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Abstract
In previous work [34] we have developed a spatially regularised

General Linear Model (GLM) for the analysis of fMRI data which
allows for the characterisation of regionally specific effects using Pos-
terior Probability Maps (PPMs). In this paper we show how it also
provides an approximation to the model evidence. This is important
as it is the basis of Bayesian model comparison and provides a uni-
fied framework for Bayesian Analysis of Variance (ANOVA), Cluster
of Interest (COI) analyses and the principled selection of signal and
noise models. We also provide extensions that implement spatial and
anatomical regularisation of noise process parameters.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) using Blood Oxygen Level
Dependent (BOLD) contrast is an established method for making inferences
about regionally specific activations in the human brain [12]. From measure-
ments of changes in blood oxygenation one uses various statistical models,
such as the General Linear Model (GLM) [16], to make inferences about
task-specific changes in underlying neuronal activity.

In this paper we propose analysing fMRI using a Bayesian Model Compar-
ison (BMC) framework based on spatially regularised GLMs. Whilst model
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comparison can be thought of as a secondary concern, used primarily for
fine-tuning, an alternative perspective places it at the heart of the scientific
endeavour. This is because in any mature scientific discipline there will be a
candidate set of hypotheses. BMC can then be used to update ones beliefs
about the competing hypotheses in light of experimental data. A more pro-
saic example is the analysis of data from factorial experimental designs using
Analyses of Variance (ANOVA). This is a mainstay of scientific research [39].
To infer that manipulation of an experimental factor caused a significant
effect one compares two models, one with that factor and one without.

In neuroimaging, BMC is used in the analysis of functional integration
[33]. This allows inferences to be made about effective connectivity and how
that connectivity changes as a function of perceptual or cognitive set. In
analyses of functional specialisation BMC has been used to select the optimal
order of autoregressive noise models [32].

Model comparison can be implemented using classical or Bayesian infer-
ence. In classical inference, however, one is restricted to comparing nested
models [18]. Whilst this is sufficient for ANOVA, it is suboptimal in other
domains. In this paper we show that a non-nested approach is optimal for
the comparison of hemodynamic basis sets.

In previous work we have developed a Bayesian framework that allows
inferences to be made about regional activations using Posterior Probability
Maps (PPMs) [34]. This has been extended by incorporating a spatial prior
embodying our knowledge that evoked responses are spatially contiguous [34].
A key feature of that work is that it provides an approximation to the model
evidence.

In this paper we show how the model evidence can be used for model
comparison and give details of the necessary computations. This provides a
unified framework for Bayesian ANOVAs, Cluster of Interest (COI) analyses
and the principled selection of signal and noise models. We also describe
extensions to the framework that implement spatial and anatomical regular-
isation of noise process parameters.

The paper is structured as follows. In section 2.1 we describe Bayesian
model comparison and show how the model evidence can be appproximated.
In section 2.2 we describe our probabilistic model for fMRI and show how
approximate inference can proceed. We also describe a variant of the model
using ‘tissue-type priors’ that make use of anatomical information. In the
results section the method is applied to simulated data to illustrate the prop-
erties of COI analysis and to compare nested versus non-nested model com-
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parison of hemodynamic basis sets. Results on an event-related fMRI data
set illustrate Bayesian selection of signal and noise models and Bayesian
ANOVA.

2 Theory

2.1 Bayesian Model Comparison

2.1.1 Posterior model probabilities

Given a set of probabilistic models indexed by m = 1..M and a data set
Y , Bayesian Model Comparison (BMC) can be implemented as follows [24].
Firstly, one requires a prior distribution over models, p(m). Typically this
will be a uniform distribution indicating that no model is favoured a pri-
ori. One then needs the evidence for model m, p(Y |m). The evidence is not
straightforward to compute but the next section shows how it can be approx-
imated. From the model prior and model evidence one can then compute the
posterior probability of model m using Bayes rule

p(m|Y ) =
p(Y |m)p(m)∑

m′ p(Y |m′)p(m′)
(1)

This posterior distribution can be used in a number of ways. In Bayesian
Model Averaging (BMA) p(m|Y ) provides a weighting for combining model
predictions. This has been used, for example, to improve EEG source local-
isation [38].

In this paper we use p(m|Y ) for Bayesian model comparison. In sec-
tion 4.1.3, for example, we compare the evidence of models with different
hemodynamic basis sets. All the examples in this paper assume a uniform
prior over models ie. p(m) = 1/M . The model with the highest posterior
probability will therefore also have the highest evidence. This means that
the model evidence alone can also be used for model selection.

2.1.2 Approximating the model evidence

Given that model m has parameters θ, the evidence for model m can be
written as

p(Y |m) =
p(Y, θ|m)

p(θ|Y,m)
(2)
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Taking logs, and writing the log-evidence as L(m) ≡ log p(Y |m) gives

L(m) = log p(Y, θ|m)− log p(θ|Y,m) (3)

If we now take expectations with respect to, what for the moment we will
regard as an arbitrary distribution, q(θ|Y,m) we get

L(m) =
∫
q(θ|Y,m) log p(Y, θ|m)dθ −

∫
q(θ|Y,m) log p(θ|Y,m)dθ (4)

This can be re-arranged as follows

L(m) = F (m) +KL[q(θ|Y,m), p(θ|Y,m)] (5)

where the first term is known as the negative free energy [31]

F (m) =
∫
q(θ|Y,m) log

p(Y, θ|m)

q(θ|Y,m)
dθ (6)

and the second term is the Kullback Leibler (KL) divergence [11] which can
be written generically for any probability densities q(x) and p(x) as

KL[q(x), p(x)] =
∫
q(x) log

q(x)

p(x)
dx (7)

KL measures the discrepancy between two probability densities. It is equal to
zero if the densities are identical and greater than zero otherwise. Because
KL ≥ 0, equation 5 tells us that L(m) ≥ F (m). That is, the log model
evidence is bounded below by F , and the closer q(θ|Y,m) is to p(θ|Y,m), the
tighter the bound.

