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A mesostate-space model for EEG and MEG
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We present a multi-scale generative model for EEG, that entails a
minimum number of assumptions about evoked brain responses,
namely: (1) bioelectric activity is generated by a set of distributed
sources, (2) the dynamics of these sources can be modelled as random
fluctuations about a small number of mesostates, (3) mesostates evolve
in a temporal structured way and are functionally connected (i.e.
influence each other), and (4) the number of mesostates engaged by a
cognitive task is small (e.g. between one and a few).

AVariational Bayesian learning scheme is described that furnishes
the posterior density on the models parameters and its evidence. Since
the number of meso-sources specifies the model, the model evidence
can be used to compare models and find the optimum number of
meso-sources.

In addition to estimating the dynamics at each cortical dipole, the
mesostate-space model and its inversion provide a description of brain
activity at the level of the mesostates (i.e. in terms of the dynamics of
meso-sources that are distributed over dipoles). The inclusion of a
mesostate level allows one to compute posterior probability maps of
each dipole being active (i.e. belonging to an active mesostate).
Critically, this model accommodates constraints on the number of
meso-sources, while retaining the flexibility of distributed source
models in explaining data. In short, it bridges the gap between
standard distributed and equivalent current dipole models. Further-
more, because it is explicitly spatiotemporal, the model can embed any
stochastic dynamical causal model (e.g. a neural mass model) as a
Markov process prior on the mesostate dynamics.

The approach is evaluated and compared to standard inverse EEG
techniques, using synthetic data and real data. The results demonstrate
the added-value of the mesostate-space model and its variational
inversion.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Electroencephalography (EEG) and Magnetoencephalography
(MEG) provide direct physical observations of neuronal activity in
the millisecond range. These measurements are thought to be
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generated by synchronized post-synaptic activity of neuronal
macrocolumns (Baillet et al., 2001). However, the underlying
current dipole sources cannot be estimated uniquely from the scalp
data, without invoking priors or constraints on the inverse solution
(Nunez, 1981).

As a consequence, EEG/MEG inverse techniques differ in the
nature of their priors. For instance, assuming that each active
area comprises a subset of temporally coherent neuronal
macrocolumns has enabled the family of equivalent current
dipole (ECD) methods (Scherg and von Cramon, 1986). Each
ECD models the activity of a whole cortical area, which is
described by a single temporal dynamic and its location. In
contradistinction, distributed linear (DL) methods, rest on
estimating the amplitude of a predefined highly dense ensemble
of dipoles, typically distributed over the cortical sheet (Dale and
Sereno, 1993). Usually, additional spatial and/or temporal
constraints are used to finesse the under-determination of DL
inverse solutions (Grova et al., 2006). More recently, models of
the coupling between active brain areas (ECDs) have led to
qualitatively different (i.e. biologically informed) inverse ap-
proaches (David et al., 2006; Kiebel et al., submitted for
publication). These dynamic causal models are generally inverted
to make inferences about the coupling parameters or effective
connectivity but can also be used for conventional spatiotemporal
source reconstruction.

The inversion of these models is usually formulated in Bayesian
terms, where the constraints enter as priors and the objective of
model inversion is to estimate the conditional or posterior
probability of the model parameters. In addition, there has been
a recent focus on model comparison and averaging, using the
evidence or marginal (i.e. integrated) likelihood of different
models. Model comparison allows one to explore model space
(e.g. number of sources) in a principled way (Daunizeau et al.,
2005; Penny et al., 2004).

In this work, we propose a generic spatiotemporal model that
accommodates spatial and temporal priors on the deployment of
bioelectric activity causing EEG–MEG signals. It is formulated to
cover the sorts of constraints found in both DL and ECD models;
it allows for distributed sources and precise anatomical prior
information but, at the same time, can generate data using a small
number of anatomically compact meso-sources. Critically, we use
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a Bayesian inversion scheme that optimizes both the number of
meso-sources and their spatiotemporal characteristics.

Brain activity is organized at many different scales: collec-
tively, the microscopic behaviour of individual neurons is related
to observed macroscopic dynamics through the average behaviour
of local neuronal populations or ensembles (i.e. distributed
sources comprising many macrocolumns or cortical dipoles).
Indeed, most mean-field and neural mass models of neuronal
activity are formulated at this level (David et al., 2006; Kiebel et
al., submitted for publication). In this work, we model brain
activity in terms of a set of locally distributed and temporally
coherent meso-sources (c.f. Daunizeau et al., 2007; Daunizeau et
al., 2006 for related work). Each meso-source can be regarded as a
mean-field approximation to its underlying neuronal population
dynamics. Critically, we model the activity of each source as
random fluctuations around the average of sources that belong to
each set (each meso-source). This average, over an ensemble of
sources, represents a mesoscopic scale of activity, which we
assume conforms to the same sorts of dynamics governing the
ensemble of neurons in each source. These assumptions are
implemented with a mixture of Gaussians (MoG) prior on the
activity of sources distributed over the cortical mesh. This
furnishes a flexible and structured spatial prior and induces a
small number of hidden mesostates that describe the average
dynamics of sources in the mixture. Priors on the temporal
evolution of the averages or mesostates can be derived from
neural mass models describing the interactions between excitatory
and inhibitory subpopulations at the mesoscopic scale. This entails
a (stochastic) dynamic causal model (DCM) that can be framed as
a first-order Markov process prior on the mesostates. In short, the
mesostate dynamics generate canonical state-space dynamics,
about which the sources in each mixture fluctuate, hence the name
mesostate-space model (MSM).

We describe an efficient Variational Bayesian (VB) inversion
scheme, which allows one to invert the ensuing generative model,
i.e. to derive the marginal posterior probability density functions
(pdf) associated with the dipole and meso-source dynamics, the
cortical parcelling of sources and parameters of the DCM
mesostate. These densities can then be used for inference and
construction of posterior probability maps (PPMs) of source
activation in dipole space. This VB scheme optimizes a free-
energy bound on the model evidence or marginal likelihood, which
(after optimization) can be used for model comparison and
selection.

This paper is organized as follows. The mesostate-space model
is described in the Mesostate-space model of EEG–MEG section.
In the Variational inversion section, we introduced the Variational
Bayesian inversion framework. In the Comparative evaluations
section, we describe comparative evaluations of the current and
conventional models, using both numerical simulations and real
data. Finally, our results and methodology are discussed in the
Discussion section. Appendix A contains all the requisite technical
details for implementation (i.e. the update equations for the
inversion scheme).

Notations

In the following, XT, Xi, Xij and tr(X) indicate the transpose of
X, the ith vector column of X, the scalar element of the ith column
and jth row of X and the trace of X, respectively. (xi)1≤i≤n denotes
the n×1 vector whose entries are xi. In, 1n and 0n stand for the n×n
identity matrix, the n×1 vector of ones, and the n×1 null vector,
respectively. For any n×1 vector x, Diag(x) denotes the n×n
diagonal matrix whose diagonal is x. Conversely, diag(X) denotes
the n×1 vector containing the diagonal entries of the n×nmatrix X.
� denotes the Kronecker product and “~”means proportional. For
two variables x and y, x |y stands for “x given y”, p(x) for the
probability of x, and hxi for its expectation. N (m, V) is the
Gaussian probability density function (pdf) with mean m and
covariance matrix V, G(a, b) is the Gamma pdf with a degrees of
freedom (d.o.f.) and shape parameter b, Multinom (n, c) is the
multinomial pdf with sample sizes c out of n trials, Dir (c) is the
Dirichlet pdf with sample sizes c and ψ(·) is the digamma function.

