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ABSTRACT
This paper reviews the foundation for a role of the

human anterior insular cortex (AIC) in emotional aware-

ness, defined as the conscious experience of emotions.

We first introduce the neuroanatomical features of AIC

and existing findings on emotional awareness. Using

empathy, the awareness and understanding of other

people’s emotional states, as a test case, we then pres-

ent evidence to demonstrate: 1) AIC and anterior cingu-

late cortex (ACC) are commonly coactivated as

revealed by a meta-analysis, 2) AIC is functionally

dissociable from ACC, 3) AIC integrates stimulus-driven

and top-down information, and 4) AIC is necessary for

emotional awareness. We propose a model in which

AIC serves two major functions: integrating bottom-up

interoceptive signals with top-down predictions to gen-

erate a current awareness state and providing descend-

ing predictions to visceral systems that provide a point

of reference for autonomic reflexes. We argue that AIC

is critical and necessary for emotional awareness. J.

Comp. Neurol. 521:3371-3388, 2013.
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NEUROANATOMICAL FEATURES OF THE
INSULAR CORTEX

The human insular cortex was first described by

Johann-Christian Reil in 1796 and has since been

known as the island of Reil (for review see Binder et al.,

2007). It lies in the depth of the lateral sulcus and can

be directly observed only by removal of the overlaying

frontal and temporal lobes (Naidich et al., 2004). The

insula has widespread connections with other parts of

the brain (Saper, 2002). In rats, the insular cortex is

interconnected with the autonomic system as well as

limbic and frontal regions (Saper and Loewy, 1980;

Saper, 1982; Allen et al., 1991) and has been shown to

contain a viscerotopic map (Cechetto and Saper,

1987). It also receives projections from the glossopha-

ryngeal nerve in rabbits (Yamamoto and Kawamura,

1975). Insular neurons respond to stimulation of the

cervical vagus nerve in squirrel monkeys (Radna and

MacLean, 1981). In humans, the insula has bidirectional

connections with the frontal, parietal, and temporal

lobes; the cingulate gyrus; and subcortical structures

such as the amygdala, brainstem, thalamus, and basal

ganglia (Flynn et al., 1999). These connections serve as

the anatomical foundation for the integration of auto-

nomic, viscerosensory, visceromotor, and limbic func-

tions in the insular cortex.

Cytoarchitecturally, the insular cortex is roughly divided

into an anterior agranular portion (anterior insula, AIC), a

middle dysgranular portion (middle insula), and a poste-

rior granular portion (posterior insula) in both humans

(Flynn et al., 1999; Butti and Hof, 2010; Bauernfeind

et al., 2013; Butti et al., 2013) and macaque monkeys

(Mesulam and Mufson, 1982a), although more subdivi-

sions have been revealed in monkeys recently (Gallay

et al., 2012; Evrard H, Logothetis NK, Craig AD, in press).

Each subdivision has its own unique connectivity and

functional features. The posterior insula receives spinal
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lamina I afferents via the brainstem and thalamic nuclei

and is largely linked to brain region involved in somato-

motor functions; the agranular AIC is connected predomi-

nantly with allocortical areas and integrates autonomic

and interoceptive information (Flynn et al., 1999). The

insula, and especially the agranular AIC, is also among

the most differentially expanded neocortical regions in

humans compared with other primate species (Bauern-

feind et al., 2013). Another distinguishing feature of AIC

is that it contains a special group of large, bipolar,

spindle-shaped neurons referred to as von Economo neu-

rons (VENs; von Economo, 1926; Seeley et al., 2012). To

date, VENs have been found to exist only in humans and

great apes (Nimchinsky et al., 1995, 1999; Allman et al.,

2010), macaque monkeys (Evrard et al., 2012), ceta-

ceans and a number of their related terrestrial herbivore

species (Hof and Van der Gucht, 2007; Butti et al., 2009,

2013; Butti and Hof, 2010), and elephants (Hakeem

et al., 2009). They are most abundant in humans and are

found primarily in layer Vb in the anterior cingulate cortex

(ACC; Nimchinsky et al., 1995) and in the junction of the

posterior orbitofrontal cortex and AIC known as the fron-

toinsular cortex (Allman et al., 2010). VENs are projection

neurons approximately 4.6 times the size of neighboring

pyramidal neurons and are considered well-suited for

rapid, long-distance integration of information (Allman

et al., 2005, 2010).

EMOTIONAL AWARENESS: EXISTING
FINDINGS AND THEORIES

Conscious vs. unconscious emotional
processes

We propose that the insula serves a critical role in

emotional awareness. Emotion, as a multiconstrual con-

cept, is usually considered to consist of a physiologi-

cal–biological component, an experiential–psychological

component, and an expressive–social component (Lane

and Schwartz, 1987; Dolan, 2002). Lane and Schwartz

defined five levels of emotional awareness as the

awareness of bodily sensations, the body in action, indi-

vidual feelings, blends of feelings, and blends of blends

of feelings (Lane and Schwartz, 1987). In the current

review, we simplify this definition as the conscious

experience of emotions (the experiential or “feeling”

domain of emotion); operationally, emotional awareness

occurs during the supraliminal processing of affective

stimuli (Pessoa, 2005). Compelling evidence shows that

emotional perception, evaluation, and behavior can be

processed with or without conscious awareness (see,

e.g., Ohman and Soares, 1994) and that emotional

awareness is a necessary, but not a sufficient, condition

for successful emotional processing. However, it has

been suggested that only coarse affective properties can

be registered without awareness (Pessoa, 2005) and

that the capacity to experience emotions fully signifi-

cantly increases the likelihood of one to make an appro-

priate action or decision (Lane and Schwartz, 1987).

