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Abstract: We present a unified statistical theory for assessing the significance of apparent signal observed 
in noisy difference images. The results are usable in a wide range of applications, including NRI, but are 
discussed with particular reference to PET images which represent changes in cerebral blood flow elicited 
by a specific cognitive or sensorimotor task. Our main result is an estimate of the P-value for local maxima 
of Gaussian, t, x2 and F fields over search regions of any shape or size in any number of dimensions. This 
unifies the P-values for large search areas in 2-D (Friston et al. [1991]: J Cereb Blood Flow Metab 
11590-699) large search regions in 3-D (Worsley et al. [1992]: J Cereb Blood Flow Metab 12:900-918) and 
the usual uncorrected IJ-value at a single pixel or voxel. 
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I. INTRODUCTION 

Many studies of brain function with positron emis- 
sion tomography (PET) involve the interpretation of a 
subtracted PET image, usually the difference between 
two images of cerebral blood flow (CBF) under base- 
line and activation conditions. In general a series of up 
to 12 separate conditions are measured in each subject. 
In many cognitive studies, the activation is so slight 
(48%)  that the experiment must be repeated on 
several subjects. The images are then mapped into a 
standardised coordinate space to account for differ- 
ences in brain size and orientation, and the subtracted 
images averaged to improve the signal to noise ratio 
[Fox et al., 1985; Friston et al., 1990, 1991; Evans et al., 
1992; Worsley et al., 19921. The averaged ACBF image 
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is then normalised by dividing by an estimate of the 
standard deviation and the resulting statistical field or 
parametric map is searched for local maxima. The 
standard deviation can be estimated either by pooling 
error sum of squares over subjects and conditions 
[Friston et al., 19901 or by pooling over subjects and 
voxels [Worsley et al., 19921. In Section 2 we suggest a 
unified estimator which has the advantages of both. 

In either case the main problem is to determine the 
significance of extrema in the statistical field. For a 
Gaussian statistical field, Friston et al. [1991] give 
results for a 2-D search region, Worsley et al. [1992] 
give results for a 3-D search regon, and Worsley et al. 
[1993] extend this to a 3-D t statistical field. These 
results are accurate only for search regions larger than 
100 cc; the purpose of the present paper is to give a 
better approximation for search regions of any shape 
or size. This makes it possible to restrict the search to 
small anatomical regions such as the cingulate gyrus 
or caudate nucleus, or two-dimensional regions such 
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+ Unified Statistical Significance + 

as a slice or the cortical surface, or even single voxels. 
Previous results for 2-D searches [Friston et al., 19911 
are included as a special case. The unified P-value is 
given in Section 3 and validated in Section 4. We 
present some applications in Section 5 and a discus- 
sion in Section 6. Extensions to regression models and 
x2 and F fields are elaborated in the Appendix. 

2. THE STATISTICAL FIELD 

2. I. Modelling the data 

In a typical CBF activation study, PET image data 
are collected from n > 1 subjects under a set of rn > 1 
conditions or tasks. Let C*,(x, y, z )  be the CBF of subject 
i under condition j ,  i = 1, . . ., n, j = 1, . . ., rn at voxels 
with coordinates (x, y, z )  and let G5 be the global mean 
of all intracranial voxels. The asterisk is used to 
emphasise that these parameters are in absolute units.' 
The 'independent' ANCOVA model of Friston et al. 
[1990] is 

where r(x, y, z )  is a regression coefficient common to 
all subjects and conditions, SJx,y,z) is a condition 
specific change in blood flow and E:(x, y, z )  is an error 
term normally distributed with a mean of zero. In 
practice the ANCOVA model is usually extended to 
include a block or subject specific term axx, y, z )  which 
represents an underlying blood flow for subject i 
[Friston et al., 1991,1995al: 

Ct  (x, y, z )  = r(x, y, z)G: + C ( x ,  y, z )  

+ SY(x, y, z )  + €.,(X, y, z ) ,  (2.2) 

The degrees of freedom for the ANCOVA model (2.2) 
isu = (n - l)(rn - 1) - 1. 

Let Y,](x,y,z) = C;(x,y,z)/ G; be the normalised 
blood flow. Then the model (2.2) can be written as 

where r(x, y, z )  can be interpreted as an underlying 
normalised blood flow common to all subjects and 
conditions. The ANOVA model [Fox et al., 1988; 
Worsley et al., 19921 is 

'Friston et al. [19901 use i for voxel coordinates, j for subjects and k 
for conditions. 

where a,(x,  y, z )  is an underlying normalised blood 
flow for subject i, 6,(x,y, z) is a condition specific 
change in normalised blood flow and E,,(x, y, z )  is an 
error term normally distributed with a mean of zero. 
The degrees of freedom for the ANOVA model is u = 
(n - l)(m - 1). If the global means G; are equal for all 
subjects and conditions then the models (2.2), (2.3) 
and (2.4) are identical, up to multiplication by a 
constant; note that the first term in (2.2) is then the 
constant term r(x,y,z) and the degrees of freedom 
increases to u = (n - l ) ( m  - 1). 

