have developed a hierarchical cortical model to study the

influence of forward, backward, and lateral connections on ERFs/

ERPs (David et al., 2004). This model is used here as a DCM

and embodies directed extrinsic connections among a number of

sources, each based on the Jansen and Rit (1995) model, using

the connectivity rules described in Felleman and Van Essen

(1991). These rules, which rest on a tri-partitioning of the cortical

sheet into supra-, infra-granular layers and granular layer 4, have

been derived from experimental studies of monkey visual cortex.

Under these simplifying assumptions, directed connections can be

classified as (i) bottom-up or forward connections that originate

in agranular layers and terminate in layer 4; (ii) top-down or

backward connections that connect agranular layers; (iii) lateral

connections that originate in agranular layers and target all layers.

These long-range or extrinsic cortico-cortical connections are

excitatory and comprise the axonal processes of pyramidal cells.

For simplicity, we do not consider thalamic connections but

model thalamic output as a function operating on the input (see

below).

The Jansen and Rit (1995) model emulates the MEG/EEG

activity of a cortical source using three neuronal subpopulations. A

population of excitatory pyramidal (output) cells receives inputs

from inhibitory and excitatory populations of interneurons, via

intrinsic connections (intrinsic connections are confined to the

cortical sheet). Within this model, excitatory interneurons can be

regarded as spiny stellate cells found predominantly in layer 4 and

in receipt of forward connections. Excitatory pyramidal cells and

inhibitory interneurons occupy agranular layers and receive

backward and lateral inputs. Using these connection rules, it is

straightforward to construct any hierarchical cortico-cortical

network model of cortical sources.

The ensuing DCM is specified in terms of its state equations

and an observer or output equation

ẋx ¼ f x; u; hð Þ

h ¼ g x; hð Þ ð1Þ

where x are the neuronal states of cortical areas, u are exogenous

inputs, and h is the output of the system. h are quantities that

parameterize the state and observer equations (see also below

under FPrior assumptions’). The state equations are ordinary

second-order differential equations and are derived from the

behavior of the three neuronal subpopulations which operate as

linear damped oscillators. The integration of the differential

equations pertaining to each subpopulation can be expressed as a

convolution (David and Friston, 2003). This convolution trans-
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forms the average density of its presynaptic inputs into an average

postsynaptic membrane potential. The convolution kernel is given

by

p tð Þe ¼
He

se
texp �t=seð Þ t � 0

0 t < 0

(
ð2Þ

where subscript ‘‘e’’ stands for ‘‘excitatory’’. Similarly subscript

‘‘i’’ is used for inhibitory synapses. H controls the maximum post-

synaptic potential, and s represents a lumped rate constant. An

operator S transforms the potential of each subpopulation into

firing rate, which is the input to other subpopulations. This

operator is assumed to be an instantaneous sigmoid nonlinearity

S xð Þ ¼ 1

1þ exp �rxð Þ �
1

2
ð3Þ

where r = 0.56 determines its form. Interactions, among the

subpopulations, depend on internal coupling constants c1,2,3,4,
which control the strength of intrinsic connections and reflect the

total number of synapses expressed by each subpopulation. The

integration of this model to form predicted response rests on

formulating these two operators (Eqs. (2) and (3)) in terms of a set

of differential equations as described in David et al. (2004). A

DCM, at the neuronal level, obtains by coupling areas with

extrinsic forward, backward and lateral connections as described

above.

These equations, for all areas, can be integrated using the

matrix exponential of the systems Jacobian as described in the

appendices of David et al. (2005). Critically, the integration

scheme allows for conduction delays on the connections, which

are free parameters of the model. The output of area i is the

depolarization of pyramidal cells, over all time bins (David et al.,

2006).

Event-related input and event-related response-specific effects

To model event-related responses, the network receives inputs

via input connections. These connections are exactly the same as

forward connections and deliver inputs u to the spiny stellate cells

in layer 4. In the present context, inputs u model afferent activity

relayed by subcortical structures and are modeled with two

components: The first is a gamma density function (truncated to

peri-stimulus time). This models an event-related burst of input that

is delayed with respect to stimulus onset and dispersed by

subcortical synapses and axonal conduction. Being a density

function, this component integrates to unity over peri-stimulus

time. The second component is a discrete cosine set modeling

systematic fluctuations in input, as a function of peri-stimulus time.

In our implementation, peri-stimulus time is treated as a state

variable, allowing the input to be computed explicitly during

integration. Critically, the event-related input is exactly the same

for all ERPs.

The effects of experimental factors are mediated through

event-related response (ERR)-specific changes in connection

strengths. This models experimental effects in terms of differences

in forward, backward, or lateral connections that confer a

selectivity on each source, in terms of its response to others.

The experimental or ERR-specific effects are modeled by

coupling gains. By convention, we set the gain of the first ERP

to unity, so that subsequent ERR-specific effects are relative to the

first.
Spatial forward model

The dendritic signal of the pyramidal subpopulation of the ith

source x0
(i) is detected remotely on the scalp surface in MEG/EEG.