Equation 5 describes the fundamental relationship between model evi-
dence, free energy and KL-divergence. This relationship is used in the infer-
ence framework known as Variational Bayes (VB) [28]. In VB, the parameters
of an approximate posterior density, q(θ|Y,m) (see section 2.2.3) are updated
to maximise F (m). This therefore maximises a lower bound on the model
evidence. A number of methods now use this approach in the analysis of
neuroimaging data [41, 32, 34, 36, 37].

Model comparison proceeds using F (m) as a surrogate for the model
evidence, under the assumption that the bound in equation 5 is tight. This
will be the case if the approximate posteriors are close to the true posteriors.
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In our previous work on modelling fMRI time series (see section 5 in [32]) we
have used Gibbs sampling to show that this is indeed the case.

It is also possible to approximate the model evidence using sampling
methods [18, 5]. In the very general context of probabilistic graphical mod-
els, Beal and Ghahramani [5] have shown that the VB approximation of
model evidence is considerably more accurate than the Bayesian Information
Criterion (BIC) whilst incurring little extra computational cost. Moreover,
model selection using VB is of comparable accuracy to a much more com-
putationally demanding method based on Annealed Importance Sampling
(AIS) [5].

2.1.3 Computing the free energy

In this paper we will use F (m) as an approximation to the log evidence.
This will form the basis of all model comparisons. This quantity can also
be expressed in a more convenient form. If we expand the joint density
p(Y, θ|m) = p(Y |θ,m)p(θ|m) and collect terms it can be written

F (m) = V (m)−KL[q(θ|Y,m), p(θ|m)] (8)

where V (m) is the average log likelihood

V (m) =
∫
q(θ|Y,m) log p(Y |θ,m)dθ (9)

and KL[q(θ|Y,m), p(θ|m)] is the divergence between the approximate pos-
terior and the prior. The quantity F (m) therefore comprises two terms (i)
an accuracy term, the average log likelihood, and (ii) a complexity term, the
KL divergence. This can be viewed as a complexity term because, as the
number of parameters grows (ie. the dimension of θ) so does the KL.

2.2 Analysis of fMRI time series

To apply the model comparison framework we need a set of models m and
for each model we must specify a set of parameters, θ, a prior distribution
of those parameters, p(θ|m) and the likelihood p(Y |θ,m). Together, the
likelihood and prior define a probabilistic generative model which we describe
in the following section.
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2.2.1 Generative model

We write an fMRI data set consisting of T time points at N voxels as the
T ×N matrix Y . In mass-univariate models [16], these data are explained in
terms of a T ×K design matrix X, containing the values of K regressors at
T time points, and a K ×N matrix of regression coefficients W , containing
K regression coefficients at each of the N voxels. The model is written

Y = XW + E (10)

where E is a T ×N error matrix.
It is well known that fMRI data is contaminated with artifacts. These

stem primarily from low-frequency drifts due to hardware instabilities, aliased
cardiac pulsation and respiratory sources, unmodelled neuronal activity and
residual motion artifacts not accounted for by rigid body registration meth-
ods [40]. This results in the residuals of an fMRI analysis being temporally
autocorrelated.

In previous work we have shown that, after removal of low-frequency
drifts using Discrete Cosine Transform (DCT) basis sets, low-order voxel-
wise autoregressive (AR) models are sufficient for modelling this autocor-
relation [32]. It is important to model these noise processes as parameter
estimation becomes less biased [17] and more accurate [32]. Together, DCT
and AR modelling can account for long-memory noise processes. Alternative
procedures for removing low-frequency drifts include the use of running-line
smoothers or polynomial expansions [26].

In this paper, we adopt the approach taken in previous work. For a P th-
order AR model, the likelihood of the data is given by (see equation 10 in
[32])

p(Y |W,A, λ) =
T∏

t=P+1

N∏
n=1

N(ytn − xtwn; (dtn −Xtwn)Tan, λ
−1
n ) (11)

where N() is the Normal density defined in Appendix E1, at the nth voxel,
an is a P × 1 vector of autoregressive coefficients, wn is a K × 1 vector of
regression coefficients and λn is the observation noise precision. The vector
xt is the tth row of the design matrix and Xt is a P×K matrix containing the
previous P rows of X prior to time point t. The scalar ytn is the fMRI scan
at the tth time point and nth voxel and dtn = [yt−1,n, yt−2,n, ..., yt−P,n]T . This
shows that higher model likelihoods are obtained when the prediction error
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ytn − xtwn is closer to what is expected from the AR estimate of prediction
error. Because dtn depends on data P time steps before, the likelihood is
evaluated starting at time point P +1, thus ignoring the GLM fit at the first
P time points.

