SPMS8 Release Notes

These Release Notes summarize changes made imtdéserelease of the SPM software,
SPMB8. This is a major update, containing theorktadgorithmic, structural and interface
enhancements over previous versions. Some of dregels described below were already
available in the most recent updates of SPM5, whitst of them have been introduced
in this new release.

Although we have tried hard to produce high quadftware, in a project of this size and
complexity there are certainly some remaining b&jsase assist us by reporting them to
the SPM manager <spm@fil.ion.ucl.ac.uk>.

We would like to thank everyone who has providestifeack on the beta version.

Batch interface

SPMB8 incorporates a new batch machinery, matlabhb#tat has been derived from the
SPM5 batch system. The main new feature is thelimgndf dependencies: if you have

several jobs that you want to execute, where tpetito one job depends on the output of
another, you can specify that dependency explidgitlyhe interface. It becomes then

straightforward to apply the same operations orersg\wdatasets (for example, re-using
the same batch for multiple subject analyses).

This batch system is compatible with the previ@RM5, job structure.

M atlabbatch: http://sourceforge.net/projects/matlabbatch

File formats

SPM8 attempts to follow the recommendations of Dea Format Working Group
(DFWG: http://nifti.nimh.nih.gov/dfwg/) that aimg aroposing solutions to the problem
of multiple data formats used in fMRI research.

* NIfTI-1 is the image file format used in SPM8. Stp://nifti.nimh.nih.gov/

* GIfTI-1 is the geometry file format used to stor@aiety of surface-based data.

See http://www.nitrc.org/projects/qifti/

Functions to read/write files with these formats anplemented in the Matlab classes
@nifti and @gqifti.

New Segmentation

This toolbox is an extension of the default unifiselgmentation. The algorithm is
essentially the same as that described in the éthiegmentation paper (Ashburner and
Friston, 2005), except for:

» A different treatment of the mixing proportions,

» The use of an improved registration model,

» The ability to use multi-spectral data,

* An extended set of tissue probability maps, whibbmas a different treatment of

voxels outside the brain,
* A more robust initial affine registration.



Some of the options in the toolbox may not yet wankd it has not yet been seamlessly
integrated into the rest of the SPM software. Atbe extended tissue probability maps
may need further refinement. The current versisese crudely generated (by JA) using
data that was kindly provided by Cynthia Jongerthaf Imaging Sciences Institute at
Utrecht, NL.

This toolbox can be accessed from the Batch EditomenuSPM > Tool s > New
Segnent .

J. Ashburner and K.J. Fristodnified segmentation. Neurolmage26:839-851, 2005.

DARTEL

This toolbox is based around the “A Fast DiffeoniacpRegistration Algorithm” paper
(Ashburner, 2007). The idea is to register imagesomputing a “flow field” which can
then be “exponentiated” to generate both forwa l@ackward deformations.

Processing begins with the “import” step. This ilves taking the parameter files
produced by the segmentation, and writing out hgichnsformed versions of the tissue
class images, such that they are in as close naégh as possible with the tissue
probability maps.

The next step is the registration itself. Thisalves the simultaneous registration of e.qg.
GM with GM, WM with WM and 1-(GM+WM) with 1-(GM+WM)when needed, the 1-
(GM+WM) class is generated implicitly, so there ne need to include this class
yourself). This procedure begins by creating anmafaall the images, which is used as
an initial template. Deformations from this tentpléo each of the individual images are
computed, and the template is then re-generatecagplying the inverses of the
deformations to the images and averaging. Thisguhe® is repeated a number of times.
Finally, warped versions of the images (or othemges that are in alignment with them)
can be generated.

This toolbox is not yet seamlessly integrated ihi® SPM package. Eventually, the plan
iIs to use many of the ideas here as the defaaltegly for spatial normalisation. The
toolbox may change with future updates.

There will also be a number of other (as yet uni$sigely extensions, which may include a
variable velocity version. Note that the Fast Baffnorphism paper only describes a sum
of squares objective function. The multinomial atije function is an extension, based
on a more appropriate model for aligning binaryadata template (Ashburner & Friston,
2009).