To make the presentation simpler, we shall work 
with the ANOVA model; a similar development can be 
made for the ANCOVA model without any extra 
theoretical difficulty. Suppose we are interested in 
testing for a particular contrast of the responses, 

where the coefficients {cl,. . . , c,) are chosen so that 
Z,C, = 0. For example, to test for a difference between 
the first and second conditions we could use 
(cl,. . . , c?,,} = {-I, l , O ,  . . . , 0); to test for a difference 
between the average of the first two conditions and 
the average of the next two conditions we could use 
{c,, . . . , c , ~ }  = [ -1, -1,1,1,0, . . . ,O]; to test for a time 
trend we could use C] = j - (rn + 1)/2; to test for 
correlation with stimulus intensity we could let cI be 
the stimulus intensity normalised so that Cc, = 0. The 
effect of this contrast on subject i, normalised to keep 
the standard deviation of the contrast equal to that of 
the observations, is 

For example, a simple two condition subtraction is 

The overall effect on all subjects, again normalised to 
keep the standard deviation equal to that of the 
observations, is 
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which for a two condition subtraction is 2.2. Pooling over conditions 

n Friston et al. [1991] proposed pooling over condi- 
A(x, y, z )  = [Yi2(x, y, z) - Yil(x, y, 2) ] /&.  (2.9) tions to increase the degrees of freedom. This is valid 

provided the condition variances are equal and the 
condition covariances are zero, that is provided 

i=l  

Thus A(x, y, z )  can be regarded as a generalised ACBF 

<(x, y, 2 )  = d ( x ,  y, 2 )  and $k(x, y, z )  = 0, (2.12) 
image. Note that it is straightforward to generalise still 
further to arbitrary c,, [see Friston et al., 1995al but this 
will not be studied further in this paper. Extensions to 
regression models for subject specific regressors is 
possible within the framework of this paper, and the 
details are developed in the Appendix. 

The remaining question is how to find a suitable 
estimator for the variance of A(x, y, 2).  In the Appendix 
we show that a high accuracy estimator is essential for 
good sensitivity. The only way of obtaining such an 
estimator is to pool information about the variance 
from different sources and, to do this, some assump- 
tion must be made about the behaviour of the true 
population variance. We shall start by assuming that 
the variance and covariance of the error term, for a 
given subject at a given voxel, depend both on the 
voxel position and on the condition, but not on the 
subject : 

j f k. A better variance estimator can then be obtained 
by averagmg (2.11) over all ( m  - 1) orthogonal con- 
trasts [cl, . . . , c,}. This is equivalent to the usual 
ANOVA mean error sum of squares 

- 
- Y.j(x, y, Z )  + Y..(x, y, z)]’/u (2.13) 

where, using the standard notation, 

n 

model allows for the possibility that the variance may 
be different in different brain regions and under 
different conditions, and that the conditions j and k 
may be correlated due perhaps to repeated testing 
over time, but it does assume that the variance- 
covariance structure is identical for every subject. It 
can be shown that a departure from this last assump- 
tion slightly reduces the sensitivity of the statistical 
field but does not appreciably affect its specificity. 
Then an unbiased estimator of the variance of A(x, y, z )  
is 

which depends on the particular contrast chosen. This 
estimator is unaffected by either differences in the 
voxel variance, or differences in the condition vari- 
ance, but unfortunately it has rather low degrees of 
freedom (n  - l), since the number of subjects in a 
typical experiment is usually small. Two methods 
have been proposed for overcoming this. 

u = (n - l)(m - 1). (2.14) 

Dividing A(x, y, 2 )  by s(x, y, z )  produces the statistical 
field 

which has a t-distribution with u degrees of freedom 
when no activation is present. We shall see later in 
Section 3.4 that u must be greater than 3 to avoid 
singularities in the statistical field. 

The advantage of this approach is that it allows for 
unequal voxel standard deviations; the disadvantages 
are that it does not allow for unequal condition 
standard deviations, and the low degrees of freedom 
can reduce the sensitivity. 

2.3. Pooling over voxels 

Worsley et al. [1992] have assumed that the variance 
is equal across all voxels, that is 

(2.16) 
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where qk is a scaling factor to allow for unequal 
condition variances and covariances, and u2 is a 
common image variance. Then we can pool over 
subjects and the N voxels in the search region to 
obtain 

where the subscript c without (x, y, 2 )  emphasises the 
fact that this estimator depends on the contrast but not 
on the voxel. The statistical field based on this pooled 
standard deviation is 

If the search regon is large with respect to the 
effective FWHM then the degrees of freedom of S, is 
very large and so the distribution of Z(x ,  y, z) can be 
well approximated by a normal distribution with unit 
variance [Worsley et al., 19921. 

The advantages of this approach are that the high 
effective degrees of freedom give improved sensitiv- 
ity, and it allows for unequal condition standard 
deviations. The disadvantage is that it does not allow 
for unequal voxel standard deviations. 

2.4. A combined model 

An estimator which combines the advantages of 
both approaches is based on the assumption that the 
variance is a product of the condition factor u,k and the 
voxel variance u2(x, y, z ) :  

(2.19) 

It can be shown that an approximately unbiased 
estimator of the variance of A(x, y, z) is 

where 

s2 = c syx, y, z ) / N  (2.21) 
X.UJ 

is the variance pooled over all conditions and voxels. 
(Note that S2 is also the average of S: over all 
orthogonal condition contrasts.) This estimator in 
effect scales the voxel variance by the factor S:/S2 so 
that its average matches the pooled condition vari- 
ance. If the search region is large with respect to the 
effective FWHM then this scaling factor is approxi- 

mately constant and so the degrees of freedom of 
s:(x, y, z) is approximately u. The distribution of the 
statistical field 

can be well approximated by a t distribution with u = 
( n  - l ) (m - 1) degrees of freedom. This statistical field 
should dvoid some of the problems of either of the 
previous two, namely a dependence on equality over 
either conditions or voxels, but once again it does 
depend on an assumed multiplicative model for the 
variance which may not be correct. This statistical field 
is closer in spirit to T(x,y,z), but the problem of low 
sensitivity caused by low degrees of freedom still 
remains (see Appendix). 

If the ANCOVA model (2.2) is used then similar 
methods can be used to obtain statistical fields analo- 
gous to (2.15), (2.18) and (2.22). The main difference is 
that u = (n - l)(m - 1) - 1 should be used through- 
out. 