Interoception and emotional awareness
Interoception is the sense of the physiological condi-

tion of the body (Craig, 2002, 2003). The ongoing dis-

cussion on the relationship between interoception and

emotional awareness can be dated back to the era of

William James (1884) and Carl Lange (1885), if not ear-

lier. Lange considers cardiovascular responses as a

basis for emotional awareness, whereas James extends

this view by including autonomic functions other than

cardiovascular responses. Their ideas, usually men-

tioned together as the James-Lange theory, was chal-

lenged by the Cannon-Bard theory (Bard, 1928;

Cannon, 1932), which argues that bodily responses are

the result, not the cause, of emotions and that a cen-

tral nervous system is needed to generate emotional

feelings. The self-perception theory, derived from radi-

cal behaviorism, supports the notion that emotional

feelings follow behavior, although the extent differs

among individuals (Bem, 1967; Laird, 1974). More

recently, it has been proposed that reactivation of bodily

and neural responses involved in lower-level sensorimo-

tor processes contributes to subjective awareness

(Thompson and Varela, 2001; Niedenthal, 2007; Harrison

et al., 2010; Gray et al., 2012; Oosterwijk et al., 2012;

Pollatos et al., 2012). Such embodiment of high-level

emotional feelings is sometimes termed the “somatic

marker,” which captures the physical aspect of subjec-

tive awareness (Damasio, 1996). By incorporating ideas

from theoretical neurobiology, it has recently been sug-

gested that predictive coding of interoceptive information

is important in awareness (Seth et al., 2011). This implies

that emotion can be viewed as a form of interoceptive

inference; that is, subjective feelings are based on the

active interpretation of changes in the physiological con-

ditions of the body (Seth et al., 2011). These new devel-

opments support an inseparable relationship between

interoception and emotional awareness.

Brain mechanisms of emotional awareness
Although several other brain regions such as ACC,

amygdala, and ventromedial prefrontal cortex are com-

monly implicated (Lane et al., 1998; LeDoux, 2000;

Cohen et al., 2001; Adolphs, 2002; Ochsner and Gross,

2005; Phelps, 2006; Duncan and Barrett, 2007; Lieber-

man, 2007), the insular cortex has been singled out as a

critical neural substrate for interoceptive and emotional

awareness (Craig, 2009, 2010, 2011; Singer et al.,

X. Gu et al.
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2009; Jones et al., 2010; Seth et al., 2011). The poste-

rior insular cortex has been commonly associated with

somatotopic representations of bodily states such as

itch, pain and temperature, and touch (Damasio et al.,

2000; Craig, 2002, 2009; Harrison et al., 2010), whereas

AIC participates in a wide range of functions, including

and beyond bodily representations. Neuroimaging studies

consistently show that AIC activation is associated with

cardiovascular functions (King et al., 1999; Henderson

et al., 2002), respiration (Banzett et al., 2000; Henderson

et al., 2002), pain (Treede et al., 1999; Wager et al.,

2004), touch (Keysers et al., 2004; Lindgren et al.,

2012), thermosensory awareness (Craig et al., 2000),

disgust (Phillips et al., 1997; Wicker et al., 2003; Calder

et al., 2007), interoceptive awareness (Critchley et al.,

2004; Zaki et al., 2012), general emotional processing

(Davidson and Irwin, 1999; Zaki et al., 2012), cognitive

control (Eckert et al., 2009; Menon and Uddin, 2010),

empathy (Singer et al., 2004; Gu and Han, 2007a; Gu

et al., 2010, 2012, 2013; Lamm et al., 2010; Ebisch

et al., 2011), intuition (Kuo et al., 2009), unfairness (San-

fey et al., 2003; Kirk et al., 2011), risk and uncertainty

(Preuschoff et al., 2008; Bossaerts, 2010; Ullsperger

et al., 2010; Bach and Dolan, 2012), trust and coopera-

tion (King-Casas et al., 2008), and norm violations (Mon-

tague and Lohrenz, 2007; Xiang et al., 2013). It has also

been observed that patients with focal epileptic seizures

that arise from the AIC report heightened emotional

awareness and enhanced wellbeing (Picard, 2013), fur-

ther supporting a role of AIC in emotional awareness.

A posterior-to-anterior gradient in the insular cortex

has been proposed, in which physical features of intero-

ception are processed in the posterior insula and the

integration of interoception with cognitive and motiva-

tional information in the AIC, and the right AIC serves a

more dominant role than the left AIC (Craig, 2009,

2010, 2011). Recent work further suggests that, as a

critical neural correlate in interoceptive predictive cod-

ing, AIC serves a computational role in emotional

awareness (Seth et al., 2011). The insular cortex is

therefore considered to form an interoceptive image of

one’s physiological states and consequently to relay

internal needs to subjective awareness of feelings

(Craig, 2002; Harrison et al., 2010).

It is noteworthy that the insular cortex works closely

with a network of regions, including the ACC (Critchley,

2004; Critchley et al., 2004; Medford and Critchley,

2010; Fan et al., 2011; Denny et al., 2012; Lindquist

et al., 2012), somatosensory cortex (Gu et al., 2013),

and amygdala (Etkin and Wager, 2007). It has been

pointed out that patients with bilateral insular damage

still preserve certain aspects of emotional awareness,

suggesting that emotional feelings might first emerge

from the brainstem and hypothalamus, which are later

enriched and refined by the insula (Damasio et al.,

2013).

Clinical significance: alexithymia and related
disorders

Deficit in emotional awareness, termed as alexithymia

(Taylor, 2000), is commonly seen in conditions associ-

ated with neuropathological degeneration of the VENs

and functional deficits of the AIC, such as behavioral

variant frontotemporal dementia (Seeley et al., 2006;

Seeley, 2010; Kim et al., 2012), callosal agenesis (Kauf-

man et al., 2008), and autism (Santos et al., 2011;

Butti et al., 2013). Among the popular tools to measure

trait alexithymia is the 20-item Toronto Alexithymia

Scale (TAS-20), which assesses three aspects of emo-

tional deficits: difficulty in identifying emotions, difficulty

in describing emotions, and externally oriented thinking

style (Taylor et al., 2003). As assessed by TAS-20, the

prevalence of alexithymia is approximately 10% in the

general population (Kokkonen et al., 2001) and is

remarkably high in patients with autism spectrum disor-

ders (85%; Hill et al., 2004). In autism, lower AIC activa-

tions are correlated with higher TAS-20 scores (Bird

et al., 2010). Patients with frontotemporal dementia are

more alexithymic than matched controls, and such defi-

cits have been associated with abnormalities in prege-

nual ACC (Sturm and Levenson, 2011) and AIC (Seeley,

2010). Alexithymia is also observed in individuals with

depersonalization syndrome (Simeon et al., 2009). Even

in the absence of psychiatric or neurological disorders,

alexithymia is very common among elderly people (34%;

Joukamaa et al., 1996). This suggests that emotional

awareness is important to mental health and that

impaired emotional awareness interferes with normal

social function in both clinical and nonclinical popula-

tions. Diminished ability to integrate information rapidly

among spatially distinct regions may underlie functional

deficits in these conditions and, ultimately, in the inabil-

ity to make quick and intuitive judgments regarding

uncertain and rapidly changing social contexts (Allman

et al., 2005).