Mesostate-space model of EEG–MEG

In this section, we describe the generative model through which
we introduce priors on the spatial deployment and temporal
evolution of brain activity. The model is specified in a hierarchical
fashion, in terms of the conditional dependencies among the model
parameters that generate spatiotemporal responses.

The EEG–MEG data likelihood

Solving the EEG–MEG inverse problem within a so-called
distributed framework amounts to finding a unique solution to the
linear system (Dale and Sereno, 1993):

yt ¼ GJt þ et; t ¼ 1; N ; T ð1Þ
where yt stands for the p×1 vector of scalp or sensor data (p~102:
number of sensors, T: number of time samples), et is additive
measurement noise, Jt is the n×1 vector describing the unknown
dipole time courses (n~104: number of dipoles distributed on the
cortical surface) andG is the p×n gain matrix (the so-called forward
operator). G is obtained by solving the quasi-static electromagnetic
forward problem (de Munck, 1988) for a given set of dipoles with
fixed position and orientation (here perpendicular to the cortical
surface). Each columnGj ofG indicates the putative contribution of
dipole j to the data in sensor space (its forward field).

The likelihood results from distributional assumptions about the
measurement noise. We consider et as a realization of independent
and identically distributed (i.i.d.) Gaussian random variables with
zero mean and (unknown) precision σ. In this case:

pðyt jJt; rÞ ¼ NðGJt ; r
�1IpÞ ð2Þ

Each of these dipoles has a known position in source space. In
the following, we will refer to X as the 3×n matrix containing the
spatial coordinates of the dipoles.

Mesostates and meso-sources

We assume that cortical activity can be described by a set of K
mesostates, which describe the ensemble activity of all dipoles
belonging to a particular mesostate. These ensembles correspond to
(spatially extended) meso-sources of constituent dipoles that
populate a particular cortical region.

As with the ECD model, each meso-source or dipole ensemble
has a mean temporal expression and spatial position. However,
here we consider each meso-source as an ensemble, i.e. a cluster,
of dipoles. This means we also model the variability inherent in the
temporal dynamics and position of the dipoles in each meso-
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source. These can be regarded as local perturbations of the
mesostates.

Let:

• ξ be a binary n×K matrix such that: ξik=1 when the ith dipole
belongs to the kth cluster (by convention, the Kth cluster
contains all inactive dipoles). ξwill be referred to as the labelling
process.

• μ be the K×T matrix containing the time course of each of the
meso-sources (the Kth time course is supposed to be zero).

• η be the 3×K matrix containing the mean position of each of the
meso-sources.

Then, we can postulate that (Penny and Friston, 1999):

1. the probability of observing Jti is a mixture of Gaussians (MoG)
associated with each meso-source such that:

pðJtijx;mt;α1; N ;αKÞ ¼ j
K

k¼1
½N ðAtk ;α�1

k Þ�nik ; t ¼ 1; N ; T ;

ð3Þ
where αk is the precision of the kth Gaussian (i.e. mesostate) of
the mixture. A high temporal coherence within the kth meso-
source is parameterized with a high value of αk. Note that μtK=0
(non-activated cluster).

2. the model of random fluctuations also applies to the position of
the dipoles, i.e. the probability of observing Xi is a mixture of
3D-Gaussians associated with meso-source; such that:

pðXijx;h; c1; N ; cKÞ ¼ j
K

k¼1
½N ðhk ; c

�1
k I3Þ�nik ; ð4Þ

where γk is the precision of the kth Gaussian of the mixture (in
the anatomical space). A low γk value generates a spatially
extended cluster.
1 Note that the time index t=0, …, T in the MAR model (Eq. (6)) is
different from the continuous independent variable t∈ [0, +∞] of the
stochastic differential equation (Eq. (5)).
2 Which is a weakly compromising assumption, given the EEG/MEG

data sampling.
Mesostate dynamics

Commonly, prior expectations about the dynamics of electrical
meso-sources come from considering them as nodes in a network.
Usually, the interactions among meso-sources are modelled with
some form of dynamic causal model (Friston et al., 2003; Horwitz et
al., 1999).Moreover, wemaywant to consider random fluctuations in
the (hidden) meso-dynamics (of coupled meso-sources) (Freeman et
al., 2001). In this situation, we have to infer the mesostates, given our
observations and our prior beliefs about their dynamical behaviour.

The resulting stochastic dynamical causal model is used as a
(hierarchical) prior on the temporal evolution of mesostates. In
other words, they are constrained to lie in the vicinity of a manifold
defined by the models evolution equation. These temporal priors
constrain the EEG–MEG inverse problem substantially and help
regularize conditional estimates.

Let us assume that the mesostates obey the following evolution
equation:

�mðtÞ ¼ hðmðtÞÞ þ f*ðtÞ; ð5Þ

where h is the evolution function parameterizing the dynamic
causal model, and f*(t) is some random (Wiener) process. This can
be rewritten as a first-order multivariate autoregressive model of
the form:1

mt ¼ Amt�1 þ f t�1; t ¼ 1; N ; T ; ð6Þ

where

A ¼ expðDtHÞcI þ DtH ð7Þ

is a multivariate autoregression (MAR) matrix and Δt is the time
between EEG samples. Here, H=∂h/∂μ is the systems Jacobian
and ft=Δtf*(t) is accumulated system noise, which we will assume
is i.i.d. Gaussian. Strictly speaking, this equality only holds when
the evolution function is linear in the mesostates. Generally, the
autoregressive form relying on a local linearization of the non-
linear evolution function is sufficient. Given the fast sampling of
EEG, this is a reasonable assumption. Under this assumption we
can use Eq. (6) to build a first-order Markov process prior for μt:

pðmtjmt�1; bÞ ¼ N ðAmt�1; b
�1IKÞ; ð8Þ

where β is the (unknown) precision of ft.
For simplicity, in this introductory paper we will use A= IK,

which gives a simple AR(1) smoothness prior on the evolution of
mesostates. This comes from assuming the following form for the
evolution function: h(μ(t))= (1/τ)μ(t) where τNΔt.2

Spatial priors and hyperpriors

To complete the MoG formulation in Eqs. (3) and (4), we have
to specify the prior on the labelling process ξ: we assume that each
dipole belongs to the kth meso-source with a priori probability λk,
which is the same for all dipoles. In other words, the columns ξi of
the labelling process ξ are a priori i.i.d. multinomial:

pðxjlÞ~j
n

i¼1
j
K

k¼1
knikk : ð9Þ

Note that the standard MoG formulation, in terms of a weighted
sum of Gaussians, is equivalent to this; the weights being the class
frequencies (λk)k=1,…,K.