3. A UNIFIED FORMULA FOR THE P-VALUE 
OF STATISTICAL FIELD EXTREMA 

3. I. The formula 

Throughout this section we will be concerned with 
the P-value of the maximum M of the statistical field 
inside a search region V. There is, as yet, no known 
exact result for the P-value of M [Adler, 1981, Chapter 
61. However exact results have recently been found for 
the expected Euler characteristic (EC) of the excursion 
set of an isotropic statistical field. The excursion set is 
simply the set of voxels where the statistical field 
exceeds a fixed threshold t and the EC counts the 
number of connected components of the excursion 
set, minus the number of 'holes' plus the number of 
'hollows' [see Worsley et al., 1992; Worsley, 19961. For 
high thresholds the holes and hollows disappear and 
the EC counts the number of local maxima of the 
statistical field. For even higher thresholds, near the 
global maximum M ,  the EC counts one if -4.4 2 f and 
zero otherwise, so that the expected EC approximates 
the P-value of M. The expected EC is therefore our 
proposed unified formula for the P-value: 

We shall give exact definitions of the coefficients in the 
formula in the following sections, but a rough descrip- 
tion now follows. The mathematical derivations be- 
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hind (3.1) are presented in Worsley [1995a], and this 
paper attempts only to give an intuitive review of the 
results. The resel count R,(V) is a unitless quantity 
which depends only on certain D-dimensional fea- 
tures of the search region V in resel space (see Sections 
3.2 and 3.3), and the EC density pD(t) depends only on 
the threshold t and the type of statistical field (see 
Section 3.4). The D = 3 term, usually the largest, is 
identical to the 3-D P-value of Worsley et al. 119921; the 
D = 2 term is (after correction by ~ / 4 )  half the 2-D 
P-value of Friston et al. [1991] applied to the surface 
area of V in resel space; the D = 1 term is a 1-D 
analogue, and the D = 0 term is, when Vis convex, the 
P-value of the statistical field at a single voxel. 

The above P-value is unified because we shall impose 
essentially no restrictions on V (see Discussion); it can 
be a 3-D volume of arbitrary shape, a 2-D slice, a 2-D 
surface (such as the cortical surface), a 1-D line or a 0-D 
point; it can be connected or disconnected. However, 
the above approximation (3.1) is best when the search 
region is convex, and it appears to be accurate for high 
thresholds t whenever the P-value is less than 0.2. For 
lower thresholds, (3.1) approximates the expected 
number of false positive peaks in the image above t. 

For the validity of the unified P-value, we shall 
require that elk(x, y, z)/u,, (x, y ,  z )  be a stationary Gauss- 
ian random field with zero mean and unit variance, 
generated by smoothing white noise with the point 
response function of the PET camera. Stationarity 
then implies that the point spread function should be 
the same at all positions in the aperture of the PET 
camera. Finally, we shall assume that the point spread 
function is itself Gaussian with FWHMs w ,  wy and w, 
in the x, y and z directions [see Friston et al., 1991; 
Worsley et al., 19921. This last assumption need only 
hold near the peak of the point spread function, since 
our results depend only on the curvature of the point 
spread function at its peak and not on its behaviour in 
the tails. 

3.2. Resel counts for continuous data 

In this section we shall assume that the search 
region V is continuous, such as a sphere or cube. We 
shall first transform V into resel space by dividing the 
coordinates of the voxels (x, y ,  z )  by the FWHMs in the 
corresponding directions (w,, wy, wz), so that the statis- 
tical field becomes isotropic. In practice this can easily 
be achieved by re-defining the voxel sizes d, x d,, x d, 
to be r,  x ry x r, where r, = d,/w,, ry = d,/w, and r, = 

dJw,. The use of resel space instead of voxel space 

emphasises the dependence of statistical properties on 
the fixed physical dimensions of the point spread 
function, as opposed to the arbitrarily specified voxel 
dimensions. Note that this makes all measurements in 
resel space unitless. We then define: 

The resel volume R,(V) is the volume of V in resel 
space. This can be calculated quite simply by 
dividing the volume of V by the product w,wyw,; 
note that this equals the number of RESELS in Vas 
defined by Worsley et al. [1992]. 
The resel surface area R,(V) is half the surface area 
of V in resel space. If V is a 2-D surface, either flat 
or curved, such as a slice, then the two 'sides' of V 
combine and R,(V) is just the area of V in resel 
space. 
The resel diameter R,(V) is, if V is convex, twice the 
average caliper diameter of V in resel space, that 
is, the average over all rotations of the distance 
between two parallel planes tangent to V in resel 
space, or, twice the average width of all bounding 
boxes of V in resel space. If V is a 2-D surface then 
X,(V) is half the perimeter length of V in resel 
space. If V is a 1-D line, straight or curved, then 
R,(V) is just the length of V in resel space. 
&(V) is the EC of V; this is the same whether it is 
measured in resel space or not. 

Some examples are given in Table I; values for some 
other common geometric solids can be found in 
Santalo [1976, p 2291. 

3.3. Resel counts for voxel data 

Throughout the previous section the search region 
was regarded as a region with a smooth boundary 
defined at every point in 3-D. In practice only voxel 
data are available, and this will be regarded as a 
continuous image sampled on a lattice of equally 
spaced points. Thus a voxel is treated as a point in 3-D 
with zero volume, although it is often displayed on 
computer screens and in publications as a volume 
centered at that point. 

The following method shows how to approximate 
the resel counts from voxel data without actually 
transforming to resel space. The degree of approxima- 
tion improves as the boundary of the search region 
approaches the boundary of the voxels, and the 
approximation is exact if they coincide. Suppose the 
voxels are labelled vqk, where i, j and k are integers 
labelling the voxels along the x, y and z axes respec- 
tively; see Figure 1 for a simple example. 