EMPATHY AS A TEST CASE FOR
EMOTIONAL AWARENESS

Next we review evidence supporting a critical role of

AIC in emotional awareness using empathy as a test

case. Empathy refers to the awareness and understand-

ing of the sensory and emotional states of other people

(Gu et al., 2012). In experimental settings, empathetic

emotions are externally generated by visual or auditory

affective stimuli, in contrast to self-generated emotions

Anterior Insular Cortex and Emotional Awareness
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induced by instructions. Empathy is closely related to,

yet different from, emotional contagion, in that the lat-

ter is merely passive, whereas empathy also involves

active and top-down components such as perspective

taking and social understanding (Preston and de Waal,

2002; Decety and Jackson, 2004). A substantial portion

of work on emotion involves visual stimuli depicting

another person’s emotions (e.g., facial expressions; for

reviews see Davidson and Irwin, 1999; Adolphs, 2002;

Phelps, 2006; Pessoa and Adolphs, 2010) because of

the advantage of allowing specific yet flexible experi-

mental manipulations (e.g., compared with somatosen-

sory stimuli). In such studies, empathy is often involved

but not explicitly discussed. In the following paragraphs,

we consider four lines of evidence to support the notion

that AIC is critical for empathetic emotions: 1) AIC and

ACC are commonly coactivated as revealed by a meta-

analysis, 2) AIC is functionally dissociable from ACC, 3)

AIC integrates stimulus-driven and top-down informa-

tion, and 4) AIC lesions are associated with deficits in

emotional awareness.

Coactivation of AIC and ACC:
a meta-analysis on empathy

To overcome the heterogeneity in experimental meth-

ods and achieve an unbiased quantification of neural

substrates underlying empathy, we first conducted a

quantitative meta-analysis on 47 functional magnetic

resonance imaging (fMRI) studies (see Table 1) that

examined brain activations related to empathy in

healthy adults using the coordinate-based meta-analysis

(Salimi-Khorshidi et al., 2009) of activation likelihood

estimation (ALE) approach (Turkeltaub et al., 2002;

Laird et al., 2005; Eickhoff et al., 2009). This algorithm

treats activated foci of brain regions as three-

dimensional Gaussian probability distributions centered

at the given coordinates instead of points (Laird et al.,

2005; Eickhoff et al., 2009) and incorporates the size

of the probability distributions by taking into account

the sample size of each study and by utilizing random-

effect rather than fixed-effect inference by testing the

above-chance clustering between experiments/con-

trasts rather than the above-chance clustering between

foci (Eickhoff et al., 2009).

A literature search was carried out in PubMed and

Web of Science (through August, 2010, the time at which

we began the meta-analysis) using any of the following

indexing terms: “empathy,” “empathetic,” “altruism,”

“sympathy,” “emotional contagion,” “compassion,” in

combination with “fMRI” by four researchers independ-

ently (X.G. and three research assistants). All of the

resulting 158 articles were pooled into a database, and

redundant entries were eliminated. We then excluded

articles that 1) were review articles or other nonempirical

studies; 2) did not report results in Talairach or Montreal

Neurological Institute (MNI) space; 3) used tasks unre-

lated to empathetic processes and with no measurement

of trait empathy; 4) were based on structural analyses

only; 5) were based on region of interest (ROI) analysis

(e.g., using anatomical masks or coordinates from other

studies), principal component analysis, or functional or

effective connectivity analysis only; 6) were based on

special populations (e.g., children, aging adults, psychiat-

ric patients, medical physicians, Buddhist meditators);

and 7) focused on the cognitive aspects of understanding

others’ mental states (i.e., theory of mind). These criteria

resulted in 47 articles with 2,029 foci, 194 contrasts,

and 3,411 subjects in the final data set (see Table 1).

We further conducted analyses on foci from studies or

contrasts based on empathy for pain, empathy for nega-

tive emotions, and empathy for positive emotions. For

example, the following contrasts were identified as

empathy for pain: “main effect of pain: pain>no pain”

(Akitsuki and Decety, 2009) and “other’s pain>self pain”

(Ochsner et al., 2008). The following contrasts were

identified as empathy for negative emotions:

“compassionate–sad>zcompassionate–neutral” (Kim

et al., 2009), and “overlap between observing and feeling

disgust” (Wicker et al., 2003). This category included

192 foci from 20 contrasts and 403 subjects. This cate-

gory included 948 foci from 98 contrasts with 1,598

subjects. The following contrasts were identified as

empathy for positive emotions: “overlap between

sucrose–saliva and pleasant faces–neutral faces” (Jabbi

et al., 2007) and “correlation of happy > neutral con-

trast with EQ” (Chakrabarti et al., 2006). This yielded 70

foci from nine contrasts with 157 subjects.

For the main analysis on all three emotional catego-

ries, we identified multiple regions involved in empathetic

processing. These regions include AIC, ACC, middle and

superior temporal gyri, somatosensory cortices (SI/SII),

dorsal frontoparietal regions, medial prefrontal cortex

(MPFC), amygdala, thalamus, and midbrain structures

(substantia nigra and red nucleus; Fig. 1A, Table 2).

Meta-analysis on empathy for pain also showed most

consistent activations in bilateral insula and ACC (Fig.

1B, Table 3). Other regions include lateral PFC (LPFC),

MPFC, SI, middle occipital gyrus, fusiform gyrus, inferior

parietal lobule, amygdala, globus pallidus, claustrum,

thalamus, and cerebellum. Empathy for negative emo-

tions also reliably activated AIC and ACC (Fig. 1C, Table

4), in addition to LPFC, MPFC, red nucleus, substantia

nigra, and putamen/caudate nucleus. Brain regions that

showed consistent activation for empathy for positive

emotions include AIC, SI, superior temporal gyrus,

X. Gu et al.
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MPFC, LPFC, and inferior parietal lobule (Fig. 1D, Table

5). This category yielded fewer brain regions than previ-

ous categories, probably because of the smaller number

of studies/contrasts for positive emotions. These regions

largely, but not fully, overlap with the brain areas

involved in empathy for pain and negative emotion.

Several aspects of these findings deserve attention.

First, AIC, but not ACC, is consistently involved in the

three categories of empathetic emotions examined,

suggesting a unique role of AIC in processing affective

visual stimuli regardless of valence (see x 5 238 and

38 slices across Fig. 1A–D). Second, right AIC activa-

tion is absent in empathy for positive emotions and

present only in empathy of pain and negative emotions,

whereas left AIC is activated by all valence categories.

This finding is consistent with the notion that right AIC

encodes “energy-consuming” negative feelings (Craig,

2011). There are at least two possible explanations

TABLE 1.