The relationship between scalp data h and pyramidal activity is

linear and instantaneous

h ¼ g x;hð Þ ¼ L h L
� �

Kx0 ð4Þ

where L is a lead field matrix (i.e., spatial forward model), which

accounts for passive conduction of the electromagnetic field

(Mosher et al., 1999). The diagonal matrix K =diag(hK) models

the contribution of relative density of synapses proximate and

distal to the cell body on current flow induced by pyramidal cell

depolarization. The contribution matrix K has positive or negative

weights to allow for the average dipole orientation to be parallel or

anti-parallel with the assumed orientation.

The key contribution of this work is to make the lead field a

function of some parameters L(hL). Here, we assume that the spatial

expression of each area is caused by one equivalent current dipole

(ECD). The head model for the dipoles is based on four concentric

spheres, each with homogeneous and isotropic conductivity. The

four spheres approximate the brain, skull, cerebrospinal fluid (CSF),

and scalp. The parameters of the model are the radii and

conductivities for each layer. Here, we use as radii 71, 72, 79, and

85 mm, with conductivities 0.33, 1.0, 0.0042, and 0.33 S/m

respectively. The potential at the sensors requires an evaluation of

an infinite series which can be approximated using fast algorithms

(Mosher et al., 1999; Zhang, 1995). The lead field of each ECD is a

function of three location and three orientation or moment

parameters hL=(hpos, hmom). For the ECD forward model, we used

a Matlab (Mathworks) routine that is freely available as part of the

FieldTrip package (http://www2.ru.nl/fcdonders/fieldtrip/, see also

(Oostenveld, 2003)) under the GNU general public license.

The dipole parameters are naturally visualized in brain 3D

space. In the Results section below, we display dipole locations and

their orientations as arrows on a structural MRI template.

Dimension reduction

For computational reasons, it is expedient to reduce the

dimensionality of the sensor data while retaining the maximum

amount of information. This is assured by projecting the data onto

a subspace defined by its principal eigenvectors E

y@ Ey

L@ EL

e @ Ee
ð5Þ

where e is the observation error (see next subsection). The

eigenvectors are computed using principal component analysis or

singular value decomposition (SVD). Because this projection is

orthonormal, the independence of the projected errors is preserved,

and the form of the error covariance components assumed by the

observation model remains unchanged. In this paper, we reduce the

sensor data to three or four modes, which usually contain the

interesting ERR components.

Observation equations

In summary, our DCM comprises a state equation that is based

on neurobiological heuristics and an observer equation based on an

 http:\\www2.ru.nl\fcdonders\fieldtrip\ 
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electromagnetic forward model. By integrating the state equation

and passing the ensuing states through the observer equation, we

generate a predicted measurement. This corresponds to a general-

ized convolution of the inputs to generate an output h(h) (Eq. (4)).
This generalized convolution furnishes an observation model for

the vectorized data1 y and the associated likelihood

y ¼ vec h hð Þ þ Xh X þ e
� �

p y jh; kð Þ ¼ N vec h hð Þ þ Xh X
� �

; diag kð Þ‘V
� �

: ð6Þ

Measurement noise ( is assumed to be zero mean Gaussian and

independent over channels, i.e., Cov(vec(e))=diag(k)‘V, where k
is an unknown vector of channel-specific variances. V represents

the error temporal autocorrelation matrix, which we assume is the

identity matrix. This is tenable because we downsample the data to

about 8 ms. Low-frequency noise or drift components are modeled

by X, which is a block diagonal matrix with a low-order discrete

cosine set for each ERP and channel. The order of this set can be

determined by Bayesian model selection (see below).

This model is fitted to data by tuning the free parameters h to

minimize the discrepancy between predicted and observed MEG/

EEG time series under model complexity constraints (more

formally, the parameters minimize the Variational Free Energy—

see below). These parameters specify the constants in the state and

observation equations above. In addition to minimizing the

prediction error, the parameters are constrained by a prior

specification of the range they are likely to lie in (Friston et al.,

2003). These constraints, which take the form of a prior density

p(h), are combined with the likelihood p( y | h), to form a posterior

density p(h | y)”p( y | h)p(h) according to Bayes’ rule. It is this

posterior or conditional density we want to estimate. Gaussian

assumptions about the errors in Eq. (6) enable us to compute the

likelihood from the prediction error. The only outstanding quantities

we require are the priors, which are described next.

Prior expectations

The connectivity architecture is constant over peri-stimulus

time and defines the dynamical behavior of the DCM. We have to

specify prior assumptions about these constant parameters to

estimate their posterior distributions. Priors have a dramatic impact

on the landscape of the objective function to be extremized: precise

prior distributions ensure that the objective function has a global

minimum that can be attained robustly. Under Gaussian assump-

tions, the prior distribution p(hi) of the ith parameter is defined by

its mean and variance. The mean corresponds to the prior

expectation. The variance reflects the amount of prior information

about the parameter. A tight distribution (small variance) corre-

sponds to precise prior knowledge.