Let Pbe the number of voxels in V. 
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TABLE 1. Resel counts for some simple shapes 

Search region V 
in resel space 

Resel counts 

Sphere, radius r 1 4r 2?rrZ (4/3)?ru" 

Disk, radius r 1 T r  a r 2  0 
Hemisphere surface, radius r 1 T r  2vr2 0 
Box,a x b x c 1 a + b + c  ah + be -+ ac abc 
Rectangle, a x b 1 a + h  ah D 
Line, length a 1 a 0 0 

Hemisphere, radius P 1 (2  + ?r/2)r (3/2)?ru2 (2/3)?rr' 

Let E ,  be the number of x-direction 'edges' in V,  
that is the number of pairs of adjacent voxels (ulIL, 
u ~ + ~ , ] , ~ }  both of which are in V.  
Let E, be the number of y-direction edges in V ,  
that is the number of pairs of adjacent voxels (vllik, 
z?,,~+~,~] both of which are in V. 
Let E, be the number of z-direction edges in V, 
that is the number of pairs of adjacent voxels (u , ]~ ,  
V'y,k+l} both of which are in V. 

Figure I. 
Example of resel counts. The voxels of a search region V are 
indicated by shaded cubes, and their centers are indicated by black 
spheres. Adjacent voxels are joined by heavy black lines. Then P = 
l4,E, = 8,E, = 7, E, = 6, Fxy = 4, F, = 3,FF = 2and C = I .  lfthe 
voxel separations are equal, that is 6, = gY = 6, = 8, then this gives 
&(V)  = I, RI(V) = 66, R2(V)  = 682 and R3(V) = f i 3 .  

Let F, be the number of 'faces' of four adjacent 
voxels in the x and y directions, {u+ uf+l,;,k, ui,j+I,k, 

~ , + ~ ~ j + ~ , ~ } ,  all of which are in V. 
Let F, be the number of faces of four adjacent 
voxels in the x and z directions, {uvk, ultl,;,k, ujd,k+l, 

Let F ,  be the number of faces of four adjacent 
voxels in the y and z directions, [ ~ , j k ,  ~ , , , + l , k ,  Ui,j,k+l, 

Z J ~ , ~ + , , ~ + ~ } ,  all of which are in V. 
Let C be the number of 'cubes' of eight adjacent 
voxels, all of whose vertices [u,,k, ~ , + ~ , j , k ,  vi,,+l,k, 

ui+l,j+lbkr Ui,j,k+lr Ui+I,j,k+lr n i , j+l ,k+lr  ~ i + l , j + l , k + l }  are 
in V. 

all of which are in V. 

Then 

For example, an 1 x J x K voxel box shaped search 
region gives 

X,(V) = 1, 

R,(V) = ( I  - l ) v x  + (I  - l)r ,  + ( K  - l ) r r ,  

R,(V) = ( I  - 1)(] - l)rAyy + ( I  - 1)(K - l)r,r, 

+ u - 1)(K - Wyrzr 
X , ( V )  = (I - 1)(J - 1)(K - l)rxryrz. (3.3) 

Note again that for the purposes of these calculations, a 
single 1 x 1 x 1 voxel has zero volume, surface area 
and diameter. A 2 x 2 x 2 voxel search region is the 
smallest that has positive rcsel volume. Since the 
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search region defined by voxels has a non-convex 
'jagged' boundary then the resel counts of a voxel 
region tend to be larger than that of the equivalent 
smoothed regon. However in practice these discrepan- 
cies do not appear to affect the formulas, unless the 
region is 'badly placed,' such as a rectilinear or flat 
region which is not aligned with the voxel axes. 

3.4. EC densities 

Under the assumptions of Section 2.3 it can be 
shown that Z(x, y, z) is a stationary Gaussian random 
field. Let +(t) be the density of the standard Gaussian 
distribution. Then the EC densities for this statistical 
field are given in Table IIA [Adler, 1981; Worsley et a]., 
19921. Under the assumptions of Section 2.2 it can be 
shown that T(x,  y, 2 )  is a stationary t random field, and 
under the assumptions of Section 2.4 it can be shown 
that T,(x,y,z) is a stationary t random field. The EC 
densities for these statistical fields are given in Table 
IIB [Worsley, 19941. 

Note that singularities can occur in a t field if u < D. 
The reason for this is a curious property of x2 fields. 
For u < D the x2 field in the denominator can have 
exact zeros which produce exact positive and negative 
inifinities in the t field, in which case the maximum M 
is infinite with positive probability. In practice these 
singularities fall between the voxels and would only 
be observed if the images were interpolated between 
voxel locations. Their presence would still be felt by 
large fluctuations in neighbouring voxel values. 

Note also that it is not possible to transform a t field 
to a Gaussian field by simply transforming the field to 
a Gaussian distribution at each voxel. That this is so 
can be seen from the fact that the t field for u < D can 
have exact zeros, whereas a smooth Gaussian field 
cannot. For large degrees of freedom, Friston et al. 
[1991] have used this as an approximation; in the 
Appendix we show that this is sufficiently accurate if 
u > 120, although u > 40 appears reasonable. 

3.5. Examples 

Figure 2 plots critical t thresholds of M for a 
Gaussian statistical field with FWHMs w, = wy = wL = 
20 mm. Two search regions were chosen; a spherical 
search region with radius x cm and a cubical search 
region with the same volume. Since the FWHMs are 
equal, transforming to resel space simply divides the 
size by 2 cm, so the sphere has radius Y = x/2 in resel 

space. The unified P-value for the sphere is, from 
Table I, 

P(M 2 t )  = po(t) + 4rpl(t) + 2.rrrzp,(t) + (4/3)m3p3(t). 