Demographics of Studies Included in the Meta-Analysis1

References Sample size Stimulus valence Stimulus modality Task

Akitsuki and Decety (2009) 26 Pain Visual/image Valence rating
Botvinick et al. (2005) 12 Pain Visual/video Observation
Carr et al. (2003) 11 Happy/sad/angry/surprise/disgust/

afraid
Visual/image Imitation; observation

Chakrabarti et al. (2006) 25 Happy/sad/angry/disgust/neutral Visual/video Button press
Cheetham et al. (2009) 16 Pain Visual/video Button press
Costantini et al. (2008) 13 Pain Visual/video Observation
Decety et al. (2010) 22 Pain Visual/video Observation
Derntl et al. (2010) 24 Happy/sad/anger/fear/disgust Visual/image Perspective taking
Gu and Han (2007a) 12 Pain Visual/image Valence rating
Gu et al. (2010) 18 Pain Visual/image Valence rating
Han et al. (2009) 24 Pain Visual/video Valence rating
Hennenlotter et al. (2005) 12 Happy Visual/image Imitation
Hooker et al. (2008) 20 Mixed Visual/image Empathizing; emotion inference
Hooker et al. (2010) 15 Mixed Visual/image Empathizing
Immordino-Yang et al. (2009) 13 Mixed Auditory/Visual Imitation
Jabbi et al. (2007) 18 Disgust/pleasant Visual/video Observation
Jackson et al. (2005) 15 Pain Visual/image Valence rating
Jackson et al. (2006) 34 Pain Visual/image Valence rating
Kim et al. (2009) 21 Sad Visual/image Empathizing; observation
King et al. (2006) 12 Pain Visual/video Empathetic decision making
Kramer et al. (2010) 17 Anger/sadness/pain/anxiety Visual/image Button press
Lamm et al. (2007a) 17 Pain Visual/video Perspective taking
Lamm et al. (2007b) 18 Pain Visual/image Valence rating
Lamm and Decety (2008) 18 Pain Visual/image Valence rating
Lamm et al. (2010) 24 Pain Visual/image Valence rating
Leslie et al. (2004) 15 Smile/frown Visual/video Observation; imitation
Mathur et al. (2010) 28 Pain Visual/image Valence rating
Morrison et al. (2004) 11 Pain Visual/video Observation
Morrison et al. (2007) 14 Pain Visual/video Observation
Morrison and Downing (2007) 16 Pain Visual/image Hit/miss judgment
Newman-Norlund et al. (2009) 22 Mixed Visual/video Hit/miss judgment
Nummenmaa et al. (2008) 10 Threat/harm Visual/image Empathizing
Ochsner et al. (2008) 13 Pain Visual/video Observation
Olsson et al. (2007) 14 Pain Visual/video Observation
Osborn and Derbyshire (2010) 15 Pain Visual/image Valence rating
Saarela et al. (2007) 12 Pain Visual/image Observation
Schulte-Ruther et al. (2007) 26 Angry/fearful/sad/disgusted/

happy
Visual/image Perspective taking

Schulte-Ruther et al. (2008) 26 Angry/fearful/sad/happy Visual/image Perspective taking
Singer et al. (2004) 16 Pain Visual/image Observation
Singer et al. (2006) 16 Pain Visual/image Observation
Ushida et al. (2008) 15 Pain Visual/video Observation
van der Gaag et al. (2007) 17 Happy/disgust/fear Visual/video Observation; imitation
Vollm et al. (2006) 13 Mixed Visual/image Empathizing
Wicker et al. (2003) 14 Disgust/pleasure Visual/video Observation
Xu et al. (2009) 33 Pain Visual/video Valence rating
Zaki et al. (2007) 13 Pain Visual/video Observation
Zaki et al. (2009) 21 Mixed Visual/video Valence rating

1All references are given in the Literature Cited.
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regarding the function of the left AIC: 1) it directly proc-

esses both positive and negative feelings and 2) it spe-

cifically encodes “energy-nourishing” positive feelings

(Craig, 2011), yet there might be asymmetrical informa-

tion flow between left and right AIC such that negative

feelings are processed in the right AIC first and then

sent to the left AIC, a downstream region of the right

AIC. Further investigations using lesion and causal mod-

eling of neuroimaging data are needed to answer this

question. Third, although we were not able to compare

gender differences in the current meta-analysis, males

and females have been shown to use different strat-

egies in emotion paradigms (Baron-Cohen and Wheel-

wright, 2004; Singer et al., 2006; Schulte-Ruther et al.,

2008). A previous meta-analysis reported that males

exhibit great right AIC activation to negative stimuli

(Stevens and Hamann, 2012). Finer-grained analysis on

gender differences in emotional awareness can offer

insights into emotional awareness in relation to per-

ceiver characteristics and implications for disorders

such as autism (Baron-Cohen and Wheelwright, 2004).

Functional dissociation between AIC and
ACC

In line with our meta-analysis on empathy studies, it

has been commonly demonstrated that AIC and ACC

are coactivated in various experimental paradigms

(Critchley, 2004; Dosenbach et al., 2006; Craig, 2009;

Medford and Critchley, 2010; Fan et al., 2011) as well

as in resting states (Seeley et al., 2007; Britz et al.,

2010; Cauda et al., 2011; Fan et al., 2012). As pointed

out by Craig, “it is understandably mystifying that a

region of the ventrolateral prefrontal cortex (the

Figure 1. Meta-analysis of fMRI studies of empathy processing. A: Empathy for all three emotions examined (pain, negative, positive). B:

Empathy for pain. C: Empathy for negative emotions. D: Empathy for positive emotions. Color intensity represents ALE value. Note that

AIC bilaterally are commonly involved in all conditions (x 5 238 and 38) and that ACC is involved in all but empathy for positive emo-

tions. See Tables (2–5) for details regarding coordinates and ALE values.

X. Gu et al.
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anterior insular cortex (AIC)) and a region of the medial

prefrontal cortex (the anterior cingulate cortex (ACC))

are co-active in so many behaviors. . . . ” (Craig, 2009).

Indeed, ACC also has been considered a significant struc-

ture in emotional awareness (Lane et al., 1998; Lieber-

man, 2007). Therefore, experimental evidence showing

functional dissociation between AIC and ACC is crucial in

delineating the relationship between these two structures.

We recently showed a functional dissociation between

AIC and ACC using an empathetic pain paradigm (Fig.