We further suppose λ is a priori Dirichlet-distributed (for
conjugacy purposes):

pðlÞ~ j
K

k¼1
kbk�1
k ; ð10Þ

where bk are prior hyperparameters that we suppose are known.
Note that, a priori: hλki=bk/b00, where b00 ¼

PK
k¼1 bk . Hence, for

non-informative (equiprobable) prior on λ, the bk can be fixed as:
bk=n/K. This parameterization postulates b00=n “prior (virtual)
observations” for defining prior class frequencies and their
associated prior uncertainty. Note that the Dirichlet distribution



Fig. 1. Graph representing the hierarchical dependencies among the
generative model parameters. This graphical model M depicts the
mesostate-space model. Each sequence {y1, …, yT} is represented as the
panel over T pairs of hidden variables.
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enforces a normalization constraint, which is sensible since the λk
are frequencies:

1 ¼
XK
k¼1

kk : ð11Þ

A direct consequence of the assumption of Gaussian measure-
ment noise is that the measurement noise precision σ given data
behaves as a Gamma variate. The definition of its prior pdf thus
pertains to the derivation of the conditional pdf ofσgiven (previously
observed) “pure-noise” data y0 (e.g. obtained by anti-averaging

3):

p rð Þup rjy0ð Þ ¼ G pt0
2

;
1
2
tr yT0 y0
� �� �

; ð12Þ

where t0 is the number of time samples in the null data y0.
Equivalently, we may have some prior information regarding

the expected spatial extent of the active regions. This may be
included in the generative model using a Gamma prior pdf for the
position precisions of the MoG:

pðcÞ ¼ j
K

k¼1
Gðakc;0; bkc;0Þ: ð13Þ

For the remaining precision hyperparameters, we use non-
informative Jeffreys priors (uniform over log-scale):

pðbÞ~ðbÞ�1

pðαÞ~j
K

k¼1
ðαkÞ�1

;

8<
: ð14Þ

where we made use of the condensed notations: α=(αk)1≤ k≤K, and
γ=(γk)1≤ k≤K. Finally, we will use at priors on the position of the
meso-sources:

pðhÞ~1: ð15Þ
In other contexts, one may want using information from fMRI

or previous EEG studies (to place spatial priors on the location).
This could be implemented here as a Gaussian prior (see
Discussion).

The choice of priors above may seem rather ad hoc; however,
the priors for generative models of this sort are usually self-evident
and are based on positivity and conjugacy constraints, in a
principled way. Conjugate priors are necessary for variational
learning because they prescribe the form of the conditional density
and its sufficient statistics that need updating. In the present
context, the use of Dirichlet prior for the class frequencies λ is
standard because; (i) a Dirichlet density enforces to be positive and
sum to one and (ii) a Dirichlet prior is conjugate to the multinomial
density. Similarly, the use of a Gamma hyperprior for the precision
parameters (Eqs. (12) and (13)) is a standard choice, which can be
motivated by the fact that: (i) a Gamma density enforces positivity
constraints (required for precisions) and (ii) they are conjugate to
the Gaussian likelihood implicit in our assumptions about
measurement noise. A direct consequence of the assumption of
Gaussian measurement noise is that σ, given data, behaves as a
Gamma variate. In other words, the forms of the prior and posterior
densities are identical. This is due to the use of conjugate priors.
3 Anti-averaging refers to the estimation of correlations in the noise by
eliminating signal from empirical data. Signal is eliminated by taking the
average of differences between successive realizations of each trial.
Posterior or conditional density

The graphical model associated with the generative model
described above is depicted in Fig. 1.

This graphical model encompasses all the assumptions
associated with the hierarchical generative model M. The Markov
properties of the graphical model enables us to write the joint
posterior density of the model parameters as the following product:

pðJ; x;l;m;h; r; b;α;gjy;XÞ~pðxjlÞpðlÞpðrÞpðbÞpðαÞpðgÞ

�j
T

t¼1
pðytjJt; rÞpðmtjmt�1; bÞ:

�j
n

i¼1
pðXijx;h;gÞj

T

t¼1
pðJtijx;mt;αÞ

ð16Þ

Variational inversion

There are two goals of Bayesian inversion: the first is to
estimate the posterior distribution over the model parameters. The
second is to assess the quality of the model M in terms of its
evidence p(y |M) (where we leave the dependence on X implicit).
The evidence or marginal likelihood allows one to perform model
comparison and averaging.

For most generative models, the posterior dependencies among
the parameters render p(y |M) difficult to evaluate. The main
purpose of variational Bayes (VB) is to finesse this problem by
approximating the joint posterior of the unknown parameters with
a simpler (variational) density q(…). This approximation usually
posits independence assumptions beyond those implied by the
generative model. In this work, we use the mean-field approxima-
tion (Ghahramani and Beal, 2000), in which the approximate
density factorizes into the product of the variational marginal
posteriors on the nodes of the graphical model M:

qðJ; x;lm;h; r; b;α;gÞ

cqðm1:T ÞqðhÞqðxÞqðlÞqðrÞqðbÞqðαÞqðgÞ j
T

t¼1
qðJtÞ:

ð17Þ
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where q(·) denotes the variational approximation of any marginal
posterior pdf p(·|y, M). The mean field approximation enables us
to decompose the model evidence p(y |M) the following way:

lnpðyjMÞ ¼ hlnpð N ; yjMÞijqðd Þ þ
X

Sðqðd ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FðqÞ

þ DKLðqð N Þ; pð N jy;MÞÞ;
ð18Þ

where S(·) is the Shannon entropy, DKLðd Þ is the Kullback–Leibler
divergence and “…” (resp. “·”) denotes the full set of nodes (resp.
each node) of the graphical model.

The quantity F (q) is called the negative free energy. Since the
model evidence is fixed, for a given generative model M,
maximizing the negative free energy is equivalent to minimizing
the Kullback–Leibler divergence between the mean-field approx-
imation and the true posterior. In other words, the higher the
negative free energy, the more q(·) approaches the true marginal
posterior pdf.

The functional form of the variational marginal density q(·)
comes from optimizing the free energy:

AFðqÞ
Aqðd Þ ¼ 0 Z lnq dð Þ ¼ hlnp N ; yjMð Þijqðd Þ þ cst; ð19Þ

where the expectation is under the marginals of the Markov blanket
of each node.4 The VB scheme is simply an iterative optimization of
the negative free energy through updates of the sufficient statistics of
the variational marginal of each node. After convergence, the nega-
tive free energy can be used as an approximation (a lower bound) to
the models log-evidence. In other words, maximizing the negative
free energy allows one to approximate the marginal posterior of the
model parameters and, coincidently, the model evidence.

Under the mean-field approximation, the variational density of
location and scale (precision) parameters are Gaussian and Gamma
densities, respectively. Moreover, the class frequencies λ are
Dirichlet-distributed, and each labelling process ξi, i=1, …, n
follows a multinomial pdf. The derivation of each variational
marginal q(· ), and the update equations that form our VB scheme,
are provided in Appendix A.

Critically, the number of meso-sources K is an implicit part of
the model M. In our VB scheme, meso-sources can be ‘switched
off’ by eliminating meso-sources that are not supported by the
data. This is possible because we estimate the posterior probability
that each dipole belongs to each meso-source (p(ξik=1 |y1:T)).
Therefore, during the VB iterative process, we may find a set of
empty meso-sources k0, i.e. such that:

k0 ¼ k :
Xn
i¼1

pðnik ¼ 1jy1:T Þ ¼ 0

( )
: ð20Þ

As a consequence, the VB scheme can remove unnecessary
components, i.e. the final number of meso-sources may be less
than the starting number. This is referred to as automatic relevance
determination (ARD) (Choudrey and Roberts, 2003). This ARD
process allows us to estimate the number of meso-sources (i.e. the
4 The Markov blanket refers to the neighborhood in the moralized graph
of the generative model (c.f., Fig. 1). The Markov blanket of each node
comprises its parents, its children and the parents of its children. The mean-
field approach uses the Markov blanket of each node to build the sufficient
statistics of its marginal (variational) posterior pdf.
effective dimension of the hidden mesostates) that explain the data
optimally, as part of the inversion itself. However, this ARD-like
behaviour depends on starting with the optimum number of meso-
sources or more and on finding the global free energy extremum.
Therefore, we will still resort to model comparison to show how
the negative free energy F (q) = FK(q) depends on the number of
meso-sources (K). In this context, the best model satisfies:

K* ¼ argmax
K

FKðqÞ: ð21Þ

In the next section, we will ignore the inactive or background
ensemble (cluster) so that when we talk about K active meso-
sources we imply there are K+1 dipole ensembles in total.