The parameters of the state equation can be divided into six

subsets: (i) extrinsic connection parameters, which specify the

coupling strengths among areas, and (ii) intrinsic connection para-

meters, which reflect our knowledge about canonical micro-circuitry

within an area, (iii) conduction delays, (iv) synaptic parameters

controlling the kinetics within an area, and (v) input parameters,

which control the subcortical delay and dispersion of event-related

responses, (vi) spatial parameters which determine the expression of

the observable network state in the sensors. Critically, all the
1 Concatenated column vectors of data from each channel.
constants, apart from the spatial parameters, are positive. To ensure

positivity, we estimate the log of these constants under Gaussian

priors, using the same prior distributions as in David et al. (2006).

For the spatial parameters hpos, hmom, and hk, refer to Table 1.

The expectation of the location prior is usually given in

millimeter in some standard brain space. In this paper, we use, if

not otherwise specified, tight spherical priors of vx
pos=vy

pos=

vz
pos=8 and 0 for the covariances. Although not employed in this

paper, one can define location priors that have nonspherical

distributions. This can be useful, if one expresses the location prior

in terms of a 3D ellipsoid2, not necessarily aligned with the imaging

axes. Similarly, for the prior on the moment, one can use priors that

point in one principal direction, while the other two directions have

only small variances. In the present paper, we exclusively employ

uninformative moment priors, i.e., vx
mom=vy

mom=vz
mom=8. In this

paper, we use only spherical prior distributions. Note that the

moment parameters are formulated as projections onto the three axes

of stereotactic space. This parameterizes not only the orientation but

also the magnitude of the dipole and therefore induces some

redundancy with respect to the contribution parameters hi
K for each

source. We have chosen to leave this redundancy in the parameter-

ization because it allows for fixed dipole orientations without

necessarily fixing the magnitude. Because of this redundancy, we

can choose some quite arbitrary prior variance for hi
K, which will

further add to the prior uncertainty imposed by the already

uninformative prior of hi
mom.

Estimation, inference, and model comparison

For a given DCM, say model m, parameter estimation

corresponds to approximating the moments of the posterior

distribution given by Bayes rule

p h jy; mð Þ ¼ p y jh; mð Þp h; mð Þ
p y jmð Þ : ð7Þ

The estimation procedure employed in DCM is described in

Friston (2002). The posterior moments (conditional mean g and

covariance R) are updated iteratively using variational Bayes under

a fixed-form Laplace (i.e., Gaussian) approximation to the

conditional density q(h)=N(g,R). This can be regarded as an

Expectation-Maximization (EM) algorithm that employs a local

linear approximation of Eq. (6) about the current conditional

expectation. The E-step conforms to a Fisher-scoring scheme

(Press et al., 1992) that performs a descent on the variational free

energy F( q, k, m) with respect to the conditional moments. In the

M-Step, the error variances k are updated in exactly the same way.

The estimation scheme can be summarized as follows:

Repeat until convergence

E� Step q@ min
q

F q; k; mð Þ

M� Step k@ min
k

F q; k; mð Þ ¼ max
k

L k; mð Þ

F q; k; mð Þ ¼ bln q hð Þ � ln p y jh; k; mð Þ � ln p h jmð Þ�q
¼ D qjj p hjy; k; mð Þð Þ � L k; mð Þ

L k; mð Þ ¼ ln p yjk; mð Þ: ð8Þ
2 Note that an ellipsoid can also have one or two axes lengths close to

zero to define a one or two dimension manifold that contains the source.



Table 1

Prior densities for lead field parameters of the ith area

hposi ¨ N

xpos

ypos

zpos

1
A

0
@ ;

vposx vposxy vposxz

vposxy vposy vposyz

vposxz vposyz vposz

1
A

0
@

1
A

0
@

hmom
i ¨ N

xmom

ymom

zmom

1
A

0
@ ;

vmom
x vmom

xy vmom
xz

vmom
xy vmom

y vmom
yz

vmom
xz vmom

yz vmom
z

1
A

0
@

1
A

0
@

hKi ¨ N 1;1ð Þ
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Note that the free energy is simply a function of the log-

likelihood and the log-prior for a particular DCM and q(h). The
expression bI�q denotes the expectation under the density q. q(h)
is the approximation to the posterior density p(h | y, k, m) we

require. The E-step updates the moments of q(h) (these are the

variational parameters g and R) by minimizing the variational

free energy. The free energy is the Kullback–Leibler divergence

(denoted by D(I | | I)), between the real and approximate

conditional density minus the log-likelihood. This means that

the conditional moments or variational parameters maximize the

log-likelihood L(k, m) while minimizing the discrepancy

between the true and approximate conditional density. Because

the divergence does not depend on the covariance parameters,

minimizing the free energy in the M-step is equivalent to

finding the maximum likelihood estimates of the covariance

parameters. This scheme is identical to that employed by DCM

for fMRI, the details of which can be found in Friston et al.

(2002), (2003).

Bayesian inference proceeds using the conditional or posterior

density estimated by the EM algorithm. Usually this involves

specifying a parameter or compound of parameters as a contrast

cTg. Inferences about this contrast are made using its conditional

covariance cTRc. For example, one can compute the probability

that any contrast is greater than zero or some meaningful threshold,

given the data. This inference is conditioned on the particular

model specified. In other words, given the data and model,

inference is based on the probability that a particular contrast is

bigger than a specified threshold. In some situations, one may want

to compare different models. This entails Bayesian model

comparison.