2A; modified from Gu et al., 2010, 2013). Participants

were asked to judge whether the person in the pictorial

stimulus is suffering from pain (“explicit” task pain; TP) or

the laterality of limb (“implicit” task laterality; TL). A key

manipulation in this design is equating the cognitive load

among experimental conditions. The results suggest that,

after controlling for cognitive load, AIC, but not ACC,

showed increased activation for painful compared with

neutral pictures (Fig. 2B, modified from Gu et al., 2010).

This finding points out the importance of AIC, in dissocia-

tion from ACC, in emotional awareness. In line with this

evidence, several other studies have shown functional

dissociation between AIC and ACC in other domains

(Sridharan et al., 2008; Eckert et al., 2009). Using

Granger causal analysis, Sridharan and colleagues (2008)

showed that the right AIC has a causal influence on ACC

and plays a critical role in switching between the central

executive network and the default mode network. The

TABLE 2.

Empathy-Related Brain Regions (All Coordinates)1

Voxel ALE x y z Area Label

9188 0.117 240 14 0 L anterior insula
0.111 38 20 22 R anterior insula
0.100 246 8 4 L anterior insula
0.070 18 8 6 R putamen
0.068 212 214 4 L thalamus
0.063 34 26 12 R claustrum
0.060 22 22 212 R amygdala
0.058 220 6 4 L putamen
0.058 46 6 30 9 R inferior frontal gyrus
0.055 228 24 214 L amygdala
0.053 4 220 28 R red nucleus
0.053 216 28 210 L amygdala
0.052 0 228 214 Red nucleus
0.051 242 10 26 9 L inferior frontal gyrus
0.049 48 2 42 6 R middle frontal gyrus
0.048 10 26 12 R thalamus
0.045 250 20 16 45 L inferior frontal gyrus
0.038 248 22 30 6 L precentral gyrus

2676 0.089 22 24 32 32 L ACC/RCZa
0.081 28 6 42 32 L ACC/RCZp
0.063 0 0 38 24 ACC/CCZ
0.051 22 40 20 9 L MPFC
0.041 6 48 36 6 R MPFC
0.034 210 50 36 8 L superior frontal gyrus
0.033 2 26 58 6 R MPFC

585 0.064 52 232 30 40 R inferior parietal lobule
0.034 50 246 16 13 R superior temporal gyrus

522 0.066 254 228 36 40 L inferior parietal lobule
0.034 242 236 40 40 L inferior parietal lobule

264 0.055 44 250 212 37 R fusiform gyrus
0.040 48 260 22 19 R inferior temporal gyrus
0.036 42 266 212 19 R fusiform gyrus
0.032 50 262 10 37 R mid temporal gyrus

157 0.053 238 248 50 40 L inferior parietal lobule
0.031 226 260 40 7 L superior parietal lobule

140 0.039 244 268 28 19 L fusiform gyrus
0.032 244 270 6 37 L mid temporal gyrus

87 0.047 28 38 34 9 R mid frontal gyrus
85 0.047 32 284 0 18 R mid occipital gyrus
55 0.035 26 252 44 7 R superior parietal lobule
36 0.037 250 258 16 22 L superior temporal gyrus

1PFDR < 0.05, k > 30, voxel size 5 2 3 2 3 2 mm. ACC, anterior cingulate cortex; RCZa, anterior rostral cingulate zone; RCZp, posterior rostral cin-

gulate zone; CCZ, caudal cingulate zone; MPFC, medial prefrontal cortex; L, left; R, right. RCZa, RCZp, and CCZ are defined as by Fan et al. (2008).
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TABLE 3.

Brain Regions Involved in Empathy for Pain1

Voxel ALE x y z Area Label

2405 0.084 240 14 0 L anterior insula
0.041 230 24 214 L amygdala
0.036 216 28 28 L globus pallidus
0.033 238 22 4 L claustrum
0.029 248 8 8 44 L precentral gyrus
0.028 246 0 24 9 L inferior frontal gyrus
0.026 238 22 16 L posterior insula

2298 0.084 40 20 24 47 R inferior frontal gyrus
0.032 46 28 6 13 R inferior frontal gyrus
0.032 26 22 214 R amygdala

1999 0.075 22 24 32 32 L ACC/RCZa
0.057 0 22 36 24 ACC/CCZ
0.050 28 6 40 32 L ACC/RCZp
0.031 0 10 54 6 L MPFC

506 0.053 52 230 34 2 R SI
408 0.047 254 228 34 40 L inferior parietal lobule

0.020 244 238 38 40 L inferior parietal lobule
302 0.033 12 26 12 R thalamus
154 0.041 22 42 18 9 L MPFC
150 0.028 242 268 28 19 L fusiform gyrus

0.027 244 272 6 19 L mid occipital gyrus
143 0.038 238 248 50 40 L inferior parietal lobule
131 0.040 36 24 14 R posterior insula
117 0.027 48 4 30 9 R inferior frontal gyrus

0.024 44 2 42 6 R mid frontal gyrus
55 0.026 210 212 6 L thalamus
40 0.028 30 282 2 18 R mid occipital gyrus
35 0.027 230 264 226 L cerebellum

1PFDR < 0.05, k > 30, voxel size 5 2 3 2 3 2 mm. ACC, anterior cingulate cortex; RCZa, anterior rostral cingulate zone; RCZp, posterior rostral

cingulate zone; CCZ, caudal cingulate zone; SI, primary somatosensory cortex; MPFC, medial prefrontal cortex; L, left; R, right. RCZa, RCZp, and

CCZ are defined as by Fan et al. (2008).

TABLE 4.

Brain Regions Involved in Empathy for Negative Emotions1

Voxel ALE x y z Area Label

837 0.040 246 8 2 L anterior insula
0.030 242 18 210 47 L inferior frontal gyrus
0.028 240 20 2 L anterior insula
0.019 234 28 14 L anterior insula

650 0.028 4 218 28 R red nucleus
0.023 0 226 212 L red nucleus
0.021 212 216 212 L substantia nigra
0.017 6 210 2 R thalamus

505 0.034 44 16 4 R anterior insula
0.022 36 22 28 47 R inferior frontal gyrus

406 0.025 22 10 50 6 L MPFC
0.021 6 8 50 6 R MPFC
0.018 0 210 56 6 L MPFC

165 0.018 220 8 10 L putamen
0.017 218 4 0 L putamen

149 0.023 2 10 0 R caudate nucleus
117 0.028 24 22 210 32 L ACC/RCZa
83 0.022 20 8 6 R putamen

1PFDR < 0.05, k > 30, voxel size 5 2 3 2 3 2 mm. ACC, anterior cingulate cortex; RCZa, anterior rostral cingulate zone; MPFC, medial prefrontal

cortex; L, left; R, right. RCZa, RCZp, and CCZ are defined as by Fan et al. (2008).
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right AIC, but not the ACC, is also coupled with brain

regions involved in task performance across different

domains (Eckert et al., 2009).