Comparative evaluations

We evaluated the variational schemes ability to recover the
spatial support of the meso-sources (i.e. cortical parcelling) and
their temporal dynamics in relation to other standard EEG–MEG
inverse approaches using Monte-Carlo simulations. We also
illustrate inversion of the mesostate-space model using real data.
The following section describes the simulations and the real data
used for the evaluations.

Simulations

Comparisons
Inversion of the mesostate-space model (MSM) provides

conditional estimates of dipole dynamics, as well as the mesoscale
descriptions of brain activity, i.e. the meso-sources (described by
the multinomial labelling process), and their dynamics (the
mesostates). Furthermore, we can create PPMs of dipole activation;
in terms of the probability that each dipole does not belong to the
Kth inactive ensemble.

In contrast, existing approaches to the EEG inverse problem
furnish only the conditional expectation of dipole dynamics.
Therefore, we compared our MSM to three classical methods
(minimum norm estimator—MNE (Hämäläinen and Ilmoniemi,
1994), weighted MNE—MWNE (Kohler et al., 1996), LORETA
(Pascual-Marqui et al., 1994) and the standard restricted max-
imum-likelihood (ReML)). In fact, ReML was used to embed all
these classical methods by specifying appropriate prior covariance
components in dipole space; For the ReML solution, the prior
covariance Σ of the dipole dynamics had two components:
Σ=∑hiQi, where Q1 was the identity matrix (i.i.d. assumption)
and Q2 was the inverse of a discrete Laplacian (smoothness
constraint). The hyperparameters (hi)1≤ i≤ 2 were estimated using
restricted maximum-likelihood (Mattout et al., 2006).

The conditional estimates of dipole activities were evaluated
using three adequacy scores:

• the SSE score, which is the normalized (time-integrated) sum of
squared errors on the estimated dipole activities:

SSE ¼ log

PT
t¼1

OJt � J t̂O
2

PT
t¼1

OJtO
2

2
6664

3
7775; ð22Þ

where J and J ̂ are the simulated and estimated bioelectric dipole
activities respectively.



Fig. 2. Example of source configuration for the simulations with three meso-
sources (S3). (a) The three labelled active meso-sources; (b)-top: time
courses of the three active meso-sources; (b)-bottom: corresponding (noisy)
scalp EEG measurements.
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• the (normalized) area under the ROC curve (ROC):

ROC ¼ log
P

1� P

� �
; ð23Þ

where P is the area under the ROC curve (Egan, 1975). For each
Monte-Carlo simulation, the ROC curve was built by varying the
threshold on the power of (sum of squared) dipole-wise
dynamics, and comparing the resulting activation maps with
the known spatial support of the simulated sources.

• the correlation coefficient (CC) between the true and estimated
dipole activities. The CC was calculated using the entire time
series of all distributed dipoles.

These accuracy scores were calculated for all models (MSM,
MNE, WMNE, LORETA and ReML).

In addition, to these comparative analyses, we evaluated the
MSMs ability to recover the correct number of themesostates; i.e. the
number of active meso-sources. We used model comparison (as
described in theVariational inversion section)with different numbers
of meso-sources: 1bKb6 (plus one inactive ensemble of dipoles).

The definition of the prior regarding the mesostate spatial
precision parameters may be context-dependent. In both the
simulations and the visual ERP application, we used:

akc;0 ¼
n

2ðK � 1Þ
bkc;0 ¼ 20� akc;0

; k ¼ 1; N ;K;

8<
:
which assumes that the mesosource has a spatial extension of about
20 cm2 (see, e.g. Ebersole, 1997).
Synthetic data
A cortical surface was extracted from a structural MRI of a

normal subject and down-sampled to about 500 vertices (n=458).
The sampling frequency was chosen to be 1 kHz (with T=200 time
samples), there were p=128 sensors, the gain matrix was
calculated using a three-sphere analytical model (Mosher et al.,
1999), and measurement noise was drawn from i.i.d. Gaussian pdf,
such that the signal-to-noise ratio was SNR=10. We ran four series
of simulations, with one (S1), two (S2), three (S3) and four (S4)
activated meso-sources, each series consisting of 50 randomly
chosen source configurations. In total, we then ran 200 different
Monte-Carlo trials.

Results
Fig. 2 shows an example of a simulation with three active

meso-sources with overlapping time courses (S3 series). These
data were modelled using the MSM with different numbers of
meso-sources. Fig. 3 shows the corresponding free energies F (K)
and the final number of active meso-sources (K*; after ARD
component elimination) as a function of K. As expected the
inferred K* corresponds to the K with the highest negative free
energy.

In this example, the VB scheme removed all unnecessary
components (except for the K=4 case), i.e. the true number of
activated regions (K*=3) was found by model comparison
schemes.5
5 The negative free energy of the models with K=3 (after ARD) were
significantly higher than the other models.
Fig. 4 shows the posterior probability map of being active for
the best model. The probability of a source or mesh-dipole being
active is one minus the probability it belongs to the (K+1)th
inactive ensemble. These probabilities are shown in our PPMs;
with red denoting an active source and blue an inactive source. Fig.
5 shows the associated mesostates dynamics. In addition, we show
the labelling process (defined by assigning each dipole to its most
probable meso-source), and the spatial position of the meso-
sources. This model (K*=3) estimated correctly the mean position
and spatial extent of the meso-sources (see the multinomial
labelling process (a) and the temporal dynamics of the regions (b)
in Fig. 5 and posterior probability map (PPM) of being active (Fig.
4). Moreover, the mesostate dynamics were correctly estimated,
and with high precision (note the low posterior confidence
intervals m1:T of μ1:T).

Fig. 6 shows the histogram of the inferred number of active
meso-sourcesK*, using the model selection, as a function of the true
number of active regions. In most simulation series (S1, S2, S3), the
peak of the distribution corresponds to the true number of active
regions. The higher error rate for the (S4) series is most likely due to
the depth issue of the EEG inverse problem. Since the simulated
regions are randomly deployed on the cortical surface, there is more
chance that at least one of them falls in a deep structure. These
sources are less detectable on the scalp compared to other sources.
Therefore, as the number of truemeso-sources increases, the inferred
K* may be too small. This demonstrates the slight undercomplexity
bias of the mesostate-space model VB inversion (see Discussion).

Fig. 7 shows the empirical cdf of the accuracy metric SSE,
ROC and CC for all 200 simulations, for the five inverse methods
(LORETA, MNE, WMNE, ReML and MSM). Except for the SSE
score (Fig. 7(a)), better performance is indicated by curves that are



Fig. 3. The figures show the negative variational free energy (bottom) and
the number of active meso-sources after ARD (top) as a function of the initial
number of meso-sources. The best model is the sixth one (bottom), which,
after ARD removal of spurious dimensions, is associated to only K=3
mesosources (top). Note that the three best models (models 3, 5 and 6) were
all ARD-reduced to the K=3 model.
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shifted to the right. Table 1 details the medians of these scores for
these inverse methods. The MSM is the most accurate (lowest SSE,
and highest ROC and CC). Notably, the LORETA method gave the
worst results, irrespective of the true number of active sources;
both in terms of spatial deployment and dynamics. The ReML
scheme, which is a generalization of the standard methods
LORETA, MNE and WMNE, performs better that the other
methods, but fails to attain the accuracy of MSM. This means that
the ability to estimate dipole dynamics improves significantly
when augmenting a “naive” spatiotemporal structure with meso-
scopic constraints.
Fig. 4. PPM associated with the VB inversion of the mesostate-space model:
best model (K*=3). The probability of a source or mesh-dipole being active is
one minus the probability it belongs to the (K+1)th inactive ensemble. These
probabilities are shown in our PPMs; with red denoting an active source and
blue an inactive source.
Application to real data

To illustrate MSM in a realistic context, we used EEG data
measuring an event-related response to the visual presentation of
scrambled faces, which actually constituted the control condition in
a face-recognition study.