(3.4) 

The P-value was equated to 0.1, 0.05 and 0.01 to find 
the approximate critical thresholds t at these false 
positive rates. As the size decreases the critical values 
decrease down to the usual Gaussian critical values at 
a single point: 1.28, 1.64 and 2.33, respectively. The 
cube gives values slightly larger than the sphere, 
which is a lower bound for all search regions of the 
same volume. Below these are 2-D results for a disk of 
radius x and a square of the same area, which behave 
in a similar way. Also shown are the approximate large 
volume critical values of Worsley et al. [1992] which 
equal the first term of the unified P-value, plotted only 
for large values of x; they are slightly lower than those 
given by the unified P-value. Figure 3 repeats this for a 
t statistical field with u = 40 degrees of freedom, 
drawn to the same scale; the same patterns are 
evident, but the critical thresholds are larger. 

4. VALIDATION 

To validate the critical values given by the unified 
P-value, 200 3-D Gaussian statistical fields were gener- 
ated by smoothing independent zero mean Gaussian 
random variables at 64 x 64 x 64 voxels with a 
nominal separation of 2.1 mm, using a Gaussian point 
spread function with FWHM = 20 mm. Three differ- 
ent search region shapes were chosen: a 2a x 2a x 2a 
cube, a flat 2rr x 2a x a 'pizza box,' and a thin Za x a x a 
'shoe box.' The maximum size of the search regions 
was restricted to half the size of the statistical field to 
avoid the wrap-around effects from the Fourier 
smoothing. Each statistical image was then 'smoothed 
with a 3-D max filter which had the same shape as the 
search regon, that is, the search region was centered 
at every voxel and the maximum inside the search 
region provided a 'smoothed' value at that voxel. The 
box shaped search regions allowed us to speed up the 
calculations by applying a 1-D max filter along the x, y 
and z axes in turn. 

The histogram of the max filtered image estimates 
the distribution of M ,  and the upper percentiles were 
used to estimate critical values of M. These are plotted 
in Figures 4, 5 and 6 for the three search regions. 
Agreement with the theoretical values, calculated 
according to (3.1), (3.3) and Table IIA, seems very 
good, apart from some deviations for large regions. 
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TABLE II. EC densities pd(t) in d dimensions 

A: Gaussian field 

B: t field with u degrees of freedom, u 2 D 

C: x2 field with u degrees from freedom 

1 2 

(V - l ) ( ~  - 2):) - (2uk - u - k - 1) 
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Figure 2. 
Theoretical critical thresholds for the maximum of a Gaussian 
statistical field with FWHM = 20 mm based on the unified P-value 
(3.l), plotted against the radius of a spherical search region, 
together with critical thresholds for a cube of the same volume, a 
disk, and a square of the same area. The false positive rates are I O h ,  

5% and 10%. Also shown are the critical thresholds based on the 
D = 3 term [Worsley et al., 19921 and the D = 2 term [Friston et 
al.. 19911 which are accurate only for large region sizes (shorter 
lines, starting from radius = 3 cm). 
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Figure 3. 
As for Figure 2, but for a t statistical field with 40 degrees of freedom. 
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size of box. a (cm) 

Figure 4. 
Simulated and theoretical critical thresholds for the maximum of a Gaussian statistical field with 
FWHM = 20 mm inside a 20 X 20 X 20 cube. The false positive rates are I Yo, 5% and 10%. 

This can be explained by a ’partial volume’ effect 
for the max filtered image; when the search region is 
large the max filtered voxels are highly correlated and 
so the effective number of independent simulated 

values is reduced, thus increasing the deviations. Note 
also that the same filtered images were used for each 
search regon, so points on the graphs are highly 
currelated, which tends to exaggerate any apparent 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
size of box, a (cm) 

Figure 5. 
Simulated and theoretical critical thresholds for the maximum of a Gaussian statistical field with 
FWHM = 20 mm inside a 2a x 20 X a ‘pizza box.’ The false positive rates are I Yo, 590 and 10%. 
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10% 

9 - 0.0 0 0.5 1 .o 1.5 2.0 2.5 3.0 3.5 

Figure 6. 
Simulated and theoretical critical thresholds for the maximum of a Gaussian statistical field with 
FWHM = 20 mm inside a 20 X a X u ‘shoe box.’ The false positive rates are I Yo, 5% and I OOh. 

trends in the deviations. Simulations are, however, 
independent between search regions. 

5. APPLICATION 

Thresholds of M for several different structures are 
shown in Table 111. To illustrate the methods of this 
paper, the resolution was taken as FWHM = 20 mm in 
each direction, and thresholds were calculated for the 
maximum of a Gaussian image at three different false 
positive rates. The smaller structures were obtained 
from a voxel atlas of the left hemisphere of the brain 
[Evans et al., 19911, and the whole brain repon 
included the grey matter and all interior structures. A 
4 m thick shell around the whole brain was used to 
represent a search in the outer cortex. A single voxel is 
included for comparison. 

Even though the smaller structures have a small 
volume, the thresholds are appreciably higher than 
those for a single voxel. Lack of smoothness in their 
boundaries causes some structures to have quite large 
resel surface area (R,(V)) and resel diameter (RI(V)), 
and an Euler characteristic (R,(V)) that is different 
from 1. Nevertheless, some elongated structures such 
as the cingulate gyrus have high surface area and 
diameter relative to their volume. This gives the 
cingulate gyrus the same thresholds as the superior 
parietal lobule, which has a 62% greater volume but a 

38% smaller diameter. Note that if the search is 
confined to a thin shell the thresholds are consider- 
ably reduced from that for the whole brain, since the 
search region is almost two-dimensional with resel 
volume close to zero. Note that the resel surface area 
of the shell is approximately twice that of the whole 
brain, and the shell’s Euler characteristic is 2 , l  for the 
outside and 1 for the ‘hollow.’ 