The voxel wise parameters wn and an are contained in the matrices W
and A and the voxel-wise precisions λn are contained in λ. Appendices A,
B and C describe the prior distributions over these parameters. Appendix
B, for example, describes a prior over regression coefficients that enforces
an automatic spatial regularisation using eg. Low Resolution Tomography
(LORETA) or Gaussian Markov Random Field (GMRF) priors. These have
been described in detail in previous work [34]. Together, the likelihood and
priors define the generative model, which is portrayed graphically in Figure 1.
This generative model is identical to that described in our previous work [34],
except that we have augmented the model so that the AR coefficients are
regularised as described in the next section.

2.2.2 AR priors

It is well established that the amount of temporal autocorrelation in fMRI
data varies as a function of voxel position. This can be modelled using voxel-
wise AR processes [10, 32, 42, 40].

It has also been observed that the autocorrelation varies as a function of
tissue type ie. grey matter, white matter or Cerebro-Spinal Fluid (CSF). For
example, in AR(1) models, larger coefficients are observed in CSF [32].

It is an open question, however, as to whether tissue type is sufficient
to explain the observed spatial variability. In this paper we address this
question from a model comparison perspective by comparing two types of
model. Each model regularises the estimation of voxel-wise AR coefficients
in a different way.

The first type of model uses a ‘tissue-type prior’ which we define as fol-
lows. Firstly, each voxel is labelled as belonging to one of S discrete cate-
gories. For example, s = {1, 2, 3} could correspond to the voxel belonging
to (1) grey matter, (2) white matter or (3) CSF. This information can be
derived from a segmentation of registered structural images [2]. Secondly,
archetypal AR coefficient vectors are associated with each category. This is
implemented by specifying a Gaussian distribution for each category. Ap-
pendix F describes these priors mathematically and shows how the means
and precisions of the Gaussians can be estimated from the data.
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The second type of model uses a spatial prior that takes into account
voxel position. Following Woolrich et al. [41] we use a GMRF prior. This
has been shown to improve estimation of AR parameters, especially for the
lower order coefficients. This prior is defined mathematically in Appendix
C. It is also illustrated in the generative model in Figure 1. Similar spatial
regularisation procedures, but based on Gaussian kernels, have been proposed
in the context of classical inference [42, 17].

In section 4.1.1 we use simulations to show that our model comparison
procedures are capable of detecting the correct type of variation (eg. spatial
versus tissue-type). In section 4.2.1 we will see which is a better model for
fMRI.

2.2.3 Approximate Posteriors

This paper uses the Variational Bayes framework [28] for estimation and
inference. This requires the specification of an approximate posterior distri-
bution whose parameters are updated so as to maximise the negative free
energy, as described earlier in section 2.1.2.

This paper uses the algorithm described in previous work [34] in which we
assume that the approximate posterior factorises over voxels and subsets of
parameters. This leads to a set of equations for updating the sufficient statis-
tics of components of the approximate posterior shown in Figure 2. These
update equations are also provided in the appendices. These appendices are
self-contained except for a number of quantities that are marked out using
the ‘tilde’ notation. These are Ãn, b̃n, C̃n, d̃n and G̃n which are all defined in
Appendix B of [32].

Derivations of update equations that are new to this paper (see eg. Ap-
pendixes C.2, F.2, F.4 and F.5) have been omitted but follow the standard
variational approach which is also described in Appendix A of [34].

The central quantity of interest in fMRI analysis is our estimate of effect
sizes, embodied in contrasts of regression coefficients. A key update equation
in our VB scheme is, therefore, the approximate posterior for the regression
coefficients. This is given by equation 25 in the appendix. For the special
case of temporally uncorrelated data we have

Σ̂n =
(
λ̄nX

TX + B̄nn

)−1
(12)

ŵn = Σ̂n

(
λ̄nX

Tyn + rn

)
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where B̄ is a spatial precision matrix and rn is the weighted sum of neigh-
boring regression coefficient estimates.

This update therefore indicates that the regression coefficient estimate at
a given voxel regresses towards those at nearby voxels. This is the desired
effect of the spatial prior and it is preserved despite the factoristion over
voxels in the approximate posterior. Equation 12 can be thought of as the
combination of a temporal prediction XTyn and a spatial prediction from rn.
Each prediction is weighted by its relative precision to produce the optimal
estimate ŵn. In this sense, the VB update rules provide a spatio-temporal
deconvolution of fMRI data. Moreover, the parameters controlling the rela-
tive precisions, λ̄n and ᾱ are estimated from the data. This means that our
effect size estimates derive from an automatically regularised spatio-temporal
deconvolution.

2.2.4 Computing the free energy

The negative free energy, F (m), will be used to approximate the model evi-
dence and can be computed using the expression in equation 8. It comprises
two types of term; the average log likelihood and the KL terms. Appendix D
shows how the average log likelihood is computed. For the KL terms we have
(dropping the m’s)

KL[q(θ|Y ), p(θ)] = KL[q(W ), p(W )] +KL[q(A), p(A)] (13)

+ KL[q(λ), p(λ)] +KL[q(α), p(α)] +KL[q(β), p(β)]

where W are regression coefficients, A are AR coefficients, λ are observation
noise precisions and α and β are the spatial regularisation coefficients for W
and A, respectively (see Figure 1). Appendix E shows in detail how each KL
term is computed. It is also possible to re-arrange the computation of F (m)
to make it more efficient, as a number of terms in the average log-likelihood
cancel with those in the KL expressions (see eg. [30]). We have not used this
re-arrangement, however, as it compromises the readability and extendability
of the implementation.