The EEG data were acquired on a 128-channel Active Two
System, sampled at 2048 Hz, plus electrodes on the left earlobe,
right earlobe, and two measuring HEOG and VEOG. The data
were epoched and re-referenced to the average. Trials with artefacts
were rejected; artefacts were defined as time-points exceeding an
absolute threshold of 120 μV (mainly in the VEOG), or expressing
a significant linear drift (correlation N .8) over the epoch. A total of
29 of the 172 trials were rejected due to artefacts.

An anatomical MRI of the subject (acquired at 1.5 T) was also
available, with a resolution of 1 mm×1 mm×1 mm. The cortical
surface was segmented using the SPM5 (http://www.fil.ion.ucl.ac.
uk/spm), and co-registered to the EEG frame of reference. The
cortical surface was then down-sampled to 4000 faces using the
shape-preserving reducepatch.m function in MATLAB. The gain
matrix was calculated using a three-sphere analytical model using
the SPM5 software.

Fig. 8 shows the resulting ERP. It exhibits three peaks of
activity, the first at 110 ms, the second 170 ms, and the third
230 ms following stimulus onset.

The MSM was inverted using VB as described above and
model comparison was performed over K=1 to K=8. Fig. 9 shows
the free energies of the ensuing models. The model with K*=3
meso-sources had the highest negative free energy, and was
selected as the most plausible solution.

Fig. 10 shows the PPM of being active, as well as the centroids of
the active meso-sources for theK*=3model. Interestingly, this map
showed very little variability, when varying K. Figs. 11 and 12 show
respectively, the estimated mesostates (meso-source dynamics) and
the most probable meso-source responsibilities (from the labelling
processes). Two regions were found in the left and right occipital
lobes. Their time courses show a damped oscillation which explains
the three peaks observed in the EEG scalp data. Note that the left-
occipital meso-source elaborates its response sooner than the right-
occipital area. The third region actually lies on the right frontal lobe.
It is activated largely during the second peak in the scalp EEG.

Discussion

We have described a generic scheme within which to introduce
prior beliefs on the spatiotemporal dynamics of cortical activity
causing measured EEG and MEG signals. This mesostate-space

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Fig. 5. VB inversion of the mesostate-space model: best model (K*=3).
(a) Multinomial labelling process (cream: inactive ensemble, blue/red/
green: active meso-sources); (b) estimated mesostates dynamics. The
spheres show the 99% confidence interval on the estimated mean position of
each cluster.

Fig. 6. Performance of model selection. The figure shows a histogram of
final (inferred) number of active meso-sources K* for all simulations
(x-axis: number of final active regions; y-axis: number of simulations). The
four colours correspond to different numbers of true active meso-sources
(series S1: blue, S2: turquoise, S3: yellow, S4: red).
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model (MSM) is formulated as a stochastic dynamical system that
governs dynamics at the mesoscale. This system is cast as first-
order Markov process prior, which can be inverted using standard
(variational) Bayesian techniques. A mesoscale representation
means that we can distinguish between the dynamics of meso-
sources and individual cortical dipoles. This means that dipoles can
be assigned probabilistically to a small number of meso-sources
and that number can be optimized using model selection.

Inference on the model

When specifying a generative model for data it is necessary to
define the form of the model in terms of specific quantities and
how these quantities depend upon each other. These dependencies
can make it difficult to deconstruct the model and assess which
components are useful and which are not. For example, in our
model are the temporal priors a useful addition to the model or do
they induce unnecessary complexity? The evaluation of different
model components can, however, proceed in a principled way
using the marginal-likelihood or model-evidence. This involves
switching off various model components by choosing different
hyper-priors and then evaluating the models with and without a
particular component in terms of their relative marginal-likelihood,
as described above. For example, we could switch off the temporal
priors by imposing very precise hyper-priors that make the
elements of the matrix A zero. This means that the temporal
dynamics are modelled entirely by the random innovation and, a
priori, would have no temporal structure. This an advantage of
having a full generative model with hierarchically organized (hyper)
priors. We will pursue this in subsequent cross-validation papers
which will compare our mesoscopic model to alternative models
based upon classical weighted minimum-norm solutions with
multiple covariance components (Daunizeau et al., in preparation).

Inference on the model (or the parameters of any given model)
requires a specification of our uncertainty about competing models
or the values of their parameters. At the level of parameters, this is
achieved simply by reference to the conditional distribution of the
parameters: the conditional uncertainty is a variational free
parameter, which is optimized during inversion. The same principle
can be applied to model-space and implicitly those model
parameters that specify different models. This involves computing
the conditional probability over a set of models using their marginal
likelihoods. Under at priors on the models, the conditional
probability mass on each model is proportional to the marginal
likelihood, where this mass sums to one. This can be particularly
useful when each model is indexed by a categorical parameter. An
example of this would be the number of meso-sources K. If we
consider that the ith model corresponds to K= i, then we can
reformulate the profile of model-evidences in Fig. 3 as the
conditional probability of K over the values of K for which the
model evidence was evaluated. In other words, Fig. 3 encodes
explicitly our uncertainty about the number of meso-sources. It can
be seen that theK=3model is themost likely, given our data and that
this is exp(0.2×103) times more likely than the K=7 model! This
sort of analysis can be pursued for any model parameter that defines
a point mass in model space (i.e. when the parameter is a discrete
variable). This highlights the close connection between conditional
inference onmodel and parameter space, through optimization of the
same free-energy functional.

Having said that, it is important to understand the limitation of
the model-evidence or marginal-likelihood and its variational free-
energy approximation. These quantities are based upon the
probability of the observed data given a specific model or family
of models. They only have meaning in relation to the model or



Fig. 7. Comparison of the five inverse methods in terms of their ability to recover the dipole dynamics. The figure shows empirical cumulative distribution
functions (cdf) of the adequacy scores for all Monte-Carlo simulations (x-axis: adequacy score; y-axis: cdf). The five colours correspond to the four inverse
methods (MSM: pink; ReML: blue turquoise; MNE: green; WMNE: red; LORETA: blue sea). (a) SSE score (the x-axis corresponds to the log-transformed sum
of squared errors SSE, see the Comparisons section); (b) ROC score (the x-axis corresponds to ln(P/(1−P)), where P is the area under the ROC curve); (c) CC
score (the x-axis corresponds to the correlation coefficient between true and estimated dipole-wise dynamics). Except for the SSE score (a), better performance is
indicated by curves that are shifted to the right.
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models considered and can only be interpreted in a relative sense,
in terms of model comparison. Clearly, all the models that one
might consider will be suboptimal, compared to the unknown best
model. However, the marginal likelihood can be very useful when
trying to explore aspects of model space. Another important issue
here is that the model-evidence depends upon the data. The best
model for one particular dataset will be different from the best
model for another dataset. For example, if we had access to intra-
cranial recordings or local field potentials, the best models might
be much more complicated and realistic, as assessed by the model-
evidence. In short, the model-evidence is really a statement about
the relative goodness of models and how those models are
informed by the particular data that are available.
Table 1
Medians of the adequacy scores (SSE, ROC and CC) based on the dipole
dynamics J for all 200 simulations

LORETA MNE WMNE ReML MSM

SSE 0.61 −0.09 0.01 −0.21 −0.43
ROC 0.74 1.92 1.66 2.87 3.23
CC 0.10 0.36 0.30 0.45 0.60
Relation to existing approaches

Our generative model and its variational inversion belongs to
the family of parametric empirical Bayes (PEB) approaches
(Friston et al., 2002). PEB requires a hierarchical observation
model where the parameters and hyperparameters at any particular
level can be treated as priors on the level below. In the context of
the EEG inverse problem, this modelling strategy has already been
employed successfully in (Mattout et al., 2006; Phillips et al.,
2002) for constraining the spatial deployment of distributed
sources. These models parameterize the prior covariance of dipole
dynamics with a linear mixture of a priori covariance components.
The ensuing ReML (a variant of expectation maximization; EM)
hyperparameters estimates are then used to construct an optimal
approximation to the posterior covariance structure.