6. DISCUSSION 

The unified P-value of M combines features from all 
dimensions D of V. For large regions the D = 3 term is 
the most important, but if the region is flat then the 
D = 3 term vanishes and the D = 2 term dominates; 
half the surface area from both sides of the region 
gives just the area of V and so the D = 2 term becomes 
the usual 2-D result. If the region collapses to a single 
voxel then the D = 1, 2, 3 terms are all zero and the 
D = 0 term gives just the P-value at a single point. 
Thus the unified formula has the correct behaviour for 
all dimensions from 0-D to 3-D. This behaviour stems 
from the fact that the unified P-value is the exact 
expectation of the Euler characteristic of the excursion 
set, the set of voxels where the statistical field exceeds 
t, for all thresholds t [see Worsley et al., 1992; Worsley, 
19961. The difference between the results of the latter and 
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TABLE 111. Representative examples of resel counts and critical values, FWHM = 20 rnrn 

Search region V 

Single voxel 

Head of caudate 
Putamen 
Globus pallidus 
Thalamus 

Anterior cingulate gyrus 
Posterior cingulate gyrus 
Total cingulate gyri 

Superior frontal gyrus 
Middle frontal gyrus 
Inferior frontal gyrus 
Precentral gyrus 
Total frontal gyri 

Postcentral gyrus 
Superior parietal lobule 
Supramarginal gyms 
Angular gyrus 
Paracentral lobule 
Precuneus 
Total parietal lobe 

Superior temporal gyrus 
Middle temporal gyrus 
Inferior temporal gyms 
OccipitotemporaI gyms 
Total temporal gyri 

Lateral occipitotemporal gyrus 
Medial occipitotemporal gyrus 
Occipital gyrus 
Cuneus 
Lingual gyrus 
Total occipital lobe 

4 mm shell 
Whole brain 

Val. 
(cc) 

~ 

0 

7 
12 
3 

I1 

Y 
6 

1s 

80 
57 
37 
32 

207 

27 
22 
19 
20 
14 
26 

128 

40 
39 
25 
13 

117 

23 
5 

12 
19 
6 

65 

254 
1,294 

Resel counts t for 1’ (M 2 t )  = 

R,(V) RI(V) R,(V) R,(V) 0.10 0.05 0.01 

1 0  0 0 1.28 1.64 2.33 

0 6.18 4.63 0.65 2.75 3.02 3.55 
1 7.32 6.80 1.18 2.89 3.15 3.66 
0 4.03 2.29 0.24 2.49 2.78 3.35 
1 4.94 5.14 1.13 2.79 3.05 3.59 

1 8.20 5.79 0.86 2.86 3.11 3.63 
1 5.32 3.85 0.58 2.70 2.97 3.51 
0 12.89 9.63 1.44 3.03 3.27 3.77 

1 15.64 25.69 8.97 3.38 3.60 4.07 
1 14.89 21.14 6.23 3.31 3.53 4.00 
1 11.22 14.25 4.06 3.17 3.41 3.89 
1 12.30 14.23 3.40 3.16 3.40 3.88 
1 19.30 53.39 23.63 3.63 3.84 4.28 

1 10.59 12.56 2.89 3.11 3.35 3.84 
1 7.95 9.89 2.34 3.03 3.27 3.77 
1 7.27 7.72 2.00 2.95 3.21 3.72 
1 6.56 8.20 2.14 2.96 3.22 3.73 
1 6.35 7.03 1.49 2.90 3.16 3.67 
1 8.75 10.26 2.80 3.06 3.30 3.80 
1 15.20 37.04 14.49 3.50 3.72 4.17 

0 13.75 16.70 4.24 3.22 3.45 3.93 
0 14.33 16.43 4.16 3.22 3.45 3.93 
1 8.61 10.32 2.63 3.05 3.30 3.79 
1 8.99 7.58 1.32 2.94 3.19 3.70 
0 16.99 36.70 13.03 3.49 3.71 4.16 

-1 10.12 11.16 2.41 3.06 3.31 3.80 
1 3.96 2.93 0.44 2.58 2.86 3.42 
1 6.90 6.54 1.25 2.88 3.14 3.65 
1 6.85 8.04 2.05 2.96 3.21 3.72 
1 4.86 3.69 0.59 2.68 2.95 3.49 

-1 10.68 23.11 7.17 3.32 3.55 4.02 

2 0.54 207.27 15.88 3.85 4.04 4.45 
1 20.43 107.09 153.42 4.05 4.23 4.63 

those presented here is that the Euler characteristic used 
here counts connected regions of the excursion set even if 
they touch the boundary of the search region, whereas 
the Euler characteristic used in Worsley et al. 119921 
counted fractional values for such regions. The D = 0,1,2 
terms in the unified formula are, in effect, boundary 
corrections that account for when the excursion set touches 
the boundary of the search region. 

It must be remembered that the unified P-value (3.1) 
is still only an approximation, albeit a more accurate 
one than earlier approximations [Friston et al., 1991; 
Worsley et al., 19921. The approximation appears to be 
most accurate when the search region is convex. Thus 
the more convoluted a surface the less (3.1) approxi- 
mates the true significance. One cannot apply it, for 
example, to a region with a very thin invagnation 
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(such as a sulcus) which has essentially the same 
volume but a much larger surface area. The invagina- 
tion doesn’t change the likelihood of a false positive in 
such a region but (3.1) predicts a much greater appar- 
ent P-value. Thus there is no advantage to applying 
(3.1) to highly folded surfaces for the purposes of 
decreasing the volume and thereby decreasing the 
P-value, since this simultaneously increases the sur- 
face area. In such cases it is better to surround the 
region with a smoother envelope, at a small cost in 
volume, but a greater saving in surface area and 
P-value (3.1). 