When comparing models with the same type of spatial prior (ie. same Dw

and Da), and the same number of regression coefficients, K, and the same
number of AR coefficients, P , there is no need to compute terms involving
log |Dw| or log |Da|. This saves time, especially for slices with large numbers
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of voxels. Otherwise, this log-determinant must be computed1. This can be
implemented by eigendecomposition and then taking the sum of the log of
eigenvalues greater than machine precision. This last step is necessary as the
matrices are not full rank [34].

Because our approximation to the model evidence depends on the above
KL terms, it will also depend on the constants that define the priors at
the highest level of the model. These are the priors p(λn), p(αk) and p(βp)
which have associated constants q1, q2, r1, r2, u1 and u2 (see appendix A.1).
In previous work, however, we have shown for example that the optimal
AR model order is robust to variations in β̄p = r1r2 over several orders of
magnitude (see section 5.2 in [32]).

2.2.5 Unique contributions

It is possible to decompose the evidence for each model into a sum of unique
contributions from each voxel

F (m) =
∑
n

Un(m) (14)

where

Un(m) = V (n)−KW (n)−KA(n)−KLGa[q(λn), p(λn)] (15)

− 1

N
(KL[q(α), p(α)] +KL[q(β), p(β)])

The computation of these voxel-specific terms is described in detail in ap-
pendices D and E.

Breaking the evidence down into contributions from each voxel has two
advantages. Firstly, the update equations need only be applied at voxels
whose contribution, Un(m), is still increasing. We envisage that this could
speed the estimation process, although this has yet to be implemented. Sec-
ondly, the differences in voxel-wise contributions between two models can be
used to plot Posterior Probability Maps (PPMs). For example, given two
models with equal priors the posterior probability of model 2 at voxel n is
given by

p(m = 2|Y, n) =
exp(Un(2))

exp(Un(1)) + exp(Un(2))
(16)

1A promising alternative to GMRF and LORETA priors are the thin plate spline priors
defined in [9]. These have the benefit that the determinant has a known algebraic form
making computation of the log-determinant much simpler.
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Because Un(m) is a contribution to the log evidence rather than the log-
evidence per se, maps based on Un(m) are ‘pseudo’-PPMs rather than PPMs
proper. Nevertheless, they should be useful in characterising regionally spe-
cific effects. This method is used in the context of Bayesian ANOVAs in
section 4.2.2.

The pseudo-PPMs we have defined are conceptually different from PPMs
proper. They are not a numerical approximation to proper PPMs. This is
because our models are spatially extended and the model evidence is only
defined for a slice of spatially extended data. In the abscence of spatial
correlation pseudo-PPMs will correspond to proper PPMs.

2.2.6 Hemodynamic basis sets

It is well known that the shape of the hemodynamic response varies from
voxel to voxel and from subject to subject [44]. This is accounted for in
the context of GLM analyses by characterising the response using a hemo-
dynamic basis set [12]. For example, Friston et al. [13] proposed the use of
a ‘canonical’ basis function composed of a sum of gamma functions. This
can be augmented to include two other basis functions, the derivative of the
canonical with respect to time and the derivative with respect to disper-
sion. Together, these basis functions constitute an ‘Informed’ basis set [19].
For event-related designs, other authors have proposed ‘selective averaging’
procedures. These are formally equivalent to the use of a Finite Impulse
Response (FIR) basis set [19].

In this paper we consider use of the following hemodynamic basis sets.
Unless otherwise specified the basis functions cover a 32s period post-stimulus.
We use the seven standard options available in the Statistical Parametric
Mapping (SPM) software [1] (i) Inf-1: the canonical response, (ii) Inf-2: the
canonical plus temporal derivative, (iii) Inf-3: the canonical plus temporal
and dispersion derivatives, (iv) F: a Fourier basis set with 10 sinusoids cov-
ering 20s, (v) FH: as (iv) but with Hanning windows, (vi) Gamm3: a set of
three Gamma basis functions, (vii) FIR: a finite impulse response with 10
2-second windows.
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3 Face fMRI data

This paper uses an event-related fMRI data set acquired by Henson et al.
[22]. This data and a full description of the experiments and pre-processing
are available from http://www.fil.ion.ucl.ac.uk/spm/data/. The data were
acquired during an experiment concerned with the processing of images of
faces [22]. This was an event-related study in which greyscale images of faces
were presented for 500ms, replacing a baseline of an oval chequerboard which
was present throughout the interstimulus interval (see Figure 3). Some faces
were of famous people and were therefore familiar to the subject and others
were not. Each face in the database was presented twice. This paradigm is a
two-by-two factorial design where the factors are familiarity and repetition.
The four experimental conditions are ‘U1’, ‘U2’, ‘F1’ and ‘F2’ which are the
first or second (1/2) presentations of images of familiar ‘F’ or unfamiliar ‘U’
faces. The design is shown pictorially in Figure 3.

Images were acquired from a 2T VISION system (Siemens, Erlangen, Ger-
many) which produced T2*-weighted transverse Echo-Planar Images (EPIs)
with BOLD contrast. Whole brain EPIs consisting of 24 transverse slices
were acquired every two seconds resulting in a total of T=351 scans. All
functional images were realigned to the first functional image using a six-
parameter rigid-body transformation. To correct for the fact that different
slices were acquired at different times, time series were interpolated to the
acquisition time of the reference slice. Images were then spatially normalized
to a standard EPI template using a nonlinear warping method [3].