Despite the MoG form of the MSM, the variational marginal pdf
of the dipole dynamics is Gaussian. As a consequence, the VB
posterior covariance estimate of the MSM also relies on a linear
mixing of covariance components (see Eq. (39)). In other words,
inversion of the MoG prior can be reduced to an empirical Bayesian
estimation of a single parametric block-diagonal covariance matrix.

When inverting the MSM, the scheme estimates the posterior
probability p(ξi,K=1 |y), that the ith dipole belongs to the cluster



Fig. 8. EEG event-related potential, following “scrambled faces” visual
stimulation. These scalp measurements exhibit three peaks, at 110, 170 and
230 ms after stimulus onset (depicted by the arrow). The scalp data actually
analysed are depicted using the dashed rectangle.

Fig. 10. Posterior probability map (PPM) of being active (blue=1, red=0)
for the K*=3 model. The probability of a source or mesh-dipole being
active is one minus the probability that it belongs to the (K+1)th inactive
ensemble. This map identifies three active meso-sources in the left and right
occipital lobes, and in the right frontal lobe.
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having zero mean (the background or inactive ensemble). As the
precision αK increases, the (K)th Gaussian of the mixture
asymptotes to a Dirac distribution. At the zero variance limit
(αK→∞), the background dipoles do not contribute to the measured
signal. Therefore, the quantity p(ξi,K=1 |y) can be considered as
the posterior probability of the ith dipole being inactive. Similarly,
1−p(ξi,K=1 |y) is the posterior probability of it being active. This
allows us to assess the significance of any dipole being active, i.e.
form a posterior probability map (PPM) on dipole space (Friston
and Penny, 2003).

On evaluation results

So far, we have focused on the added-value of the MSM as a
tool for EEG/MEG source reconstruction. Hence, we used minimal
assumptions regarding the expected temporal behaviour of the
mesostates, i.e. we only used a smoothness prior. However, it is
possible to incorporate more constraints by specifying a more
realistic dynamic causal model on the interactions between meso-
Fig. 9. Variational negative free energy of the eight models with different
numbers of active meso-sources. The ARD scheme did not eliminate any
component (final and initial K values are identical). Nevertheless, the K*=3
model exhibits a significantly higher negative free energy.
sources. These models are currently being evaluated in a non-
stochastic setting using DCM for ERPs.

The MSM has been evaluated and compared to standard EEG
inverse approaches (MNE, WMNE and LORETA) using simulated
data. These simulations demonstrate the added-value of the
approach w.r.t. accuracy. This is probably due to the nature of the
generative model: the better match between the prior assumptions
and the underlying structure of brain activity, the better the
inversion. In other words, the gain in precision afforded by the
prior information, introduced through the meso-sources, more than
compensates for the increase in complexity.

Moreover, the evaluation part of this work suggests that the
method is able to correctly identify the number, position, spatial
extent and dynamics of the underlying active meso-sources. In
addition, the variational free energy enabled us to select the
optimal model given the measurements. This model selection
approach, accounting for any uncertainty about the parameteriza-
tion of the model, is likely to be important when comparing more
complex models (see next section).



Fig. 11. Spatial distribution of the most plausible multinomial labelling
process (ensemble responsibilities) for theK*=3 model. This map is built by
assigning each dipole to the meso-source it is most likely to belong to. The
labelling process is displayed on the inflated cortical mesh, with the high-
resolution cortex shown in transparency (cream: inactive ensemble, blue/
green/red: active meso-sources). The white spheres correspond to the
estimated mean position and 99% confidence intervals for each meso-source.

6 With a fixed zero-mean prior, the prior variance of the source is the prior
power of the sources. In weighted MNE-like methods, fMRI maps of
activation are used as a shrinkage prior of the spatial distribution of power
(see Daunizeau et al., 2005).
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Lastly, although the model comparison capabilities of the
methods prove able to correctly detecting the number of meso-
sources for most of encountered situations, it definitely exhibited
a slight undercomplexity bias (see Fig. 3). An intuitive unders-
tanding for this bias may be derived the following way: Recall
that the free energy approximation to the log model evidence (or
so-called “marginal likelihood”) is actually a lower bound (cf.
Eq. (18)):

LðKÞulnpðyjM;KÞ ¼ Fðq;KÞ þ DKLðq; pÞ;
where L(K) (respectively F (q, K)) is the true marginal likelihood
(resp. variational free energy) for a model with K components,
and DKL (q, p) is the KL divergence between the true posterior
and its variational (mean-field) approximation.

Let us assume that every component (meso-source) in our
model contributes a constant KL divergence penalty of D. The
difference in log marginal likelihoods, LðK þ 1Þ � LðKÞ, is the
quantity we wish to estimate, but if we base this on the lower
bounds the difference becomes:

LðK þ 1Þ � LðKÞ ¼ ðFðK þ 1Þ þ ðK þ 1ÞDÞ � ðFðKÞ þ KDÞ
¼ FðK þ 1Þ � FðKÞ þ D
pFðK þ 1Þ � FðKÞ

where the last line is the result wewould have basing the difference on
lower bounds. Therefore, if each component contributes indepen-
dently to the KL divergence term, and since the KL divergence is
strictly positive, the use of free energy for model comparison might
introduce a systematic bias towards simpler models.
Perspectives

In the context of multimodal information fusion, the MSM
model can be easily extended by introducing priors onto the
position of each active region. This way of introducing fMRI priors
allows us to bypass standard weighted minimum norm techniques,
which require the delicate parameterization of the prior variances
of the sources.6

As mentioned above (see the Mesostate dynamics section), the
natural extension of the MSM approach is the incorporation of
neural mass models to prescribe interactions among mesostates.

Neural mass models describe the dynamics of an ensemble of
atoms (macro-columns) as a point mass, i.e. the mean or expected
dynamics of a population (David et al., 2006). In our formulation
we allow for random fluctuations about this mass to provide a
stochastic dynamic causal model for neuronal interactions (see the
Mesostates and meso-sources section). The use of stochastic DCM
priors, as part of the MSM would allow one to infer not only the
meso-source dynamics but also the coupling parameters shaping
interactions among meso-sources. In fact, under the mean-field
approximation (see Variational inversion section), exactly the same
variational inversion can be used if the evolution function can be
written as a multilinear function of joint hidden states and
parameters (see the Mesostate dynamics section; Beal, 2003).

Notably, if the neural mass model can not be formulated using a
multilinear evolution function, we may then resort to, e.g. Laplace
approximations to the formal Variational Bayesian learning scheme
(Friston et al., in preparation).