We consider this evidence complementary to, rather

than conflicting with, the finding of joint involvement of

AIC and ACC. ACC does not seem to be a critical region

TABLE 5.

Brain Regions Involved in Empathy for Positive Emotions1

Voxel ALE x y z Area Label

128 0.014 236 12 24 L anterior insula
114 0.015 50 246 18 13 R superior temporal gyrus

0.011 54 234 20 13 R superior temporal gyrus
60 0.015 238 14 226 38 L superior temporal gyrus
60 0.015 6 48 36 6 R MPFC

0.015 8 48 36 8 R MPFC
60 0.014 50 2 40 6 R mid frontal gyrus

0.014 50 2 42 6 R mid frontal gyrus
50 0.013 54 6 10 6 R mid frontal gyrus
46 0.010 260 232 40 44 L precentral gyrus

0.010 258 226 40 40 L inferior parietal lobule
0.009 260 240 38 1 L SI

43 0.012 34 28 22 40 L inferior parietal lobule
41 0.011 46 224 22 47 L inferior frontal gyrus

1PFDR < 0.05, k > 30, voxel size 5 2 3 2 3 2 mm. SI, primary somatosensory cortex; MPFC, medial prefrontal cortex; L, left; R, right.

Figure 2. Empathetic pain as a test case to study the AIC–awareness relationship. A: Visual stimuli and task conditions used in empa-

thetic pain paradigms (modified from Gu et al., 2010, 2013). B: After controlling for cognitive load, only AIC, and not ACC, showed

increased activation for empathetic pain (modified from Gu et al., 2010). C: Cognition–emotion interaction effect in AIC (modified from Gu

et al., 2013). D: AIC lesions, but not ACC lesions, are associated with diminished sensitivity to others’ pain in the explicit empathy task

(left, indexed by smaller d0 based on signal detection theory) and lack of task–stimulus interference in the implicit empathy task (right,

indexed by d0painful 2 d0nonpainful; for details see Gu et al., 2012). AIC, anterior insular cortex; ACC, anterior cingulate cortex; NC, neurologi-

cally intact controls; BDC, brain-damaged controls; TP, task painl; TL, task laterality; TB, task body part. * P < 0.05, **P < 0.01.
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in generating awareness, yet it might receive input from

AIC and convey the “feeling” information to other brain

networks that serve voluntary control functions (Posner

and Rothbart, 1998; Craig, 2009; Medford and Critchley,

2010; Valentini, 2010). This notion is supported by the

functional connectivity between ACC and lateral prefron-

tal, primary, and supplementary motor areas during con-

flict processing (Fan et al., 2008). In other words, we

borrow from the classical view that ACC serves as a lim-

bic motor region and the AIC as a limbic sensory struc-

ture (Craig, 2009; Medford and Critchley, 2010).

AIC integrates top-down and bottom-up
information

Functional integration concerns the convergence

(superadditive effect) of multiple mental operations. To

demonstrate the involvement of any brain region in

functional integration, at least two axioms need to be

met: 1) corepresentation of each of the mental proc-

esses in that brain region and 2) an interaction

between operations in the same region (Calvert, 2001;

Gu et al., 2013). This definition is analogical to the idea

of multisensory integration (MSI); in the presence of

multiple sensory inputs, the firing rate of an MSI cell

exceeds the sum of its responses to each input if proc-

essed separately (Roelfsema et al., 1997; Calvert,

2001). Investigating the integration of top-down and

bottom-up information is crucial because it directly

speaks to the general organizational principles of the

brain (Dayan et al., 1995; Friston, 2002, 2012; Corbetta

et al., 2008) and consciousness (Dehaene et al., 2006;

Tononi and Koch, 2008; Dehaene and Changeux, 2011;

Edlund et al., 2011). Top-down processes are often

driven by task demand and largely voluntary; bottom-up

processes, on the other hand, are mostly stimulus-

driven and subject to voluntary control. In the frame-

work of predictive coding and hierarchical inference,

top-down, higher-level cortical activities try to predict or

“explain away” the bottom-up sensory information con-

veyed by lower-level brain regions (Friston, 2002,

2010). The integration of bottom-up input and top-down

recurrent information is considered essential for con-

sciousness to occur (Tononi and Koch, 2008) and is

likely to be subserved by long-distance projection neu-

rons (Dehaene et al., 2006; Dehaene and Changeux,

2011).

We propose that AIC serves as a key node in such

information integration process, based on findings of

superadditive effects of task demand and stimulus

valence in AIC (Fig. 2C, modified from Gu et al., 2013;

for review see Sterzer and Kleinschmidt, 2010).

Although much research has focused on the modulatory

effect of one mental process on another (Ochsner and

Gross, 2005; Blair et al., 2007), fMRI evidence support-

ing functional integration is limited. One previous study

suggests that dorsolateral PFC is involved in cognition–

emotion integration (Gray et al., 2002); however, cogni-

tive and emotional information were spatially and tem-

porally segregated in the design, so one can speak only

to the existence of distinct yet partially shared process-

ing modules. In contrast, by simultaneously manipulat-

ing and top-down demand (e.g., laterality judgment TL

and body-part judgment TB) and stimulus valence (e.g.,

pain, no pain), one can test a synergistic effect and

introduce competition for neuroanatomical resources,

an approach commonly used in sensory integration

studies (Calvert, 2001). Behavioral data showed

increased response time and error rates for painful

compared with nonpainful stimuli under the difficult

task TL relative to the easy task TB, indicating an inter-

action between stimulus valence (i.e., pain) and top-

down influence (i.e., task demand). In parallel to behav-

ioral findings, the activation of AIC and its related

regions and networks such as somatosensory cortices

showed corepresentation of stimulus valence and top-

down effects and a superadditive interaction effect

between cognitive load and stimulus valence, suggest-

ing that information integration took place in these

brain regions. Corepresentation of the cognitive evalua-

tion and the stimulus valence of pain in AIC have been

shown in previous studies (Salomons et al., 2004;

Wager et al., 2004; Gu and Han, 2007a,b). Additionally,

integration of stimulus predictability and subjective

preference in right AIC is also reported for a juice deliv-

ery task (Berns et al., 2001).