Different models are compared using their evidence (Penny

et al., 2004). The model evidence is

p y jmð Þ ¼
Z

p y jh; mð Þp h jmð Þdh: ð9Þ

Note that the model evidence is simply the normalization term

in Eq. (7). The evidence can be decomposed into two components:

an accuracy term, which quantifies the data fit, and a complexity

term, which penalizes models with a large number of parameters.

Therefore, the evidence embodies the two conflicting requirements

of a good model, that it explains the data and is as simple as

possible. In the following, we approximate the model evidence for

model m, under the Laplace approximation, by

ln p y jmð Þ , ln p y jk; mð Þ: ð10Þ
This is simply the maximum value of the objective function

attained by EM (see the M-Step in Eq. (8)). The most likely model

is the one with the largest log-evidence. This enables Bayesian

model selection. Model comparison rests on the likelihood ratio of

the evidence for two models. This ratio is the Bayes factor Bij. For

models i and j

lnBij ¼ ln p y jm ¼ ið Þ � ln p y jm ¼ jð Þ: ð11Þ

Conventionally, strong evidence in favor of one model requires

the difference in log-evidence to be three or more (cf., Table 1 in

Penny et al., 2004).

Summary

A DCM is specified through its priors. These are used to

specify (i) how regions are interconnected, (ii) which regions
receive subcortical inputs, (iii) which cortico-cortical connections

change with the levels of experimental factors, and (iv) how the

observable states express themselves spatially in the sensors.

Usually, the most interesting questions pertain to changes in

cortico-cortical coupling that explain differences in ERPs.

Posterior distributions are estimated using an Expectation-

Maximization algorithm that operates on the conditional distri-

butions. After model estimation, we use the model evidence to

compare alternative models. Typically, alternative models would

be chosen to have different connectivity, different combinations

of sources or different dipole location priors. Inference about a

specific model is made using the posterior distribution of

contrasts. We will illustrate the operational details in the

following section.
Results

In this section, we illustrate the use of DCM using two real

ERP datasets. Furthermore, we use two synthetic ERP datasets to

show that DCM with a parameterized lead field can furnish more

accurate and robust coupling estimates and models with greater

evidence. This rest on using synthetic data where one knows the

true model and true parameters. We use the first real dataset to

address the face validity of the neuronal (i.e., coupling)

parameter estimates and the second to look at the spatial

parameters.

The first ERP dataset was acquired using an oddball paradigm

(David et al., 2006). The data show a mismatch negativity (MMN)

and P300 component in response to rare stimuli, relative to

frequent (Debener et al., 2002; Linden et al., 1999). In this

example, we attribute changes in coupling to plasticity underlying

the learning of frequent or standard stimuli.

The second data are somatosensory-evoked potentials (SEPs)

following unilateral median nerve stimulation. For these data,

we show that one can model the first 150 ms in peri-stimulus

time with a 3-area network including contralateral primary

somatosensory cortex (SI) and bilateral secondary somatosen-

sory cortices (SII). We use this model to cross-validate the

estimated ECD orientations with the existing literature on

SEPs.

An advantage of generative models is that it is easy to generate

synthetic data. This can be achieved by integrating the system

using parameters estimated from real data (the SEP data). Here, we

use the posterior means of the parameters and add noise generated

using the estimated error covariance. This procedure provides

realistic-looking synthetic data. Note that because we use subspace



Fig. 1. DCM specification for the auditory oddball paradigm. Left: graph depicting the sources and connections of the DCM: A1: primary auditory cortex, OF:

orbitofrontal cortex, PC: posterior cingulate cortex, STG: superior temporal gyrus. A bilateral extrinsic input acts on primary auditory cortex which project to

orbitofrontal regions. In the right hemisphere, an indirect pathway was specified, via a relay in the superior temporal gyrus. At the highest level in the hierarchy,

orbitofrontal and left posterior cingulate cortices were assumed to be laterally and reciprocally connected. Right: dipole locations and orientations (conditional

means).
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projection (Dimension reduction section), the synthetic data also

exists in this low-dimensional space3.

In the first set of simulations, we illustrate that a DCM with

(uninformative) zero-mean priors on dipole orientations can

identify the true dipole moments with high precision. In the

second simulation, we repeat the simulation but specify priors

whose means deviate from the true parameters. We find that even

with these ill-informed priors, DCM can recover the true spatial

configuration of modeled sources. In contrast, a model that

assumes the (inaccurate) lead field, leads to sub-optimal results.

These findings indicate that a lead field does not have to be fully

specified before fitting the full spatiotemporal data but can be

estimated simultaneously with the neuronal and connectivity

parameters.