Two interesting applications of this scheme are worth
mentioning:

1. stochastic DCM (Friston et al., 2003). This family of models
would encompass four basic characteristics of neuronal activity
and organization: (i) neurons are dynamic units, (ii) driven by
stochastic forces, (iii) organized into populations with similar
biophysical properties and response characteristics and (iv)
multiple populations interact to form functional networks
(Harrison et al., 2005);

2. EEG/fMRI fusions (Riera et al., 2006). Noticeably, recent
advances in understanding physiological mechanisms at differ-
ent spatiotemporal scales have provided a framework within
which to develop sophisticated biophysical models that permit
an integration of different imaging modalities, each sharing a
common aetiology (Riera et al., 2005). More precisely,
evolution/observation equations encoding the relationship
between bioelectric and hemodynamic mesostates can be
motivated using both physiological and physical facts (Friston
et al., 2000; Kilner et al., 2005).

Variational Bayesian inference schemes allow one to compare
different models. This comparison can be used to select any
dynamical model introduced through the state-space formulation in
a principled way. For example, different wirings of the mesoscopic
network (e.g. specific assumptions regarding the hierarchy within



Fig. 12. Temporal dynamics of the mesostates for the K*=3 model (active
meso-source time courses). The error bars depict the 99% confidence
intervals. The left and right occipital active areas exhibit a damped oscillation
that may be responsible for the three peaks seen in the scalp EEG (see Fig. 8).
The right frontal meso-source is active during the second peak (N170).
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the network) can be compared, or different candidate processes for
neurovascular coupling could be tested.

Appendix A

This appendix focuses on the variational inversion used to
derive the marginal posterior pdf of each node of the MSM. All the
densities belong to the exponential family: they are parameterized
using a finite number of so-called sufficient statistics.7 These
sufficient statistics are the only quantities that we need to update
during the iterations of the VB algorithm.

A.1. Sufficient statistics

For notational convenience, define the following matrices as:

Ỹ ¼
XT
t¼1

yty
T
t

�Y ¼
XT
t¼1

hJtiyTt

J̃ ¼
XT
t¼1

hJtJTt i

M̃ ¼
XT
t¼1

hmtmT
t i

�M ¼
XT
t¼1

hmt�1mT
t i

M̆ ¼
XT
t¼1

hmt�1mT
t�1i ¼ m0mT

0 þ
XT�1

t¼1
hmtm

T
t i

S ¼
XT
t¼1

hJtmT
t i ¼

XT
t¼1

hJtihmT
t i

Z ¼ hxi
X̃ ¼ XTX
Ñ ¼ DiagðdiagðhhThiÞÞ
T ¼ XT hhi ð24Þ
7 These statistics are quantities that define a density given its form. They
are usually linked to the first two moments of the distribution.
These (conditional covariance) matrices are necessary for the
deriving the variationalmarginal posterior pdf of themodel parameters.

A.2. Precision parameters

A.2.1. Measurement noise variance
The Markov neighborhood of σ is yt, Jt, t=1, …, T:

lnqðrÞ ¼ hlnpðrjy; J; dÞiqðJÞ þ cst: ð25Þ

Therefore, σ is Gamma-distributed:

q rð Þ ¼ G ar; brð ÞZ hri ¼ r̂ ¼ ar
br

; ð26Þ

with parameters (aσ, bσ) such that:

ar ¼ pðT þ t0Þ
2

br ¼ 1
2

tr½Ỹ� � 2tr½ �GY� þ tr½GTGJ̃� þ tr½yT0 y0�Þ:
	

8><
>: ð27Þ

A.2.2. System noise variance
The Markov neighborhood of β is μt, t=1, …, T:

lnqðbÞ ¼ hlnpðbjm; dÞiqðmÞ þ cst: ð28Þ

Therefore, β is Gamma-distributed:

q bð Þ ¼ G ab; bb
	 


Z hbi ¼ b̂
ab
bb

; ð29Þ

with parameters (aβ, bβ) such that:

ab ¼ KT
2

bb ¼ 1
2

tr
�
M̃
�� 2tr

� �AM
�þ tr

�
ATAM̆

��
:

�
8><
>: ð30Þ

A.2.3. Mesostate temporal precision parameters
The Markov neighborhood of αk is {ξ, μt, Jt, t=1, …, T}.

Hence:

lnqðαkÞ ¼ hlnpðαk jJ;m; x; dÞiqðmÞqðJÞq̃ðxÞ þ cst: ð31Þ

Therefore, αk is Gamma-distributed:

q αkð Þ ¼ G akα; b
k
α

	 

Zhαki ¼ akα

bkα
; ð32Þ

with parameters (aα
k , bα

k) such that:

akα ¼ T
2
ZT
k 1n

bkα ¼ 1
2

ZT
k diag J̃

	 
þ M̃kk1n � 2Sk
� �� � :

8><
>: ð33Þ

Note that for the inactive ensemble: M̃KK=0 and SK=0. In the
following, we will use the vector forms to denote the expectation
(under the Gamma posterior pdf) of the mesostate precisions:

α ¼ akα
bkα

� �
1VkVK

:

A.2.4. Mesostate spatial precision parameters
The Markov neighborhood of γk is {ξ, η, X}. Hence:

lnqðckÞ ¼ hlnpðck jX;h; x; dÞiqðhÞqðxÞ þ cst: ð34Þ
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Therefore, γk is Gamma-distributed:

q ckð Þ ¼ G akα; b
k
α

	 

Z hcki ¼

akc
bkc

; ð35Þ

with parameters (aγ
k , bγ

k) such that:

akc ¼
3
2
ZT
k 1n þ akc;0

bkc ¼
1
2
ZT
k diag X̃

	 
þ Ñkk1n � 2Tk

	 
þ bkc;0:

8><
>: ð36Þ

Again, for convenience, we will use the vector forms to denote the
expectation (under the Gamma posterior pdf) of the precisions:

ĉ¼ akc
bkc

� �
1VkVK

:

A.3. Dipole dynamics

The Markov neighborhood of Jt is {ξ, yt, μt, α, σ}:

lnqðJtÞ ¼ hlnpðJt jx;mt;α; rÞiqðxÞqðmtÞqðαÞqðrÞ þ cst: ð37Þ

Eq. (37) is a quadratic form in Jt. Therefore, under the mean-field
approximation, the variational marginal of Jt is Gaussian:
qðJtÞ ¼ N ðĴt;WÞ, with:

J ̂t ¼ W
ar
br

GTyt þ ZDiag α̂ð Þ mt

0

� �� �
; ð38Þ

where the posterior covariance matrix W is defined as:

W ¼ ðr̂GTGþ DiagðZα̂ÞÞ�1

¼ DiagðZα̂Þ�1ðIn �GTð 1
r̂
Ip þGDiagðZα̂Þ�1GTÞ�1

GDiagðZα̂Þ�1Þ
ð39Þ

where the second line requires only a p×p matrix inversion.
The sufficient statistics J̃ and Y˙ are:

Y˙ ¼ J ̂yT

J̃ ¼ TWþ J ̂J ̂
T :



ð40Þ

A.4. The labelling parameters

A.4.1. The class frequencies
The Markov neighborhood of λ is ξ:

lnqðlÞ ¼ hlnpðljx; dÞiqðxÞ: ð41Þ
The class frequencies λk, k=1,…, K are, by definition, frequencies,
i.e. they satisfy the normalization constraint given by Eq. (11).
Therefore, together with the Eq. (41), we have a Dirichlet posterior
pdf for λ:

qðlÞ ¼ DirðcÞ; ð42Þ

where the (K)×1 vector c is such that:

c ¼ bþ ZT1n: ð43Þ
Therefore, under the normalization constraint, the expectation
of λ is:

hli ¼ 1
c0

c; ð44Þ

where c0 is such that:

c0 ¼
XK
k¼1

ck : ð45Þ

A.4.2. Labelling process
The Markov neighborhood of ξ is {J, X, λ, α, γ, μ, η}.