In the Appendix we show that the sensitivity of the 
statistical field at detecting changes in CBF can be 
reduced if the degrees of freedom of the variance 
estimator is too low. To overcome this it is clearly 
desirable to obtain an estimator of the variance with 
high degrees of freedom. Friston et al. [1991] proposed 
a variance estimator pooled across subjects and condi- 
tions; Worsley et al. [1992] proposed a variance estima- 
tor pooled across subjects and voxels. Both estimators 
are susceptible to departures from the underlying 
assumptions that will affect the specificity of the 
statistical field: that of Friston et al. 119911 to unequal 
condition variances, that of Worsley et al. [1992] to 
unequal voxel variances. It can be shown, fortunately, 
that neither estimator is affected by unequal subject 
variances, although the sensitivity of the statistical 
field is slightly reduced. However it is undoubtedly 
true that condition variances are unequal, and it is 
undoubtedly true that voxel variances are unequal; 
the real question is how severely these departures 
from equality affect the specificity of the statistical 
field. In the Appendix we show that the voxel pooled 
statistical field will tolerate up to 8% fluctuations in 
the voxel standard deviation, and the condition pooled 
statistical field will tolerate up to 6% fluctuations in 
the condition standard deviation in a typical experi- 
ment. Unfortunately it is very difficult to estimate 
what the true fluctuations are, unless data are pooled 
over a very large number of images, so we do not 
know if the above limits are respected. This raises new 
problems; are we pooling over truly comparable im- 
ages? Ultimately, some compromise must inevitably 
be found between an accurate specificity (by using low 
degrees of freedom) and a high sensitivity (by using 
high degrees of freedom); it is not possible to have 
both. 

The methods of this paper should also be applicable 
to statistical fields arising from functional MRI. The 
linear models used for fMRI are based on the same 
assumptions as those for PET data, except for the 
presence of temporal correlation, and so the previous 

theoretical results of Friston et al. [1991] and Worsley 
et al. 119921 have been used for assessing the signifi- 
cance of peak heights inside large search regions 
[Friston et al., 1995b; Worsley and Friston, 19951. Since 
the unified formula is a refinement which is valid for 
search regons of almost any shape or size, then it 
should be equally applicable to fh4RI data. 

The main competitor to the methods proposed in 
this paper is based on the spatial extent of the 
statistical field above a fixed threshold [Friston et al., 
19941. The main question is which method is more 
sensitive. Since the methods proposed here are simply 
refinements of the methods based on peak heights, the 
same general comments apply: peak height is better 
for sharp foci, spatial extent is better for extended 
regions of activation (see the Appendix of Friston et al. 
[1994]). However the unified methods have two advan- 
tages: they can be applied inside search regions of 
almost any shape or size, whereas the spatial extent 
test is only valid for large search regions; they can be 
applied to Gaussian, f, x2 dnd F fields, whereas the 
spatial extent test is only valid for Gaussian fields (or 
Gaussianized t fields with high degrees of freedom). 
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APPENDIX 

Regression models 

The above theory can easily be extended to statisti- 
cal fields that test for correlation between regressor 
variables, measured for each subject, and the subject 
responses at each voxel. The regressor variables might 
be, for example, age, sex (0 = male, 1 = female), dis- 
ease (0 = disease free, 1 = diseased), stress measure, 
or even the ACBF measured at a particular voxel of 
interest [Friston et al., 19901. The analysis is then 
equivalent to repeating a multiple regression for each 
voxel. Suppose there are k regressors, including the 
constant term, and let U be the design matrix for the 
multiple regression, that is, an n x k matrix whose 

rows u/ are the values of the k regressor variables for 
subject i, and prime denotes transpose. Then the 
ANOVA model becomes: 

where S,(x, y, z )  is now a k -vector of CBF responses to 
each of the k regressor variables. For a particular 
contrast, let V(x,y,z) be the n-vector of all subject 
Al(x, y, 2 )  values. Then the k-vector of normalised 
contrast effects on the regressors is 

A(x,y,z) = diag[(U’U)-’]-1’2(U’U)-iU‘V(~,y, 2 ) .  (A.2) 

Suitable estimators of the variance of each compo- 
nent of A(x, y, z )  can be found as follows. For pooling 
across conditions, let Yj(x,y,z) be the n-vector of 
Ylj(x, y, z) values for each subject, and let%@, y, z )  be 
the n-vector of Yl.(x, y, z) values for each subject. Then 

n m  

- ui(U’u)-’U’[Yj(~, y, Z )  - Y.  ( x ,  y, z ) ] ] ~ / u ,  (A.3) 

where u = (n - k)(m - l), is an unbiased estimator of 
the variance of each component of A(x, y, z ) .  Dividing 
each component of A(x, y, z )  by this s(x, y, z) will give a 
set of t statistical fields with 2) degrees of freedom, one 
for each of the k regressors. For pooling across voxels, 
let 

- u~(U’U)-’U‘V(X, y, z)]’/[(n - k)N] .  (A.4) 
Dividing each component of A(x,y,z) by this S ,  will 
give a set of Gaussian statistical fields. Finally, for the 
combined estimator, let S2 be the average over voxels 
of s2(x, y, z). Then dividing each component of A(x, y, z )  
by [S , /S]s (x ,  y, z )  will give a set of t statistical fields 
each with u degrees of freedom. Note, however, that 
the statistical fields for different regressors may be 
correlated. 

Robustness to incorrect standard deviations 

In this section we analyse the consequences of 
departures from the assumed models (2.12) and (2.16) 
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for the variances of the observations. To do this we 
shall examine the specificity of M when the true model 
is the multiplicative model (2.19). 