ERP data

Oddball data—mismatch negativity

This single-subject dataset was acquired using 128 EEG

electrodes and 2048-Hz sampling. Auditory stimuli, 1000- or
3 For visualization, the data can be back-projected to the ERP

measurement space.
2000-Hz tones with 5-ms rise and fall times and 80-ms duration,

were presented binaurally for 15 min, every 2 s in a pseudo-

random sequence. 2000-Hz tones (oddballs) occurred 20% of the

time (120 trials) and 1000-Hz tones (standards) 80% of the time

(480 trials). The subject was instructed to keep a mental record of

the number of 2000-Hz tones. Before averaging single trials

between �100 to 500 ms in peri-stimulus time, data were

referenced to mean activity, downsampled to 125 Hz, and band-

pass filtered between 0.5 and 25 Hz. Trials showing ocular

artefacts (¨30%), and 11 bad channels were removed from further

analysis.

The mismatch negativity was observed around 140 ms at frontal

electrodes. Other late components, also characteristic of rare

events, were seen in most frontal electrodes, centered on 250 ms

to 350 ms post-stimulus. As reported classically, early components

(i.e., the N100) were almost identical for rare and frequent stimuli.

We modeled the data between 8 and 496 ms in peri-stimulus

time. We followed (David et al., 2006) and constructed the

following DCM (see Fig. 1, left): an extrinsic (thalamic) input

entered bilateral primary auditory cortex (A1) which was

connected to ipsilateral orbitofrontal cortex (OF). In the right

hemisphere, an indirect forward pathway was specified from A1 to

OF through the superior temporal gyrus (STG). All these
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connections were reciprocal. At the highest level in the hierarchy,

OF and left posterior cingulate cortex (PC) was laterally and

reciprocally connected.

We found that this model is potentially over-parameterized

when using all six parameters per dipole (see Discussion). To add

more constraints and reduce the number of parameters, we

assigned all dipole locations to their anatomically designated area

(Fig. 1) with a zero-variance prior. Similarly, we assumed the

orientations of the primary auditory cortices to be known. These

were derived with an auxiliary analysis using just two ECDs

(bilateral auditory cortices) modeling the first 140 ms of the data.

The assumption underlying this procedure is that the temporal

component around 100 ms (N100) is nearly exclusively generated

by primary auditory cortex. This approach is often used in classical

dipole fitting (Valeriani et al., 2001). Alternatively, we could have

specified priors based on ECD fits of the N100 component reported

in the literature. The prior distribution of the orientations of the

four remaining dipoles (12 parameters) was noninformative with

zero mean and variance of 2 mm.

After projecting the data to its first three spatial eigenvectors,

we created three DCMs that differed in terms of which connections

could show putative learning-related changes. The three models

allowed changes in forward F, backward B and forward and

backward FB. The log-evidences for a Bayesian model comparison
Fig. 2. Oddball data and corresponding source activity. Left: temporal expression o

of the data. Right: reconstructed responses for each source and changes in coupli

presented. The percent conditional confidence that this ratio is greater than zero is s
(Penny et al., 2004) were �852.67 (F), �898.96 (B), �846.10
(FB), i.e., there is strong evidence for the FB model. In Fig. 2

(left), we show the conditional estimates and posterior confidences

for this model. They reveal a profound increase, for rare events, in

several connections. We can be over 95% confident that these

connections increased. In Fig. 1 (right), we show the conditional

means of the dipole locations and orientations overlaid on an MRI

template. The numbers alongside each connection are the estimated

coupling-gain during oddball processing.

In summary, this analysis suggests that a sufficient explanation

for mismatch responses is an increase in connectivity, in particular

to and from primary auditory cortex. This could represent a failure

to suppress prediction error induced by unexpected or oddball

stimuli, relative to predictable or learned stimuli, which can be

predicted more efficiently.

Median nerve stimulation—sensory-evoked potentials

We now present a DCM of data generated by a neuronal

network that has been well characterized in terms of its spatial

deployment: The sensory-evoked potential in response to a median

nerve stimulus. We model only the first 150 ms of the response

because we assume that, at early peri-stimulus times, the response

can be modeled by fewer areas than in later peri-stimulus times,

when higher areas may come into play. We model just the response
f the first three modes at the sensor level. These capture 82% of the variance

ng. We show the gain in coupling when rare relative to frequent events are

hown in brackets. Only changes with 95% confidence or more are reported.



Fig. 3. Plot of SEP data and DCM fit in sensor space for representative channels. Middle: plots of the ERP channel data from �100 to 400 ms in peri-stimulus

time. Five bad channels are excluded. Left and right: data and DCM fit for six channels, between 5 and 150 ms in peri-stimulus time.
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to a median nerve stimulus. In the present context, this is

interesting for cross-validation purposes because there is substan-

tial literature on ECD modeling of SEPs using either EEG or MEG

(Lin and Forss, 2002; Mauguiere et al., 1997; Valeriani et al.,

2001).

The data were preprocessed using the current version of

Statistical Parametric Mapping (SPM5b). Before averaging, the

data were epoched between �100 to 150 ms, downsampled to 200

Hz, filtered between 0.5 and 35 Hz and thresholded at 100 AV
(removing ca. 30% of all single trials). Five bad channels were

removed from analysis. The ERP is shown in Fig. 3 (middle). With

DCM, we modeled peri-stimulus time 5 to 150 ms of one

condition, right median nerve stimulation.
Fig. 4. First three spatial modes of SEP following median nerve stimula
We assumed three areas generated the SEP: contralateral SI

(cSI), and bilateral SII (cSII and iSII). Exogenous input is received

by cSI after passing through subcortical structures. We model

forward and backward connectivity between contralateral SI and

SII with lateral, reciprocal connections between the SII cortices.