J. Ashburner. A-ast Diffeomor phic Image Registration Algorithm. Neurolmage38(1):95-113, 2007.
J. Ashburner and K.J. Fristo@omputing average shaped tissue probability templates. Neurolmage,
45(2):333-341, 2009.

Extended hemodynamic model in DCM for fMRI

The classical model of blood oxygen level depen@B6tLD) responses by Buxton et al.
(1998) has been very important in providing a bygitally plausible framework for
explaining different aspects of hemodynamic respensWVe have derived a generalized
model that has been included in SPM8 as part of DIGMfMRI. Bayesian model
selection using empirical fMRI data from a groupteklve subjects showed that this
model outperforms other variants of hemodynamic eldThis extended hemodynamic



model has a non-linear BOLD function and includesea parameter per region. This
parameterg, represents the region-specific ratio of intrad axtravascular signals and
makes DCM more robust for applications to data aeduat higher field strengths.

K.E. Stephan, N. Weiskopf, P.M. Drysdale, P.A. Rabn, K.J. FristonComparing hemodynamic
modelswith DCM . Neurolmage38: 387-401, 2008.

Nonlinear DCM for fMRI

In its original formulation, DCM was based on bdar equations, where the bilinear term
models the effect of experimental manipulationsnenronal interactions. The bilinear
framework, however, precludes an important aspeeoronal interactions that has been
established with invasive electrophysiological relong studiesj.e., how the connection
between two neuronal units is enabled or gatedchiyity in other units. These gating
processes are critical for controlling the gainnefironal populations and are mediated
through interactions between synaptic inputs (byy.means of voltage-sensitive ion
channels). They represent a key mechanism forowsrrneurobiological processes,
including top-down (e.g. attentional) modulatioraining and neuromodulation. We
have developed a nonlinear extension of DCM thatleteosuch processes (to second
order) at the neuronal population level. In thisywthe modulation of network
interactions can be assigned to an explicit neunooulation.

K.E. Stephan, L. Kasper, L.M. Harrison, J. Daunigdd.E.M. den Ouden, M. Breakspear, K.J. Friston.
Nonlinear Dynamic Causal M odelsfor fM RI. Neurolmage42: 649-662, 2008.

DCM for fMRI: Slice timing

DCM, in its original inception, was not informedaal slice timings of each acquired
slice in echo-planar images (EPIl) and assumed tihtslices were acquired
simultaneously. In the first DCM paper (Fristonadt 2003), it has been shown that
DCM can cope with slice timing differences of uplte. However, many fMRI studies
employ a repetition time (TR) of 3 to 5 s, whicle@udes a straightforward DCM of
these data.

We removed this limitation by including slice tingininformation into the DCM
specification. When entering parameters for a D@, user is now asked for the slice
timings of each area. In principle, this simple mloeixtension makes it possible to use
DCM even on fMRI data acquired with long repetitiomes and slice-wise acquisition.

K.J. Friston, L. Harrison, and W.D. Penrjynamic Causal Modelling. Neurolmage 19(4):1273-1302,
2003.

S.J. Kiebel, S. Kloppel, N. Weiskopf, and K.J. s Dynamic causal modeling: A generative model of
dlicetiming in fMRI. Neurolmage 34:1487-1496, 2007.

Bayesian Model Selection for Group Studies

SPMS8 includes a new method for performing a ranédi@cts analysis of models at the
between-subject or group level. This 2nd-levelliigcis added to all DCM modalities
(DCM for fMRI, DCM for ERPs etc.). Bayesian modelection (BMS) is a term given
to a procedure which identifies the best model ayeiset of competing models (i.e. the
most likely in a set of competing hypotheses). Tais be done at the single subject level



by examining each model’s log evidence, where tkatgst evidence gives the ‘winning’
model. At the second level however, making infeesnacross the population requires a
random-effects treatment that is not sensitiveuthers and accounts for heterogeneity
across the population of subjects studied. Toehi, a group BMS procedure has been
implemented using a Bayesian approach which prevalerobability density on the
models themselves. This function uses a novelatshical model which specifies a
Dirichlet distribution that, in turn, defines thanameters of a multinomial distribution.
By sampling from this distribution for each subjegé obtain a posterior Dirichlet
distribution that specifies the conditional densifythe model probabilities. SPM returns
the expected multinomial parameters for the modetker test which allows users to rank
the models from most to least likely at the popatatevel.