To implement a classical SPM analysis using Random Field Theory one
usually spatially smooths the data at this stage [7]. But because our model in-
corporates a spatial prior that automatically determines the optimal amount
of spatial regularization, this smoothing step is unnecessary.

We then computed the global mean value, g, over all time series, excluding
non-brain voxels, and scaled each time series by the factor 100/g. This makes
the units of the regression coefficients ‘percentage of global mean value’. Each
time series was then high-pass filtered using a set of discrete cosine basis
functions with a filter cut-off of 128 seconds.

A structural scan was also acquired. This was normalised to the mean
functional image and segmented into grey matter, white matter and CSF
using the algorithm described in [2]. Analysis of the functional data was
restricted to within-brain voxels, as identified by the structural segmentation.
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4 Results

4.1 Simulated data

4.1.1 Comparing noise models

In this section we compare different assumptions about the prior distribution
of AR coefficients using simulated data. The use of spatial GMRF priors
assumes that AR coefficients vary smoothly across a slice whereas the use of
tissue-type priors assumes that they vary about a small number of typical
values. The simulations use first order AR models for simplicity. If the Signal
to Noise Ratio (SNR) is sufficiently high, and our approximation, F , to the
model evidence is sufficiently accurate then we should be able to use F to
identify which prior was used to generate the data.

The leftmost column in Figure 4 shows four different profiles of AR(1)
coefficients. The first three profiles have one, two and three different typical
values and the fourth has values that vary continuously as a function of
position.

For each AR(1) profile we generated data as follows. We used a design
matrix comprising two regressors, the first being a boxcar with a period of
20 scans and the second a constant. The design matrix, X, is therefore of
dimension T×K (K = 2) and we chose T = 100 scans. We then used aK×N
element regression coefficient matrix, W , whose elements were all set to 0.5.
We chose N = 64 so that the coefficients could be reshaped into 8×8 images
for display purposes. From this, we generated a simulated fMRI signal XW
of dimension T × N . We also generated a simulated noise fMRI signal by
first generating a Gaussian IID noise sequence with mean zero and precision
λ = 1. For each voxel n, we then introduced a noise correlation as determined
by the value of the AR coefficient at that voxel. The simulated data Y then
comprised the simulated fMRI signal plus the simulated fMRI noise. Overall,
we generated four data sets having the profile of AR(1) coefficients shown in
Figure 4.

We then fitted each data set with four different models. The correspond-
ing estimated profiles are shown in columns two to five in Figure 4. Columns
two to four are estimates from tissue-type priors with 1, 2 and 3 different cat-
egories, respectively. The fifth column contains estimates from a model with
spatial GMRF priors. The final column shows the posterior model probabili-
ties, p(m|Y ). These posterior probabilities are computed using the constraint
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∑
i p(mi|Y ) = 1, where i indexes the model and p(mi|Y ) ∝ p(Y |mi) ∝ F (mi)

(under flat model priors p(mi)). These show that the appproximation to the
model evidence (see section 2.1.2) is sufficiently accurate for the method to
correctly detect the type of spatial structure in the data.

The estimate of F (mi) entailed designating each voxel to the appropriate
‘tissue-type’ for the first three models. This is a component that is eschewed
by the autoregressive model with spatial GMRF priors.

As noted in section 2.2.4, our approximation to the model evidence is
dependent on the constants that define the priors at the highest level of the
model. We investigated this dependence by repeating the model fitting using
different values for the relevant constants. Varying the prior mean precision
of AR coefficients β̄ = r1r2 between 1 and 100 did not have a major effect
the choice of optimal model order.

4.1.2 Cluster of interest analysis

If one has a strong prior hypothesis about the potential location of an ac-
tivation then a Region Of Interest (ROI) analysis can be made. A region
comprising a number of voxels is first chosen. This is often identified us-
ing localizer contrasts or scans (see eg. [23]). A single time series is then
extracted using Principal Component Analysis or Singular Value Decomposi-
tion [8], the mean operator or multiplication with a user-specified activation
shape [29]. Analysis is then based on this single ‘summary’ time series.

This section describes an alternative approach that we call Cluster of
Interest (COI) analysis. Again, a region comprising a number of voxels is
first chosen but the analysis is based on all time series in that region. The
approach may also be viewed as a Bayesian cluster-level inference as it shares
the fundamental property of classical cluster level inference that anatomical
specificity is traded off for increased sensitivity [15].

To illustrate the properties of a COI analysis we use simulations based on
the experimental design of the face fMRI data in which models with different
design matrices are compared. Design matrix 1, a ‘null’ model, comprises
a column of 1s to model the mean response at a voxel. Design matrix 2
has a single additional experimental condition which was the presentation of
a face regardless of factor or level. This was convolved with the canonical
hemodynamic response function. Evidence in favour of a model using design
matrix 2 allows one to infer that there was an average response to faces.

Two types of data were generated, type 1 data sets using design matrix
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1 and type 2 data sets using design matrix 2. Both types of data were
generated for two-dimensional clusters containing N = 1, 4, 9, 16 and 25
voxels. For each size of cluster we generated 500 data sets of each type.
Overall, 2×5×500 = 5, 000 data sets were generated. Both types of data were
generated using regression coefficients fixed at unity across the patch. For
data type 2 this represents a cluster of voxels that is uniformly active. The
observation noise variance was set so that a range of sensitivities would be
observed. This was achieved using a voxel-wise Signal to Noise Ratio (SNR)
of 0.2 (we define SNR as the ratio of signal to noise standard deviation).
This is very small for fMRI. The same observation noise variance was used
for both types of data.