The structure of this neuronal network or graph is shown in Fig. 5

(right).

For analysis, we projected the data to a three-dimensional

subspace spanned by the principal eigenvariates (see Fig. 4 for the

corresponding eigen- or spatial modes). The components capture

95.04% of the data’s variance. For all three dipoles, we used strong

priors on location (prior variance of 8 mm2) based on findings of

Mauguiere et al. (1997). In MNI space, we specified the following
tion. The Fholes_ are caused by missing data due to bad channels.
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coordinates: [0, 50, 45] for cSI, [20, 40, 10] for cSII, and [20, �40,
10] for iSII.

In Fig. 5, we show the near-perfect fit to the projected data (left)

and the reconstructed source activities (right). The early response

around 40 ms is modeled nearly exclusively by contralateral SI.

The activity from cSI feeds forward to cSII, which contributes to

the component around 80 ms, with smaller contributions from the

other two areas. The component peaking at 115 ms is generated

mainly by both SII areas. The connectivity estimates reveal a

strong interaction between areas: the forward connection strength

from cSI to cSII is 27.68 (with a conditional confidence of 100% in

the coupling being greater than zero). The backward connection

from cSII to cSI is 2.67 (100%). The lateral connection from cSII

to iSII is 3.57 (99%). The reverse connection from iSII to cSII is

apparently not engaged, with a conditional expectation of 0.95

(53%).

In terms of the spatial configuration of these sources, the

conditional mean of two delays on extrinsic connections deviated

considerably from their prior mean of 16 ms. The intra-

hemispheric connection from cSI to cSII had a propagation delay

(conditional mean) of 6.53 ms, and the lateral inter-hemispheric

connection from cSII to iSII of 50.44 ms. The precisions of these
Fig. 5. Data and DCM for SEP data. Left: the time-courses of the first three modes

Right: DCM using three areas. The input (unilateral left median nerve stimulation

connections from cSII. cSII projects laterally, reciprocally to ipsilateral SII. The nu

parameters are greater than zero).
estimates were high as indicated by the conditional variances of

0.008 (cSIYcSII) and 0.029 (cSIIYiSII). These delays lie in a

physiologically plausible range and point to the possibility of

estimating propagation or conduction delays from ERP/ERF data

(see Discussion).

The conditional means of the dipole orientations are shown in

Fig. 5. It is pleasing to note that all three dipole orientations are

very close to the ones reported in Mauguiere et al. (1997), see their

Fig. 2. This result speaks to the face validity of the current DCM

approach.

Note that, in our data, there is little evidence of an N20

component, which is usually seen in median nerve stimulation

experiments. The reason is that the N20 is a high-frequency

response component, and our specific preprocessing removes very

high-frequency components. We used this processing for reasons

of computational expediency because we were interested mainly in

low-frequency components. However, one can see some evidence

of the N20 (Fig. 3), but it is not fitted well. The likely reason is that

the subspace used to reduce the dimensionality of the data did not

span these early, high-frequency spaces. We will assess models of

the early-latency components like the N20 in future work looking

at the effects of preprocessing and dimension reduction.
of the data (see Fig. 4 for their spatial expression) and their fit using DCM.

) feeds into contralateral SI (cSI). cSI projects to cSII and receive backward

mbers correspond to connection strength (Hz) and the (confidence that these



Table 3

Second simulation: deviations of dipole orientations of contralateral SI/SII

and ipsilateral SII from true orientations (angles around axes in degrees)

cSI cSII iSII

Angle x 1.3 1.8 0.9

Angle y 3.3 9.7 6.6

Angle z 3.5 2.0 3.2
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Simulations

True lead field

In this simulation, we added noise to the systems response

generated using the conditional means of the above SEP DCM. We

specified two different models. The first used the true lead field as

known and fixed, i.e., all dipole parameter distributions have zero

prior variance with expectations equal to the true parameters (see

Fig. 5 for true locations and orientations). The second model has,

for each dipole, informed, tight priors on the location and

uninformed, broad priors on the moment parameters. For the

locations, we used the true parameters as prior mean with prior

variances of 8. For the orientation priors, we used means of zero

with variances of 8. For both models, the prior for the contribution

matrix K was set to its prior expectation of the identity matrix. The

purpose of this simulation pair was to show that one can still obtain

precise conditional estimate of neuronal parameters without

knowing the spatial orientation of the sources.

We modeled the synthetic data in its space of the first three

modes of the original data. As expected, the Fknown lead field_
model fits the data extremely well (mean percent error of <1%, plot

not shown). All parameter estimates, including the coupling and

intra-area parameters, are close to the true values. This means that

all parameters can be recovered from the data when the spatial

forward model is accurate and known. The log-evidence for this

model was �273.96.
For the second model with unspecified orientations, the

connectivity estimates are close to their true values. The estimated

lead field is also very close to the true lead field. The log-evidence

for this model was �292.53. The lower model evidence reflects

the use of more parameters. The dipole orientation estimates are

most interesting because we used a broad zero mean prior on these.