K.E. Stephan, W.D. Penny, J. Daunizeau, R. Morath . Friston.Bayesian Model Selection for
Group Studies. In press.

PPMs for Bayesian Model Selection at the group level

SPMB8 includes new routines that allow the consioncbf Posterior Probability Maps for
Bayesian Model Selection (BMS) at the group leVéiis technique allows neuroimagers
to make inferences about regionally specific effaing imaging data from a group of
subjects. These effects are characterised usingestay model comparisons. These
comparisons are analogous to classical inferenrg Ustests, with the advantage that
the models to be compared do not need to be nestddherefore can be very useful, for
example, in comparing computational models of le@yand decision-making, for which
there may be no natural nesting. Additionally, abiteary number of models can be
compared together.

The ‘BMS Maps’ functions receive as input previgusktimated log-model evidence
maps for each subject and model to be comparedseTheps can be obtained, for
example, using the first-level Bayesian estimationtines available in the software.
These functions then return between-subject Postétrobability Maps, which are
created by applying the new Random Effects apprdacimference on model space at
the group level in a voxel-wise manner to the logdel evidence data.

Bayesian Model Selection can be implemented andaliged via the user interface
(Stats > Bayesian Model Selection > BMs: Maps or BMS: Maps
(Results)).

M. J. Rosa, S. Bestmann, L. Harrison and W. PeBayesian M odel Selection Mapsfor Group Studies.
Under review.

K.E. Stephan, W. Penny, J. Daunizeau, R. MorankanBriston. Bayesian M odel Selection for Group
Studies. In press.

W.D. Penny, G. Flandin, and N. Trujillo-BarretBayesian Comparison of Spatially Regularised
General Linear Models. Human Brain Mapping, 28(4):275-293, 2007.

Graph Laplacian priors for fMRI

Users of spatial priors for fMRI now have additibflaxibility as to which voxels they
analyze. Previously, either the full volume or sfied slices could be selected, whereas
now sub-volumes, e.g. using a mask generated froeffact of interest computed from
smoothed data and a standard mass-univariate SRiWse) can be analyzed. The



options available in “Bayesian 1st-Level”, undernalysis space” are now; “Volume”,
“Slices” or “Clusters”. In addition, after this,aluser can choose how these volumes are
divided into smaller blocks, which is necessary tmmputational reasons, c.f. in
spm_spm a slice is also divided into blocks. Thekxks can be either slices (by
selecting “Slices”) or 3D segments (“Subvolumesthose extent is computed using a
graph partitioning algorithm. The latter option meahat the spatial prior is truly 3D,
instead of 2D spatial priors stacked one on another

Two additional spatial precision matrices have beeciuded; unweighted graph-
Laplacian, ‘UGL’, and weighted graph-Laplacian, ‘WG The priors ‘GMRF’ and
‘LORETA’ are functions of the ‘UGL’, i.e. normalideand squared respectively. The
‘WGL’ empirical prior uses the ordinary least sqemestimate of regression coefficients
to inform the precision matrix, which has the adege of preserving edges of
activations.

Explicit spatial basis priors (Flandin & Penny 2Dl be included and generalized in
the near future, which will include eigenvectordiué graph-Laplacian (see Harrison et al
2007-2008). In general these can be global, ieespatial extent of each basis covers the
whole graph, local, or multiscale. The benefit heri the flexibility to explore ‘natural’
bases that provide a sparse representation of m&uesponses.

G. Flandin & W.D. PennyBayesian fMRI data analysis with sparse spatial basis function priors.
Neurolmage34:1108-1125, 2007.

L. Harrison, W.D. Penny, J. Daunizeau, and K.Jstbn. Diffusion-based spatial priors for functional
magnetic resonance images. Neurolmage41(2):408-423, 2008.