For each data set we then fitted four models; design matrices 1 and 2 with
spatial GMRF priors and design matrices 1 and 2 with shrinkage priors.
These shrinkage priors have been used in previous work [14] and do not
make use of spatial information. A cluster was declared to be ‘active’ if the
posterior probability of the model using design matrix 2 was greater than
0.999. We then computed the sensitivity and specificity of the inference over
the 500 instances for each N . Overall, 4×5, 000 = 20, 000 models were fitted.

The specificity was found to be 100% for all sizes of cluster and for both
types of prior. Figure 5 shows a plot of sensitivity as a function of number
of voxels. This indicates that the effect is too weak to be detected at the
single voxel level. But the signal is increasingly detectable as the cluster
size increases. This shows the power of cluster-level inference. Weak, diffuse
signals can be detected at the ‘cluster-level’ that can’t be detected at the
‘voxel-level’. The figure also shows that use of a spatial prior markedly
increases this sensitivity. For the cluster containing 9 voxels the sensitivity
is increased by over 30%.

In a second set of simulations we repeated the above process but the re-
gression coefficients were set to conform to a non-uniformly activated cluster.
A spatial Gaussian shape was chosen. The SNR was again chosen to obtain
a range of sensitivities. This was achieved using SNR=0.4. We again gener-
ated two types of data sets, with 500 instances of each type for each value of
N .

Each data set was then fitted with six models; design matrices 1 and 2
with spatial GMRF priors, design matrices 1 and 2 applied to mean cluster
activity, and design matrices 1 and 2 applied to the Principal Component
(PC) of cluster activity. The first two models are used to assess the COI
approach and the last four to assess two different ROI approaches. Clearly,
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the spatial parameters are redundant when modelling univariate summaries
of regional responses like the mean or regional eigenvariate.

Clusters were again declared to be ‘active’ if the posterior probability of
the model using design matrix 2 was greater than 0.999. Figure 6 shows a
plot of sensitivity as a function of number of voxels, for each of the three
approaches. Sensitivity reaches a peak for the cluster having 9 voxels. It
then falls off due to the Gaussian nature of the spatial activation profile.
This is seen most severely for the ROI approaches. Sensitivity is lowest
using the mean time series and slighty higher using the PC time series. For
the largest cluster, the COI approach is 20 to 30% more sensitive than the
ROI approaches.

These properties hold for all types of model comparison, whether it be
an inference about a main effect, interaction (see section 4.2.2) or selection
of a hemodynamic basis set.

4.1.3 Comparing hemodynamic basis sets

This section describes the properties of nested versus non-nested model com-
parison in the context of selecting an optimal hemodynamic basis set. As in
the previous section, we use simulations based on the experimental design
of the face fMRI data. Two types of data set are generated. The design
matrix of type 1 data comprises the time series of delta functions indicating
the presentation of a face, regardless of factor or level, convolved with Inf-3,
the Informed basis set (see section 2.2.6). Type 2 data sets use the same time
series of delta functions but convolved with an FIR basis set having 10 time
bins. Both types of data used design matrices also containing a constant
term.

Type 2 data sets used FIR coefficients that were set to resemble the
canonical response but with a pronounced undershoot. These non-canonical
undershoots have been observed by the authors in previous work, so make an
interesting hypothetical signal. Type 1 data sets were generated by projecting
noise-free type 2 data onto the Inf-3 basis set. Type 2 data therefore contains
a subtle effect that can be captured by an FIR basis but not by Inf-3. Noise-
free versions of each type of data are shown in Figure 7. The difference
between these noise-free time series constitutes our signal of interest.

Noise was then added to each type of data set, as in the previous section,
such that the noise level would provide a range of sensitivities. This was
achieved using SNR=0.6. Again, 500 data sets of each type were generated
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for each cluster size. Overall, 2× 5× 500 = 5, 000 data sets were generated.
We then fitted three different models to each data set. Model 1 used

an Inf3-basis, model 2 an FIR basis and model 3 used an augmented design
matrix containing both an Inf3 and FIR basis. Model 1 is therefore ‘nested’
within model 3. Comparing the evidence of model 2 to model 1 constitutes
a non-nested model comparison, whereas comparing the evidence of model
3 to model 1 constitutes a nested model comparison. The equivalent nested
model comparison in classical inference is a standard approach for comparing
basis sets in functional imaging using the ‘extra sum of squares’ principle [21].

Figure 8 plots the sensitivity of nested and non-nested model compari-
son approaches. Firstly, we note that the subtle undershoot effect cannot be
detected at the voxel level. But as the clusters get larger the effect becomes
increasingly detectable. Moreover, it is clear from the figure that non-nested
model comparison is more sensitive. For the cluster with 9 voxels, for exam-
ple, the non-nested approach is nearly twice as sensitive.

4.2 Face fMRI data

4.2.1 Comparing noise models

This section compares spatial versus tissue-type AR priors on the face fMRI
data. We used a GLM with a design matrix where each level of each factor is
represented separately. Each event type was convolved with the Inf-2 basis
set. An additional constant term gives 9 regressors.