The significance of these findings can be summarized

as follows. First, The joint involvement of AIC and SI in

integrating top-down and bottom-up information sug-

gests that a possible “somatic marker” signal (Damasio,

1996) is activated when the processing of affective vis-

ual stimuli is guided by certain top-down requirements.

Such signal might be subsequently conveyed to control

regions such as ACC and prefrontal cortex for appropri-

ate behavioral output. Second, information integration

in AIC is supported by its anatomical (Mesulam and

Mufson, 1982b; Saper, 2002) and intrinsic functional

(Cauda et al., 2011; Deen et al., 2011; Touroutoglou

et al., 2012; Chang et al., 2013) connectivity with a

large scale network of sensorimotor, affective, and cogni-

tive control regions. Third, the left AIC showed a more

robust interaction effect (surviving in both ROI and

whole-brain analyses) than the right AIC. We speculate

that the left AIC might have advantageous access to

structures involved in sensorimotor and cognitive control

regions, which makes the integration easier compared
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with the right AIC. Fourth, such synergy did not occur in

ACC, which further suggests that AIC and ACC are func-

tionally dissociable and singles out the significance of

AIC in subjective awareness. These findings provide

important, although not necessarily conclusive evidence,

to help uncover the nature of high-level information inte-

gration and, potentially, awareness.

AIC is necessary for emotional awareness
Finally, we demonstrate the necessity of AIC activity

in emotional awareness by presenting evidence from

neuropsychology studies. Although the insula has

received increasing attention in the neuroimaging field,

studies on the effects of focal insular lesions are still

limited (for review see Jones et al., 2010). For instance,

focal lesions in this region impair disgust perception

(Calder et al., 2000). We examined both explicit and

implicit empathetic pain perception in three patients

with focal AIC lesions, in comparison with patients with

focal ACC lesions and neurologically intact controls

(Fig. 2D, modified from Gu et al., 2012). In the explicit

task (Fig. 2D, left), AIC patients, but not ACC patients,

displayed a striking impairment in sensitivity (measured

by d0) to others’ pain when explicitly asked to evaluate

pain, suggesting that AIC is necessary for explicit empa-

thetic pain processing. In the implicit task of limb later-

ality judgment (Fig. 2D, right), control subjects showed

a normal stimulus–task interference effect indexed by

negative d0 difference between painful and nonpainful

stimuli (i.e., pain worsened judgment of laterality). How-

ever, AIC patients lacked such interference between

stimulus valence and laterality judgment, indicating that

the integration of stimulus-driven and top-down informa-

tion was impaired in patients with AIC lesions and that

AIC is necessary for bottom-up and top-down integra-

tion. Taken together, these findings demonstrate the

necessity for AIC, but not ACC, in emotional awareness.

Although AIC and ACC are usually considered as one

system with AIC as the input sensory region and ACC

as the output control region (Seeley et al., 2007; Craig,

2009; Jones et al., 2010), the finding that ACC is usu-

ally activated by but not necessary for empathetic pain

perception suggests the existence of multiple control

regions other than ACC and that AIC is the only critical

input region.

Three recent case studies specifically examined the

effects of bilateral insular lesions on subjective aware-

ness and reported intact interoceptive awareness

(Khalsa et al., 2009) and self-awareness (Philippi et al.,

2012; Damasio et al., 2013). The authors concluded

that the insula is not necessary for awareness. Although

we agree with the authors that emotional awareness is

less likely to be subserved by one neural substrate

such as the insula and is more likely to be processed

by distributed networks including low-level brainstem

and thalamic nuclei, we next discuss possible sources

of discrepancies in the findings among studies. First,

although the insular lesions in the two patients “Roger”

(Khalsa et al., 2009; Philippi et al., 2012) and “M”

(Damasio et al., 2013) are bilateral, there are still resid-

ual tissues in the insula that might convey some intero-

ceptive information (Craig, 2011). Second, the “core”

self-awareness assessed by Damasio and colleagues

(Philippi et al., 2012; Damasio et al., 2013) is based on

self-recognition tasks, which are subserved by distrib-

uted neural networks also involving the frontal–temporal

network (Keenan et al., 2000) and cortical midline

structures (Zhu et al., 2007; Han and Northoff, 2009).

Therefore, Roger and M might also be very likely to uti-

lize their intact frontal regions in self-recognition tasks.

Third, patient Roger did exhibit deficits in certain

aspects of interoceptive awareness, as reported in sup-

plemental materials by Khalsa and colleagues (2009).

For instance, he was unable to detect heart rate

change at low doses of isoproterenol infusion, his

response lag was significantly longer than controls, and

his interoceptive awareness was greatly worsened after

anesthetic application (Khalsa et al., 2009). These find-

ings are consistent with our findings on unilateral AIC

lesions in that interoceptive and emotional awareness

is impaired but not completely abolished in these

patients.

SUMMARY: A MODEL OF AIC AND
EMOTIONAL AWARENESS

Based on the evidence described above, we propose

that AIC plays a critical and necessary role in emotional

awareness. Based on the hierarchical active inference

scheme (Dayan et al., 1995; Friston, 2010) and several

previous models on the insula (Craig, 2009; Singer

et al., 2009; Seth et al., 2011) and awareness (Tononi

and Koch, 2008), we consider a dual-process model

(Fig. 3) in which AIC serves two major functions: 1)

integrating bottom-up interoceptive prediction error sig-

nals with top-down predictions from high-level cortical

areas and 2) providing descending interoceptive predic-

tions to visceral systems that provide a point of refer-

ence for autonomic reflexes.

In the first (bottom-up) process, AIC functions as an

interface between interoceptive input and top-down pre-

dictions from high-order cortical regions (i.e., PFC and

ACC). This process is analogous to the role of sensory

cortices such as visual and auditory areas in integrating

bottom-up exteroceptive input with top-down signals (Fig.

3, left). This integration produces a signal representing
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the organism’s current awareness state. We consider this

signal to represent the current state of the organism

that, on the one hand, is consistent with top-down pre-

dictions from higher-level representations of goals,

actions, and attention (e.g., from ACC) and, on the other

hand, best predicts future awareness states. This integra-

tion or synthesis of forward and backward signals is con-

sistent with formulations of hierarchical inference in the

brain and neuronal implementations based on predictive

coding (see, e.g., Seth et al., 2011).