Multivariate Bayes (MVB)

The MVB facility allows one to compare differentgotheses about the mapping from
functional or structural anatomy to perceptual babavioural consequences. Typical use
would be to infer whether a local cortical repreag&an is sparse or distributed. The aim
of MVB is not to predict brain states or classiiyyaomes (because these will be known)
but to enable inference on different models ofdtre—function mappings. This allows
one to optimise the model itself and produce pteatis that outperform standard pattern
classification approaches, like support vector nreeh

K.J. Friston, C. Chu, J. Mourdo-Miranda, O. Huln@, Rees, W.D. Penny, and J. Ashburrigayesian
decoding of brain images. Neurolmage39(1):181-205, 2008.

Canonical Variates Analysis (Results section)

This routine allows one to make inferences abotéces that are distributed in a

multivariate fashion or pattern over voxels. ltsisenventional canonical variates (CVA)
analysis (also know as canonical correlation amglydanCova and linear discriminant

analysis). CVA is a complement to MVB, in that theedictor variables remain the

design matrix and the response variable is the imgagata in the usual way. However,

the multivariate aspect of this model allows onetdst for designed effects that are
distributed over voxels and thereby increase theigeity of the analysis.

Because there is only one test, there is no nhelldpmparison problem. The results are
shown in term of the maximum intensity projectidntlee (positive) canonical image or



vector and the canonical variates based on (makimabrrelated mixtures of the
explanatory variables and data.

CVA uses the generalised eigenvalue solution totthatment and residual sum of
squares and products of a general linear model.eigenvalues (i.e., canonical values),
after transformation, have a chi-squared distrdoutand allow one to test the null
hypothesis that the mapping is D or more dimensiditas inference is shown as a bar
plot of p-values. The first p-value is formally rdeeal to that obtained using Wilks’
Lambda and tests for the significance of any magppin

This routine uses the current contrast to defiree dhbspace of interest and treats the
remaining design as uninteresting. Conventionalltesor the canonical values are used
after the data (and design matrix) have been whitemising the appropriate ReML
estimate of non-sphericity.

CVA can be used to for decoding because the madplaged by CVA design not care
about the direction of the mapping (hence canortoalelation analysis). However, one
cannot test for mappings between nonlinear mixtwksegional activity and some
experimental variable (this is what MVB was introdd for).

K.J. Friston, C.D. Frith, R.S. Frackoviak and Rriier. Characterizing dynamic brain responses with
fMRI: a multivariate approach. Neurolmage2(2):166-172, 1995.

K.J. Friston, K.M. Stephan, J.D. Heather, C.D. HriA.A loannides, L.C. Liu, M.D. Rugg, J. Vieth, H.
Keber, K. Hunter, R.S. Frackowialh multivariate analysis of evoked responses in EEG and MEG
data. Neurolmage3(3 Pt 1):167-174, 1996.

Topological False Discovery Rate (FDR)

FDR control is an alternative to the more conseéreatfamily-wise error” control for
multiple comparisons. Historically, SPM has aimed control FDR on voxels (the
expected fraction of false-positive/total-positidecisions made about individual voxels
in an image). This is now superseded by FDR comdfdbpological properties of the
signal (i.e. control of properties that pertairitie spatial organization of activations - e.qg.
height and extent - and are not reducible to imlial voxels). SPM is now able to
identify significantly voluminous blobs according & decision procedure that controls
spatial-extent FDR. Thus, on average, the fractbrblobs falsely deemed to have
significant spatial extent is controlled beneatly 400 = .05 or 1/100 = .01. More
recent work is examining FDR control over local ma.

J. Chumbley and K.J. Fristoralse discovery rate revisited: FDR and topological inference using
Gaussian random fields. Neuroimage44:62-70, 2009.

J. Chumbley, K.J. Worsley, G. Flandin and K.J. teris Topological FDR for Neurolmaging. Under
review.

Changes to Smoothness Estimation

The spatial smoothness estimation in SPEIpni est _snoot hness. n) normalised
the residual data (residual gradients were divibdgdstandard deviation, instead of
gradients being computed on standardized residualshage data that has fairly
homogeneous variance will show little differencethie estimated smoothness, but data
with highly structured variance images (e.g. VBMajamay give noticeably different
estimated smoothness and, as a result, correctadups. This change will generally



increase the estimated smoothness (i.e. smoothveespreviously underestimated) and
RESEL count will decrease. All other things equalger FWHM smoothness results in
increased voxel-level corrected significance; larg@VHM decreasesuncorrected
cluster-level significance, but smaller RESEL coordtly counter this effect in terms of
corrected significance.