We then compared a number of approaches for specifying the AR com-
ponent of the model. Whilst the model evidence can be used to select the
optimal model order, as shown in [32], the focus of this section is on compar-
ing spatial versus tissue-type priors. We therefore used an AR model order
of P = 1 for all comparisons.

We compared four different priors. The first three are tissue-type priors
which use (i) a single Gaussian for all voxels (ii) three Gaussians, one for vox-
els in grey matter, one for white matter and one for CSF, (iii) two Gaussians,
one for voxels in CSF (as defined using a spatially smoothed and thresholded
CSF mask) and the other for the remaining voxels and (iv) a spatial GMRF
prior. Prior (iii) was included in an attempt to improve the correspondence
between the observed structure in the functional data (AR images) and the
segmentation obtained from the structural data. Various spatial smoothing
and thresholding operators were fine-tuned so as to obtain the best results
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possible.
Figure 9 shows the estimated AR coefficients for priors (iii) and (iv) for

selected slices. The corresponding images for priors (i) and (ii) are visually
very similar to the prior (iii) images. Estimates using the GMRF prior are
smoother, as one would expect. We now turn to a comparison of the model
evidence.

Prior (i) had the lowest evidence in 95% slices. This indicates that there
is tissue-type structure in the pattern of AR coefficients (as priors (ii) and
(iii) had higher evidence). Whilst this is evident from the images themselves
and is widely recognised, our framework allows this inference to be made
using a statistical test by evaluating the posterior beliefs that correspond to
the differences in evidence. This posterior belief was unity for 95% slices.

Prior (ii) had the third highest evidence in 70% slices and prior (iii) had
the second highest evidence in 70% of slices. This reflects our extensive efforts
to improve the correspondence between the observed structure in the func-
tional data (AR images) and the segmentation obtained from the structural
data.

Despite these efforts, however, models with the spatial GMRF prior had
the highest evidence in all slices examined. This shows that although tissue-
type effects are strong, they are not sufficient to explain the observed spatial
variability in temporal autocorrelation.

4.2.2 ANOVA

We now present a Bayesian Analysis of Variance (ANOVA) for the face fMRI
data. The presentation of faces conforms to a factorial design with two
factors, familiarity and repetition. There are therefore four putative effects
of interest (i) the average effect of presenting faces, (ii) the main effect of
repetition (iii) the main effect of familiarity and (iv) the interaction between
repetition and familiarity.

As described in [39] (see also [20]), ANOVA is fundamentally a model
comparison procedure. To test for our putative effects we therefore fitted a
number of models to the data. For each model, all experimental conditions
were modelled by convolving the appropriate stimulus functions with the
Inf-2 hemodynamic basis set. The design matrix of Model 1, a ‘null’ model,
comprised a column of 1s to model the mean response at each voxel. Model
2 had a single additional experimental condition, which was the presentation
of a face regardless of factor or level. Model 3 had two conditions, first
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or second repetition regardless of familiarity. Model 4 had two conditions,
familiar or unfamiliar regardless of repetition. Model 5 had a design matrix
containing all the conditions from models 3 and 4 (ie. both main effects but
no interaction). Model 6 had a ‘full’ design matrix comprising four conditions
where each level of each factor is entered separately (ie. all effects).

Voxel-wise contributions to the approximate log-evidence were computed
for each model, Un(m). These were then compared to assess putative exper-
imental effects. For (i) the average effect of presenting faces we compared
models 1 and 2, for (ii) the main effect of repetition we compared models 2
and 3, for (iii) the main effect of familiarity we compared models 2 and 4
and for (iv) the interaction between repetition and familiarity we compared
models 5 and 6.

Figure 10 shows a map of the average effect of presenting faces for selected
slices. Figure 11 shows a map of the main effect of repetition. In each figure
the top row shows a map of the relevant difference in contribution to the
approximate log-evidence, Un(m1)−Un(m2), and the bottom row shows the
same but thresholded so that the corresponding posterior probability, com-
puted using equation 16, is greater than 0.999. For this subject there is a
large bilateral occipital and fusiform response to the main effect of faces (Fig-
ure 10) but no repetition effect (Figure 11). The familiarity and interaction
effects were also absent in this subject and so have not been presented.

4.2.3 Comparing hemodynamic basis sets

This section compares models with different hemodynamic basis sets. We
use the seven options described in section 2.2.6. The basis functions were
convolved with stimulus functions corresponding to all four experimental
conditions.

The approach is illustrated on COIs from three regions centred on left
occipital cortex (LOC) x = −45, y = −60, z = −24mm, right occipital cortex
(ROC) x = 45, y = −66, z = −24mm and sensorimotor cortex x = 36, y =
−9, z = 66mm. All COIs were 9mm spheres and contained 83, 41 and 33
voxels respectively. We also optimised the Hanning-windowed Fourier and
FIR basis sets by selecting the number of time-bins and bin-size that gave
the highest model evidence.

Despite this the model evidence favours strongly an Informed basis set for
all of the regions, as shown in Figure 12. The set Inf-2 is preferred for LOC
and Inf-3 for the others. The differences in log evidence provide posterior
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probabilities of unity in favour of the most probable model. We also repeated
the analyses with smaller COIs, but the results were much the same, with
the informed basis sets always being preferred with high posterior probability
(≥ 0.95).

5 Discussion

We have presented a unified framework for the analysis of fMRI data based
on Bayesian comparison of spatially regularised General Linear Models. This
allows for Bayesian ANOVAs, Cluster of Interest (COI) analysis and the
principled selection of signal and noise models.