The error (converted to angles around axes in degrees) ranged

between 0.1 and 13.8- (see Table 2). These deviations are small

and do not change the overall shape of the lead field. In summary,

one can estimate not only coupling parameters from the data but

also, simultaneously, important lead field parameters like the

moment of equivalent current dipoles.

False lead field

In these simulations, we generate synthetic data as above.

However, this time, the prior expectation of the orientation

parameters deviates from the true parameters (a relative rotation

of 60- of all dipoles around the x-axis). The first model uses zero

variance priors as before, and a prior mean that now embodies false

assumptions about the lead field. The second model has the same

priors except that we acknowledge prior uncertainty about the

orientations by using prior variances of 8. The purpose of this pair

of simulations was to show that failing to properly encode prior

uncertainty can lead to a low model evidence and low-confidence

estimates of coupling parameters that are biased by conditional

dependencies among the parameters.
Table 2

First simulation: deviations of dipole orientations of contralateral SI/SII and

ipsilateral SII from true orientations (angles around axes in degrees)

cSI cSII iSII

Angle x 4.4 3.1 10.8

Angle y 13.8 1.0 5.2

Angle z 4.1 0.1 3.3
The first model, as expected, cannot retrieve the true coupling

parameters from the data because the spatial model is not the true

lead field. For example, the conditional mean of the forward

connectivity from cSIYcSII is 8.99 (true: 24.34) and of backward

cSIIYcSI is 1.20 (true: 3.57). The log-evidence for this model is

�573.31. This is much lower than for the final model, which

accurately estimates the connectivity parameters and the lead field

parameters (see Table 3), with a log-evidence of �249.83.
Discussion

In this paper, we have presented dynamical causal modeling

(DCM) for event-related potentials and fields using equivalent

current dipole models. We have shown that this Bayesian approach

can be used to estimate parameters for a generative ERP model.

Importantly, one can estimate, simultaneously, source activity,

extrinsic connectivity, its modulation by context, and spatial lead

field parameters from the data. An alternative view of DCM for

ERP/ERF is to consider it a source reconstruction algorithm with

biologically grounded temporal constraints. We have used simu-

lated and real ERP data to show the usefulness and validity of the

approach. Although we have not applied DCM to ERF data in the

present paper, we note that the model can be adapted to ERFs by

adjusting the electromagnetic component of the forward model.

DCM embodies several advantages over existing approaches.

To start with, the generative model describes the full spatiotem-

poral data after projection to a low-dimensional subspace.

Importantly, a single parameter estimation encompasses all the

model parameters. This is in contrast to classical ECD fitting

approaches, where dipoles are sequentially fitted to the data

interactively using user-selected periods and/or channels of the

data (Valeriani et al., 2001). Classical approaches must proceed in

this way because there is usually too much spatial and temporal

dependency among the sources to identify the parameters precisely.

With our approach, we place temporal constraints on the model

that are consistent with the way signals are generated biophysi-

cally. As we have shown above, these allow the simultaneous

fitting of multiple dipoles to the data.

Furthermore, we can specify priors for all parameters. This

informs the model about our belief concerning the parameters.

With respect to lead field parameters, we used zero mean priors for

the dipole moments. These are uninformative priors, i.e., we use

the data to estimate orientations. For location parameters, we used

priors with a high precision, i.e., we have a strong belief about

where areas should be located. We return to this issue below.

One output of the DCM is the conditional density of the

parameters. This can be used to express certainty about the

parameter estimates. For example, if we find that the posterior

variance of a dipole’s moment is much smaller than its prior

variance, we can be certain about its orientation. As illustrated

above, we use Bayesian confidence intervals (also called credible
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intervals) to express this certainty. The computation of these

confidence intervals can be seen as a by-product of the

Expectation-Maximization algorithm, which uses the Jacobian of

the model parameters (i.e., how changes in the parameters are

expressed in measurement space). Other methods that do not use

this first-order approximation typically use Monte-Carlo and

parametric bootstrap methods for the computation of dipole

confidence intervals (Braun et al., 1997; Fuchs et al., 2004).

As a Bayesian technique, DCM computes the model evidence.

As we have shown above, we can use model evidences of

competing models to assess which is the most likely given some

data. Model comparisons are important because they can be used to

answer questions about how the data were generated. For example,

in the oddball data, we found strong evidence for a network with

extensive stimulus-dependent forward and backward connectivity,

as opposed to a network with changes in feedforward connections

only.

We used the equivalent current dipole (ECD) model because it

is analytic, fast to compute and a quasi-standard when source-

reconstructing ERP or ERF data. However, the ECD model is just

one candidate for spatial forward models. Given some parameter-

ization of the lead field, one can use any spatial model in the

observation equation (Eq. (4)). A further example would be some

linear distributed approach (Baillet and Garnero, 1997; Phillips et

al., 2002), where a Fpatch_ of dipoles, confined to the cortical

surface, would act as the spatial expression of one area. Possible

parameters include the extent of the patch and location on the

surface. With DCM, one could use different forward models for

different areas in a single model (hybrid models). For example, one

could employ the ECD model for early responses while using a

distributed forward model for higher areas.