This notion is supported by empirical evidence of an

integrative role of AIC, reviewed in previous sections,

and is consistent with generative models of the brain

and consciousness that suggest that the integration of

bottom-up and top-down signals is important for subjec-

tive awareness (Friston, 2002, 2010; Tononi and Koch,

2008). According to a predictive coding account of the

brain (Dayan et al., 1995; Friston, 2002, 2010), bottom-

up stimulus-driven projections convey prediction errors,

and top-down pathways convey active predictions.

Therefore, functional integration in AIC also suggests a

predictive coding role of AIC (Singer et al., 2009; Seth

et al., 2011). One study specifically showed that AIC

encodes both prediction of pain and pain prediction

error in the same task (Seymour et al., 2004), which

directly supports the functional integration and predic-

tive encoding account of AIC.

Recent developments in computational neuroscience

support a role for AIC in encoding predictions and

updating these predictions on the basis of bottom-up

interoceptive prediction error. In line with the concep-

tual framework proposed by Singer and colleagues

(2009), a recent empirical study shows that subjects

use Bayesian rules to update their feelings and that

(feeling) variance in prediction errors scale parametri-

cally with AIC activation (Xiang et al., 2013). Another

study showed that AIC is activated by not only predic-

tion of risk but also the prediction error of risk (Pre-

uschoff et al., 2008), which relates to unexpected

uncertainty and state transition (Yu and Dayan, 2005).

Sudden changes in reward contingencies and inquisitive

policies also activate AIC (Li et al., 2006).

The second (top-down) process corresponds to the

provision of descending predictions to visceral systems

(i.e., via smooth muscles) that provide a point of refer-

ence for autonomic reflexes and sympathetic/parasym-

pathetic outflow and for generating future awareness

states. In other words, the AIC both responds to and

Figure 3. Hypothetical model of insula and awareness. In this hierarchical scheme, each lower-level structure receives descending predic-

tions from and sends ascending prediction errors to higher-level regions. Anterior insular cortex (AIC) serves two major processes in this

model (center): 1) integrating bottom-up interoceptive prediction errors with top-down predictions from high-order brain regions such as

the anterior cingulate cortex (ACC) and prefrontal cortex (PFC), analogous to the role of sensory cortices (e.g., visual and auditory areas)

in exteroceptive processing (left) and 2) sending descending predictions to the autonomic system via smooth muscles to provide a point

of reference for autonomic reflexes, similar to the role of motor cortex in generating proprioceptive output via striated muscles (right).
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controls the internal milieu or literally “gut feelings.”

The AIC is perfectly placed anatomically to do this; it is

equipped with the anatomical and functional foundation

to perform the very important task of inducing transi-

tions in physiological states. As reviewed above, neu-

rons in AIC innervate the viscera directly and indirectly,

for example, through projections to the hypothalamic

area via the amygdala. In short, AIC is able to cause

changes in the physiological states of the body, in addi-

tion to perceiving changes from the body.

To illustrate the simplicity and potential power of this

model, consider the analogous role of the AIC in con-

trolling autonomic reflexes via smooth muscles and the

motor cortex in controlling proprioceptive reflexes via

striated muscles (Fig. 3, right). Recent predictive coding

formulations of motor control consider descending cor-

ticospinal signals from motor cortex to provide predic-

tions or set-points for classical reflex arcs in the spinal

cord (Adams et al., 2013). In this view, descending pre-

dictions control behavior by enslaving peripheral

reflexes. Our proposal here is exactly the same; how-

ever, the descending predictions are not of propriocep-

tive states but of interoceptive states, and the reflexes

become autonomic in nature. Put simply, one might

think of the insular cortex as a ventral extension of the

sensorimotor strip that is concerned not with proprio-

ception (and exteroception) but with interoception

(Craig, 2002, 2009, 2011). This perspective has been

developed by a number of authors (Allman et al., 2005;

Seeley et al., 2006; Butti and Hof, 2010; Evrard et al.,

2012) and nicely accommodates several observations

reviewed above.

This model resolves the conceptual dialectic between

the James-Lange theory and the Cannon-Bard formula-

tions, in the sense that they are both right: bodily sensa-

tions both cause and are caused by central

representations. This is a necessary consequence of hier-

archical Bayesian inference and the recurrent exchange of

neuronal signals implicit in predictive coding. The model

also explains the findings suggesting that the insula serves

a dual visceromotor and viscerosensory function.

• By analogy with the motor cortex, our model explains

why the insular cortex possesses viscerotopic maps.

Furthermore, like the motor cortex, the AIC is agra-

nular. This is a remarkable exception to the laminar

structure of the neocortex, which is shared only by

the motor cortex, the ACC, and the AIC. This sug-

gests a privileged role in the generation of descend-

ing predictions to peripheral systems.

• In predictive coding schemes, it is generally

thought that top-down predictions originate in

infragranular pyramidal cells. For example, in the

motor cortex, descending predictions originate

from large pyramidal cells (e.g., Betz cells) in deep

cortical layers. It is tempting to speculate that

VENs of the AIC (which are located in layer V) play

this role, as suggested by several investigators (All-

man et al., 2005; Seeley et al., 2006; Butti and

Hof, 2010; Evrard et al., 2012).

This perspective on the AIC as an integral part of

hierarchical predictive coding in the brain explains the

involvement of AIC across low-level autonomic and sen-

sorimotor (Craig et al., 2000; Sterzer and Kleinschmidt,

2010; Fan et al., 2012) to high-level cognitive and social

(Montague and Lohrenz, 2007; King-Casas et al., 2008;

Bossaerts, 2010; Kirk et al., 2011) domains. This pro-

posal does not preclude the participation of other brain

regions in emotional awareness. On the contrary, AIC as

well as other subregions of the insular cortex work

closely coupled with other brain regions and networks

(Cauda et al., 2011; Deen et al., 2011; Peltz et al., 2011)

to translate different modalities of information effectively

into subjective awareness. A posterior-to-anterior gradi-

ent of processing complexity exists within the insular cor-

tex, with AIC representing the most complex and

abstract end of this axis (Craig, 2009, 2010). AIC, in this

sense, could be where the “sentient self” resides.

In summary, the proposed model extends previous mod-

els of AIC (Craig, 2009; Singer et al., 2009; Seth et al.,

2011), although many details in the proposed AIC model

remain unknown. For instance, what happens at the neuro-

nal and molecular levels during the actual information inte-

gration process? How does information flow among AIC,

ACC, and many other closely related structures? How do

deficits in these processes manifest in disease? Finer-

grained quantitative investigations and combination of neu-

roimaging, lesion, stimulation, biochemical methods, and

theoretical neurobiology are needed to answer these ques-

tions, to advance our understanding of functions of the

insular cortex and human emotional awareness.
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