If we assume (2.12) and pool over conditions, then 
the expectation of s2(x, y, z) is u:u2(x, y, z ) where D: is 
the ratio of the condition variance to the average 
variance over all conditions. The estimator is biased 
unless uL = 1, which will be assured if the condition 
variances are equal and the covariances are zero. If we 
use a critical value f given by the unified formula 
applied to T(x ,  y, z ) ,  then the true specificity is given 
by the unified P-value at tlu,. For a 1,000 cc spherical 
search region with FWHM = 20 mm, u = 40 degrees of 
freedom and t = 4.81 chosen for 5% specificity, a value 
of D, = 1.06 increases the specificity to 10%. Thus a 
change of 6% in condition standard deviation can 
double the specificity. 

To study the affects of pooling across voxels, we 
model the true variance u2(x, y,z) as [(q - 2)/ 
U(x, y, z)]u2, where U(x,  y, z )  is an independent x2 field 
with q degrees of freedom. The pooled variance is 
then u2 and its root mean square error is u2 
,/-. If we use a critical value t gwen by the 
unified formula applied to Z(x ,  y, z), then the true 
specificity is given by the unified formula applied to a 
t-statistical field with 7 degrees of freedom and thresh- 
old t d m .  For a 1,000 cc spherical search region 
with FWHM = 20 mm and t = 4.16 chosen for 5% 
specificity, a value of q = 87 increases the specificity to 
10%. Thus a root mean square error of approximately 
uJ2/(7 - 4)/2 = 0 . 0 8 ~ ~  or 8%, in the voxel standard 
deviation can double the Specificity. 

The conclusion is that departures from equal stan- 
dard deviations affect both pooling methods to about 
the same extent; note however that pooling across 
voxels always increases the specificity on average, 
whereas pooling across conditions may increase or 
may decrease the specificity. 

Effect of degrees of freedom on sensitivity 

In this section we try to quantify the reduction in 
sensitivity caused by using small degrees of freedom 
for the variance estimator. We do this by comparing 
the peak heights h of the activations that can be 
detected with 50% sensitivity. If h is large then the 
maximum of the statistical field is very likely to occur 
at the maximum of the underlying activation. Thus 
the sensitivity is at least the probability that the 
statistical field at a single voxel exceeds the critical 

value for M [see Siegmund and Worsley, 19951. For a 
Gaussian statistical field, the sensitivity is 0.5 when h 
equals the Gaussian critical value. For a t statistical 
field the sensitivity is 0.5 when h is slightly less than 
the t critical value; the exact value is the median of the 
non-central f distribution. Thus the ratio of the peak 
heights that can be detected with 50% sensitivity is 
approximately the ratio of the critical values. For a 
1,000 cc sphere and a 20 mm FWHM, the critical values 
can be read off from Figures 2 and 3. At 5% specificity 
they are 4.16 for a Gaussian field and 4.81 for a f field 
with 40 degrees of freedom. The corresponding peak 
activations are 4.16 and 4.78, and so the ratio of peak 
heights is 1.15. Thus the signal has to be 15% higher 
before the t statistical field with 40 degrees can detect 
it. If the signal heights are the same then this translates 
into a 32% increase in the number of subjects. For 8 
degrees of freedom the critical value is 12.7 and the 
ratio of peak heights is 2.9, so the signal has to be 
nearly three times larger to be detected with a f 
statistical field. 

Approximating the t field with a Gaussian field 

Because the exact t field results in Table II(b) were 
not available at the time, Friston et al. [1991] trans- 
formed the t field to Gaussian variables at each voxel 
and used the Gaussian results in Table II(a) as an 
approximation. Although the resulting field is Gauss- 
ian at each voxel, it is not strictly a Gaussian field (a 
Gaussian field must also be multivariate Gaussian at 
every set of voxels), although it does converge to a 
Gaussian field for large degrees of freedom. Some idea 
of how large u must be for this to be accurate can be 
obtained by comparing the nominal false positive rate 
given by a Gaussian transformation followed by using 
the Gaussian results in Table II(a) with the true false 
positive rate given by the t results in Table II(b). For a 
0.05 nominal falsc positive rate, u = 40 degrees of 
freedom, a 1,000 cc spherical search region and a 20 
mm FWHM, the true false positive rate is increased to 
0.069. For the same test with v = 120 degrees of 
freedom, the true false positive rate is 0.055; this is 
approximately the same as that obtained by using the 
Gaussian tables instead of the t tables in an ordinary t 
test with 30 degrees of freedom. Since 30 degrees of 
freedom is usually considered large enough to approxi- 
mate the t by a Gaussian distribution, then u = 120 
degrees of freedom should be large enough to approxi- 
mate the Gaussianised t field by a Gaussian field. 



+ Unified Statistical Significance + 

xz and F statistical fields 

A x2 field with u degrees of freedom is defined as the 
sum of squares of u independent zero mean, unit 
variance Gaussian fields. An example is the statistical 
field us2(x,y,z)/S2 , if the assumptions in Section 2.3 
hold. If these assumptions do not hold, then peaks in 
such a statistical field would indicate regions of high 
or low voxel variance. Another application is to com- 
bine Gaussian statistical fields either from k different 
conditions or regressors, looking for activation due to 

some or all conditions or regressors. The sum of 
squares of these Gaussian statistical fields is then a x2 
field with k degrees of freedom. If the denominator 
error variance is not pooled across voxels, but is based 
on pooling across conditions, then the ratio of mean 
sum of squares is an F field with k and u degrees of 
freedom. In either case the same unified P-value can 
be used but with the EC densities given in Table II(c) 
and Table II(d). For P-values of minima of either the x2 
or F statistical fields, po(t), p2(t) and p4(t) should be 
replaced by 1 - po(t), - p2(t) and - p4(t), respectively. 
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