An advantage of the ECD model is that there is no need for

structural information from magnetic resonance imaging (MRI). In

practice, this means that a full DCM analysis can proceed

automatically in less than an hour. In contrast, linear distributed

methods often rely on surface tessellation of the individual’s MRI,

which can be time consuming, even if automated. The drawback of

the ECD model is a potentially less accurate localization and a

failure to model distributed, nondipole-like responses. However,

note that dipole models for MEG are seen, with respect to

localization error, as an adequate alternative to realistic boundary

element methods (Darvas et al., 2004; Leahy et al., 1998).

Furthermore, with DCM, exact localization is not necessarily the

primary goal. Our experience suggests that precise Bayesian

inversion only requires that each ECD is located roughly in some

designated anatomical region. Also, as found by other authors,

dipole parameters can identified precisely if neighboring areas

have different orientations (e.g., Forss et al., 1996).

An important observation is that, after projection to a few

spatial modes, the orientation of the dipoles matters more than

their location for modeling the data. By this, we mean that the

conditional precision for orientation is much higher than for the

location parameters. Intuitively, the orientation determines most of

the topology of a dipole’s spatial expression in sensor space.

Therefore, with the first few modes of the data, orientation can be

estimated with high precision, whereas we cannot determine

location from the reduced data. However, this is not an issue with

typical DCM studies because the location of each dipole is

implicit in the hypothesis (i.e., graphical model) the DCM

represents. Locations can be derived from the literature (EEG/

MEG, fMRI, PET). Note that a critical advantage of the present
approach is that one can use model comparison to select the best

model among different, plausible networks. In the present paper,

we used tight priors on location. On basis of Bayesian model

comparison using models with and without tight location priors,

we recommend fixing dipole locations, i.e., to treat them as known

with zero prior variance. For the orientations, we suggest

uninformative priors (see previous section). In cases where one

wishes to use further spatial constraints, one can use informative

priors on orientation. Such priors could be derived from the

literature, in particular for early- and medium-latency responses

(<200 ms), for which the inter-subject variance of dipole

parameters seems to be low (e.g., Forss et al., 1996), see their

Fig. 4. In summary, our intuition based on Bayesian model

selection and inversion is that the data contain relatively little

information about the location of sources but are very sensitive to

their orientation. This means that questions that are framed in

terms of sources with known [roughly] location are more likely to

be answered with conditional certainty.

The number of SVD components chosen for dimension

reduction is user-dependent. One reason to perform a subspace

projection is to make the DCM approach computationally efficient

or rather, computationally feasible with high-density EEG or MEG

measurements (128 to 300 channels). However, another reason to

remove modes is that they cannot be modeled. For example, modes

can contain artefacts or activity from nonmodeled higher areas.

With the data described here, we found that our model is usually

good at explaining up to the first 3–4 SVD components, especially

for medium-latency peri-stimulus times. Typically, these compo-

nents represent around 80–95% of the data’s variance and are a

sensible representation of the evoked response. One way of

explaining more of the data is to add more areas. For instance,

with the SEP data, we could have added areas located in the

parietal cortex or frontal areas (Mauguiere et al., 1997) to make a

more accommodating model, especially at later peri-stimulus

times. However, such an approach does not necessarily lead to

higher model evidence because of the increased model complexity.

Another way of potentially improving the model is to use

generative models of typical artefacts, e.g., muscular or ocular

artefacts. However, such models are difficult to formulate because

of their inherent physical complexity and variable expression over

subjects and acquisition settings. In this situation, a good approach

is to rely on a generic blind deconvolution algorithm and separate

the data into components of interest and no interest. In this paper,

we have used singular value decomposition. One can also consider

independent component analysis (ICA) which provides a more

constrained decomposition of the data (Makeig et al., 1997; Tang

et al., 2005).

We have shown that it is possible to use DCM to estimate

propagation delays between cortical areas. For these delays, we

chose a prior mean of 16 ms. For the SEP data, the delay between

cSIYcSII was estimated as 6 ms, and the delay from cSIIYiSII as

50 ms. These estimates seem plausible given the trans-callosal

connection between the SII cortices. Delay estimation is used

routinely for diagnostic purposes. For example, the latency of the

N20 component of the SEP measured on the scalp is used to make

clinical inferences about the conduction delay from the periphery

to the somatosensory cortex. At the sensor level, delay estimation

of this sort is difficult at later peri-stimulus times, for which the

responses of multiple areas overlap in time and space. DCM can

provide estimates of inter-area delays because it is informed about

this spatiotemporal dispersion.
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Conclusion

DCM is useful for estimating connectivity in a hierarchical

network based on evoked responses measured with EEG and MEG

data. The parameterization of the lead field using equivalent

current dipoles results in an accurate and robust estimation of both

connectivity and dipole parameters. One can view DCM for

evoked responses as a source reconstruction approach with

temporal, physiologically informed constraints.
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