K.J. Worsley.An unbiased estimator for the roughness of a multivariate Gaussian random field.
Technical Report, Department of Mathematics andisSies, McGill University 1996.

S.J. Kiebel, J.B. Poline, K.J. Friston, A.P. Holna®l K.J. WorsleyRobust smoothness estimation in
Statistical Parametric Maps using standardized residuals from the General Linear Model.
Neurolmage10:756-766, 1999.

S. Hayasaka, K. Phan, I. Liberzon, K.J. Worsle¥. Nichols.Nonstationary cluster-size inference with
random field and per mutation methods. Neurolmage22:676-687, 2004.

SPM for M/EEG

In SPM for M/EEG, there are several major changa® ISPM5 to SPM8.

First, we changed the internal M/EEG format of SRM many ways to make
reading/writing and manipulating M/EEG data morbust and straightforward for the
user. Effectively, we invested a lot of effort imbuilding almost from scratch the ‘SPM
for EEG’ machinery.

Second, there are now three ways of implementingB\® analyses in SPM. These are
the graphical user interface, SPM8 batch and MATLA&i pting. The batch and
scripting facilities come in handy for multi-subjestudies. As in fMRI analysis, many
processing steps are repetitive and it is now gsitaightforward to automatize the
software to a high degree.

Third, we now have a collaboration with the Figlgtsoftware developers from the
Donders Institute for Brain, Cognition and BehavijouCentre for Cognitive
Neuroimaging. Fieldtrip and SPM are pooling researfor converting data from the
native format to our software. We also share caaeM/EEG forward modelling, and
other functions. A full version of Fieldtrip is ilutled with SPM8 and Fieldtrip code is
updated with every SPM update. It is now posstbleconvert M/EEG data, within
SPM8, from SPM to Fieldtrip representation, andkbddis powerful feature makes it
possible to use, within SPM, many Fieldtrip funo8o For example, it is quite
straightforward, using a script, to work within SP&hd use Fieldtrip functions to do
different aspects of the preprocessing, time-fraqueanalysis and source analysis. This
extends SPM8 functionality to a high degree.

SPM8 now usesforwinv’ toolbox originally developed for Fieldtrip to cteaM/EEG
head models. Unlike in SPM5, the same head modelsuged for imaging source
reconstruction and DCM. There are presently twal&iof EEG head models and three
kinds of MEG head models and the range will pogdil@ extended in the future. SPM8
makes it straightforward to create head modelgrateng all the available measurements
such as individual structural scans and Polhemuad hehape measurements.
Coregistration of head models with EEG or MEG sen$® done with a graphical user
interface. The resulting head models and sensoeseptations can then be also used for
analyses implemented in Fieldtrip (i.e. beamforming

Fieldtrip: http://www.ru.nl/neuroimaging/fieldtrip/



Canonical Source Reconstruction for MEG

SPM8 uses a simple and efficient solution to thebj@m of reconstructing
electromagnetic sources into a canonical or stahaaatomical space. Its simplicity rests
upon incorporating subject-specific anatomy inte fiorward model in a way that
eschews the need for cortical surface extractitne fbrward model starts with a set of
canonical mesh, defined in a standard stereotaptice. These meshes are warped, in a
nonlinear fashion, to match the subject's anatoflys warping is the inverse of the
transformation derived from spatial normalizatidritee subject's structural MRI image.
Electromagnetic lead fields for the warped corticedsh are computed using a head
model based on the warped scalp and skull meshes.ensuing forward model is
inverted using an empirical Bayesian scheme (sedtip¥u Sparse Priors). Critically,
because anatomical information enters the forwaodleh) there is no need to spatially
normalize the reconstructed source activity. Ireotlvords, each source, comprising the
mesh, has a predetermined and unique anatomidaluéitin within standard stereotactic
space. This enables the pooling of data from mealspbjects and the reporting of results
in stereotactic coordinates. Furthermore, it alldkes graceful fusion of fMRI and MEG
data within the same anatomical framework.