Hence:

lnqðxÞ ¼ hlnpðxjJ;X;l;α;g;m;h; dÞiqðJÞqðlÞqðαÞqðgÞqðmÞqðhÞ ð46Þ

By expanding the right-hand term of Eq. (46), one notes that there
is no cross-term between any of the columns ξi, i=1,…, n of ξ.
Therefore, the joint posterior of the columns ξi is the product of the
marginals. Since for each dipole, the probability of belonging to all
classes should sum to one, the following constraint holds:

1 ¼
XK
k¼1

qðnik ¼ 1Þ; i ¼ 1; N ; n: ð47Þ

The functional form of the variational marginal on ξi is then
given by:

lnqðxiÞ ¼
XK
k¼1

nik lnpik þ cst; ð48Þ

with πik being defined as:

pik ¼ exp w ckð Þ � w c0ð Þ þ T
2

w akα
	 
� lnbkα

	 
þ 3
2

w akc

� �
� lnbkc

� �� �

� exp � 1
2

akc
bkc

X̃ii þ Ñkk � 2Tik
	 
� 1

2
akα
bkα

J̃ii þ M̃kk � 2Sik
	 
 !

;

ð49Þ
where ψ(·) is the digamma function.

Together with the normalization constraint given by Eq. (47),
Eq. (48) states that ξi follows a multinomial distribution such
that:

qðxiÞ~ j
K

k¼1
p* nik
ik ¼ Multinomð1; fpik*g1VkVKÞ; ð50Þ

where the πik* are derived from the normalization constraint:

pik* ¼ pikPK
k¼1 pik

¼ q nik ¼ 1ð Þ ¼ hniki ¼ Zik : ð51Þ

A.4.3. The mean spatial position
The Markov neighborhood of ηk is {X, γk, ξ}:

lnqðhkÞ ¼ hlnpðhk jX; x;g; dÞiqðXÞqðgÞqðxÞ þ cst; k ¼ 1; N ;K:

ð52Þ
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Eq. (52) is a quadratic form in ηk. Therefore, the variational
posterior pdf of ηk is Gaussian: q(ηk)= N (ĥk , V

(k)) with:

ĥk ¼ 1

ZT
k 1n

XZk

VðkÞ ¼ 1

ZT
k 1n

1
ĉk
I3
:

8>><
>>: ð53Þ

This states that the mean position of each meso-source is simply
the weighted (according to the posterior probabilities Z) average
position of the constituent dipoles. When introducing a Gaussian
prior on the position of meso-sources (as derived from fMRI, for
example), this estimate is modified in proportion to the prior
variance.

Therefore, the sufficient statistics are:

T ¼ XT ĥ

Ñ¼ Diag ĥT
k ĥk þ 3

ĉkZT
k 1n

� �
k¼1; N ;K

 !8><
>: ð54Þ

A.5. The mesostate dynamics: a variational Kalman smoother

The remaining variational marginal is q (μ1:T). This posterior can
be obtained by vectorizing the matrix μ, accounting for the inter
time-step covariance structure (through the known matrix A), and
averaging the parameters of this (Gaussian) (K−1)T−D pdf under
the variational marginals of the Markov neighborhood of μ1:T:

lnqðm1:T Þ ¼ hlnpðm1:T jJ1:T ; x; b;αÞiqðJ1:T ÞqðxÞqðbÞqðαÞ ð55Þ

However, this is not generally feasible because of the dimensionality
of the problem. Instead, we use a variational Kalman–Rauch
smoother, which is computationally muchmore expedient because it
only evaluates the (instantaneous) marginal q(μt), as opposed to the
joint posterior of the whole sequence q(μ1:T).

Operationally, the variational Kalman smoother (Beal and
Ghahramani, 2002) entails a two-step procedure involving:

1. the forward pass, which iterates the following equations from
t=2 to t=T:

Rtjt�1 ¼ ð1=b̂ÞIK þARt�1jt�1A
T

mtjt�1 ¼ Amt�1*

Rtjt ¼ ðDiagðDiagðα̃ÞZ̃T
1nÞ þ R�1

tjt�1Þ�1

mt* ¼ RtjtðR�1
tjt�1mtjt�1 þ Diagðα̃ÞZ̃T

J̄ tÞ;

8>>>><
>>>>:

ð56Þ

where Z̃ and α̃ are truncated to include only “activated” meso-
sources:

Z̃¼ Z1:K�1

α̃¼ α̃1:K�1;



where K is the number of dipole ensembles;

2. the backward pass, which iterates the following equations from
t=T−1 to t=1:

Kt ¼ RtjtATR�1
tþ1jt

Y t;t ¼ Rtjt þKtðY tþ1;tþ1 � Rtþ1jtÞKT
t

mt ¼ mt*þKtðmtþ1 �Amt*Þ
Y t;tþ1 ¼ Rtþ1jtAT

Y tþ1;tþ1;

8>><
>>: ð57Þ
the last expression being necessary for both the sufficient
statistics of the parameters of the evolution function and the
calculation of the variational free energy (see Section A.6).

Using the Markov properties of the mesostate time series, it
is relatively straightforward to show that the variational marginal
q(μt) of μt is Gaussian such that:

qðmtÞ ¼ Nðmt;Y t;tÞ:
Then, the sufficient statistics of the mesostates are assembled
through the backward pass as follows:

M̃¼
XT
t¼1

mtmT
t þY t;t

Ṁ¼
XT
t¼1

mt�1mT
t þY t�1;t

M̆¼ m0mT
0 þ

XT
t¼1

mtmT
t þY t;t

S ¼
XT
t¼1

J t̂mT
t

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð58Þ

A.6. Derivation of the variational free energy

Under the mean field approximation, the calculation of the free
energy requires the evaluation of the sum of the Shannon entropy
of the marginal variational posterior pdfs. Except for the
mesostates pdf, these are relatively straightforward. However,
due to the use of the Kalman–Rauch scheme in the derivation of
the posterior q(μt |y1:T), the derivation of the actual joint entropy
S(q(μ1:T)) requires special considerations.

First, let us not note that the joint q(μ1:T) factorizes over
instantaneous transition pdf (Chapman–Kolmogorov equation):

qðm1:T Þ ¼ qðm1jm0Þj
T

t¼2
qðmtjmt�1Þ

¼ q m1ð Þ
j
T

t¼2
qðmt;mt�1Þ

j
T

t¼2
qðmt�1Þ

: ð59Þ

Therefore, its entropy may be decomposed into:

Sðqðm1:T ÞÞ ¼ �
XT
t¼2

Z
logqðmt;mt�1Þdqðmt;mt�1Þ

þ
XT�1

t¼2

Z
logqðmtÞdqðmtÞ: ð60Þ

Noting that:

qðmt;mt�1Þ ¼ N mt

mt�1

� �
;

Y t;t Y
T
t;t�1

Y t;t�1 Y t;t

� �� �
; ð61Þ

this gives:

S q m1:Tð Þð Þ ¼ 1

2

XT�1

t¼1

logjY tþ1;tþ1 Y
T
tþ1;t

Y tþ1;t Y t;t
j � logjY t;tj

� �

þ 1
2
logjY1;1j þ 1

2
K � 1ð ÞT log2pþ 1ð Þ: ð62Þ
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The entropy S(q(μ1:T)) is then evaluated during the backward
pass of the Kalman–Rauch scheme, using the iterative calculation
of the matrix determinants of the right-hand side of Eq. (62).
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