The canonical cortical mesh surfaces are storédenanoni cal directory of SPM, in
GIfTI format. Importantly, they are different frothose available in SPM5 and were
created by D. Wakeman and R.N.A. Henson using femé@Sfrom a canonical brain in
MNI space. Seeanoni cal / spm _nmesh. man for more details.

J. Mattout, R.N.A. Henson, and K.J. Frist@anonical Source Reconstruction for MEG. Comput Intell
Neurosci, 2007(67613), 2007.

R.N.A. Henson, J. Mattout, C. Phillips and K.J.skan. Selecting forward models for MEG source-
reconstruction using model-evidence. Neurolmage, In press.

Multiple sparse priors for the M/EEG inverse problem

SPM8 exploits hierarchical or empirical Bayes tolveothe distributed source
reconstruction problem in electro- and magnetoemaiegraphy (EEG and MEG). This
rests on the automatic selection of multiple caftgources with compact spatial support
that are specified in terms of empirical priorsisTbbviates the need to use priors with a
specific form (e.g., smoothness or minimum normyvih spatial structure (e.g., priors
based on depth constraints or functional magnedsomance imaging results).
Furthermore, the inversion scheme allows for asspaolution for distributed sources, of
the sort enforced by equivalent current dipole (E@iddels. This means the approach
automatically selects either a sparse or a diggtbunodel, depending on the data.
Conventional applications of Bayesian solutions as® implemented to quantify the
improvement in performance.

K.J. Friston, L. Harrison, J. Daunizeau, S.J. Kigli@ Phillips, N. Trujillo-Bareto, R.N.A. Hensoi.
Flandin, and J. MattoutMultiple sparse priors for the M/EEG inverse problem. Neurolmage
39(3):1104-1120, 2008.

Variational Bayes for equivalent current dipoles (VB-ECD)

Much methodological research has been devoted \telagng sophisticated Bayesian
source imaging inversion schemes, while dipolesehaceived less attention. Dipole



models have their advantages; they are often apptepsummaries of evoked responses
or helpful first approximations. In SPM8, we havepiemented a variational Bayesian
algorithm that enables the fast Bayesian inversiodipole models. The approach allows
for specification of priors on all the model pardens. The posterior distributions can be
used to form Bayesian confidence intervals for reggng parameters, like dipole
locations. Furthermore, competing models (e.g., efoodvith different numbers of
dipoles) can be compared using their evidence ogima likelihood.

At the time of release, only EEG data are suppanéB-ECD.

S.J. Kiebel, J. Daunizeau, C. Phillips, and K.¥tBn.Variational Bayesian inversion of the equivalent
current dipole model in EEG/M EG. Neurolmage39(2):728-741, 2008.

Electromagnetic source reconstruction for group studies

SPM8 incorporates a simple procedure for electroratag (EEG or MEG) source
reconstruction, in the context of group studiessEmtails a simple extension of existing
source reconstruction techniques based upon thersion of hierarchical models. The
extension ensures that evoked or induced resp@mse®gconstructed in the same subset
of sources, over subjects. Effectively, the procedaligns the deployment of
reconstructed activity over subjects and increasedystantially, the detection of
differences between evoked or induced respondég group or between-subject level.

V. Litvak and K.J. FristonElectromagnetic source reconstruction for group studies. Neurolmage
42:1490-1498, 2008.

DCM for M/EEG: intrinsic connectivity

The original DCM for M/EEG publications looked dtet modulation of connectivity
between sources only. However, one could also ftatauhypotheses that posit a
modulation of within-source (intrinsic) connectiitThis feature has been implemented
in SPM8 and is useful for testing hypotheses alaolaiptation of neuronal responses to
local influences, in relation to influences that anediated by long-range extrinsic
connections (forward, backward, and lateral) fraheo sources.

S.J. Kiebel, M.I. Garrido, and K.J. Fristdbynamic causal modelling of evoked responses. The role of
intrinsic connections. Neurolmage 36:332-345, 2007.

DCM for Steady State Responses

Dynamic causal models (DCM) of steady-state respoisa new methodology available
for the analysis of M/IEEG or intracranial data e frequency domain. This new DCM
follows previous DCM frameworks by offering a menlstic description of how a
distributed neuronal network produces observed. ddta key difference lies in the type
of data this model can explain, namely, stationasgillatory dynamics. Frequency
responses that occur without time-dependency dusioige experimental event are
summarised in terms of their cross-spectral density

These M/EEG or intracranial responses in the frequelomain form the data feature
which is explained in terms of neuronal paramebgremploying a Bayesian inversion of
a coupled neural mass model. The parameterisabénstinto account the types



(inhibitory/excitatory) and direction of extrinsibetween source) cortical connections
and also includes meaningful physiological paramsetd within-source activity e.g.,
post-synaptic receptor density and time constants.

Under linearity and stationarity assumptions, tihepbysical parameters of this model
prescribe the cross-spectral density of responseasumed directly (e.g., local field
potentials) or indirectly through some lead-fieklg(, M/EEG data). Inversion of the
ensuing DCM provides conditional probabilities dw tsynaptic parameters of intrinsic
and extrinsic connections in the underlying neuraorework. Thus inferences about
synaptic physiology, as well as changes inducedplhgrmacological or behavioural
manipulations can be made.

R. Moran, K.E. Stephan, T. Seidenbecher, H.-C. PRpBolan and K.J. FristoRynamic Causal M odels
of steady-state responses. Neurolmage44:796-811, 2009.

Induced responses

DCM for induced responses aims to model couplingpiwiand between frequencies that
are associated with linear and non-linear mechanisespectively. This is a further
extension of DCM for ERP/ERF to cover the spectdynamics as measured with the
electroencephalogram (EEG) or the magnetoenceptaaog(MEG). The model
parameters encode the frequency response to exagenput and coupling among
sources and different frequencies. One key asdettteomodel is that it differentiates
between linear and nonlinear coupling; which cqroesl to within and between-
frequency coupling respectively. Furthermore, abdr form for the state equations can
be used to model the modulation of connectivityekgerimental manipulations.

C.C. Chen, S.J. Kiebel, K.J. Fristobynamic causal modelling of induced responses. Neurolmage
41(4):1293-1312, 2008.

DCM for Phase-Coupling

DCM for phase coupling uses a weakly coupled adoitl model to describe dynamic
phase changes in a network of oscillators. Combingd the use of Bayesian model
comparison, one can use these models to infer thechamisms underlying

synchronization processes in the brain. For exampleether activity leading to

synchronization is driven by master-slave or muteirainment mechanisms. Earlier
methods for studying phase coupling, such as theluBen Map Approach, were

restricted to pairs of brain regions. DCM for phaselipling allows connectivity to be

analysed in networks with arbitrary numbers of oagi

W.D. Penny et alDynamical Causal Modelsfor Phase Coupling. Under review

Mean-field and neural-mass models

These demonstrations illustrate the behaviour odn¥feeld and neural mass models of
cortical sources through simulations and stabditalyses. These models are exactly the
same models used in DCM for evoked, induced anddgtstate responses. It is
anticipated that people will deconstruct the cofferasiewing the demos, to understand
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the nature of the models in more depth and how #reyspecified, integrated and used.
Many of the figures produced are in the peer reggbvarticles associated with each
demonstration.

Although MEG/EEG signals are highly variable, sysé¢ic changes in distinct frequency
bands are commonly encountered. These frequencylispehanges represent robust
neural correlates of cognitive or perceptual preess(for example, alpha rhythms
emerge on closing the eyes). However, their funefigignificance remains a matter of
debate. Some of the mechanisms that generate $iggs#ls are known at the cellular
level and rest on a balance of excitatory and it interactions within and between
populations of neurons. The kinetics of the ensyiogulation dynamics determine the
frequency of oscillations. In these demonstratioves extend the classical nonlinear
lumped-parameter model of alpha rhythms, initialgveloped by Lopes da Silva and
colleagues, to generate more complex dynamics emsider conduction based models.

R. Moran, S.J. Kiebel, N. Rombach, W.T. O'Connad. Wurphy, R.B. Reilly, and K.J. FristoBayesian
estimation of synaptic physiology from the spectral responses of neural masses. Neurolmage
42(1):272-284, 2008.

DEM toolbox

Dynamic expectation maximisation (DEM) is a vaoal treatment of hierarchical,
nonlinear dynamic or static models. It uses adif@am Laplace assumption to
approximate the conditional, variational or ensembénsity of unknown states and
parameters. This is an approximation to the dgnkdt would obtain from Variational
Filtering (VF) in generalized coordinates of motidme first demonstration with VF uses
a simple convolution model and allows one to compBEM and VF. We also
demonstrate the inversion of increasingly compéidainodels; ranging from a simple
General Linear Model to a Lorenz attractor. lamicipated that the reader will examine
the routines called to fully understand the natfréhne scheme.

DEM presents a variational treatment of dynamic e®dhat furnishes time-dependent
conditional densities on the trajectory of a systestates and the time-independent
densities of its parameters. These are obtainechdyimising a variational action with
respect to conditional densities, under a fixearf@assumption about their form. The
action or path-integral of free-energy representveer bound on the model's log-
evidence required for model selection and averagihg approach rests on formulating
the optimisation dynamically, in generalised cooaties of motion. The resulting scheme
can be used for online Bayesian inversion of naalindynamic causal models and is
shown to outperform existing approaches, such abn#&ma and particle filtering.
Furthermore, it provides for dual and triple infaces on a system's states, parameters
and hyperparameters using exactly the same prexifdEM can be regarded as the
fixed-form homologue of variational filtering (whids covered in the demonstrations):
Variational filtering represents a simple Bayesfdtering scheme, using variational
calculus, for inference on the hidden states ofadyio systems. Variational filtering is a
stochastic scheme that propagates particles owlarging variational energy landscape,
such that their sample density approximates thelitonal density of hidden states and
inputs. Again, the key innovation, on which vaaatl filtering rests, is a formulation in
generalised coordinates of motion. This renders sti'eme much simpler and more
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versatile than existing approaches, such as th@sedbon particle filtering. We
demonstrate variational filtering using simulatedd areal data from hemodynamic
systems studied in neuroimaging and provide contparavaluations using particle
filtering and the fixed-form homologue of variatanfiltering, namely dynamic
expectation maximisation.

K.J. FristonVariational filtering. Neurolmage41(3):747-766, 2008.
K.J. Friston, N. Trujillo-Bareto, and J. Daunize®@EM: A variational treatment of dynamic systems.
Neurolmage41(3):849-885, 2008.

Mixture toolbox

This toolbox implements Bayesian Clustering basedBayesian Gaussian Mixture
models. The algorithm (spm_mix) will cluster muiticensional data and report on the
optimal number of clusters. The toolbox also cordaiode for a Robust General Linear
Model (spm_rglm), where the error processes compastwo-component univariate
mixture model. There is no user interface but tla@eemany demo files.

U. Noppeney, W. D. Penny, C. J. Price, G. Flanding K. J. Fristonldentification of degenerate
neuronal systems based on inter subject variability. Neuroimage 30:885-890, 2006.

W. Penny, J. Kilner and F. BlankenburBobust Bayesian General Linear Models. Neuroimage
36(3):661-671, 2007.

Spectral toolbox

This toolbox implements routines based on univariggpm_ar) and multivariate
autoregressive modelling (spm_mar), including tiared frequency domain Granger-
causality analysis, coherence and power spectralysia. The routines allow you to
estimate the optimal number of time lags in the MRR models. There is also a routine
for robust autoregressive modelling (spm_rar) inicwhthe error process is a two-
component mixture model (to run this routine yoll weed the mixture toolbox on your
search path). There is no user interface but #werenany demo files.

W.D. Penny and S.J. RoberBayesian M ultivariate Autoregresive M odelswith structured priors. IEE
Proceedings on Vision, Image and Signal Processing(1):33-41, 2002.
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