COI analysis is similar to an ROI approach but all time series in a region
are used rather than a single ‘representative’ time series. Our simulations
have shown that, for non-uniformly activated regions the COI approach is
substantially more sensitive. The COI approach may also be viewed as a
Bayesian cluster-level inference as it shares the fundamental property of
classical cluster-level inference that anatomical specificity is traded-off for
increase sensitivity. As is the case for classical inference, Bayesian cluster-
level inferences are more sensitive to weak, diffuse activations than are voxel-
level inferences. For diffusely activated regions this sensitivity increases with
number of voxels in the region. Moreover, the use of spatial regularisation
increases that sensitivity yet further. Unlike classical cluster-level inferences
[15], a primary ‘height’ threshold is not required.

Bayesian ANOVAs can be implemented in two ways (i) using COI analysis
or (ii) to produce pseudo Posterior Probability Maps (PPMs) for the whole
image volume. The term ‘pseudo’ is used as these probabilities are based on
contributions to the model evidence rather than the model evidence per se.
These PPMs show voxels expressing overall effects, main effects or interac-
tions.

In previous work we have shown how PPMs can be used to make infer-
ences about regionally specific effects [14]. The approach is based on com-
puting the probability that a contrast of parameter estimates is larger than
a user-specified effect size. For example, in primary sensory areas only effect
sizes greater than 1% of global brain activity may be deemed biologically
relevant. PPMs based on Bayesian ANOVAs, however, do not require the
specification of an effect size threshold. This can be viewed as an advantage
or a disadvantage depending on your perspective. On the one hand, imagers
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are unable to describe the effects that interest them so precisely, but on the
other, they have one less parameter to specifiy.

A disadvantage of the Bayesian ANOVA approach we have described is
that a family of models must be fitted which is obviously more computa-
tionally demanding than fitting a single model. This is not a problem for
a COI analysis where models can be fitted in seconds, but it is potentially
a problem for the production of PPMs. Fitting the six models required to
produce a full ANOVA took 3 hours of computer time.

An alternative to PPMs here is to make inferences based on F-maps,
as is standard in neuroimaging [25]. It is also possible to make ANOVA-
like Bayesian inferences about effect sizes based on multivariate Gaussian
posteriors. The generic approach is described in [6].

We have also shown how our framework can be used for the principled
selection of signal and noise models. We have illustrated its use on a single-
subject event-related fMRI study of face processing. The following observa-
tions are therefore specific to our analysis of this data. Whether or not they
apply generically to fMRI remains to be seen.

The framework was applied to determine the optimal regularisation method
for an AR model of fMRI noise processes. Two types of regularisation
were compared (i) a spatial prior which assumes that AR coefficients vary
smoothly across the brain and (ii) a ‘tissue-type’ prior which assumes they
vary about a small number of tissue-specific values. Bayesian model compar-
ison showed spatial priors to be better. Our results therefore show that tissue
type is not sufficient to explain the observed spatial variability in temporal
autocorrelation. The largest single source of this variability appears to be
the strong autocorrelation observed close to the cerebral arteries, as shown
for example in the plots on the left-most side of Figure 9. Unless one has
angiographic data, these regions are not easily delineated. The spatial prior
approach can, however, automatically accomodate these variations.

The framework was also applied to determine the optimal basis set for
describing the hemodynamic response. We have shown that the previously
established method of nested-model comparison [21] is sub-optimal. Appli-
cation of the optimal non-nested framework revealed the ‘informed basis set’
to be the optimal choice in a number of COIs.

We now turn to a discussion of future work. Application of tissue-type-
priors to regression coefficients is one simple extension. This would use zero
mean Gaussians with prior variances that depend on tissue type. Low prior
variances in CSF and white matter could be implemented using equivalents of
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the Gamma priors in Appendix F.3. Whether these models would be better
than the spatial GMRF priors in this paper (based entirely on functional
data) is an issue that can be resolved using the model comparison framework.
In a similar vein, we are currently working on spatial-basis set priors, that
include eg. wavelets, as an alternative to GMRFs.
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A Precisions

A.1 Priors

We use Gamma priors on the precisions α, β and λ

p(α) =
K∏

k=1

p(αk) (17)

p(β) =
P∏

p=1

p(βp)

p(λ) =
N∏

n=1

p(λn)

p(αk) = Ga(αk; q1, q2) (18)
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p(βp) = Ga(βp; r1, r2)

p(λn) = Ga(λn;u1, u2)

where Ga() is defined in Appendix E2. Gamma priors were chosen as they
are conjugate priors for Gaussian error models. The parameters are set to
q1 = r1 = u1 = 10 and q2 = r2 = u2 = 0.1. These parameters produce
Gamma densities with a mean of 1 and a variance of 10. The robustness of
model selection to the choice of these parameters is discussed in section 2.2.4
and 4.1.1.

A.2 Posteriors

The approximate posteriors are also Gamma densities. For the precisions of
the regression coefficients we have

q(α) =
K∏

k=1

q(αk) (19)

q(αk) = Ga(αk; gk, hk)
1

gk

=
1

2

(
Tr(Σ̂kDw) + ŵT

kDwŵk

)
+

1

q1

hk =
N

2
+ q2

For the precisions of the AR coefficients we have

q(β) =
P∏

p=1

q(βp) (20)

q(βp) = Ga(βp; r1p, r2p)

1

r1p

=
1

2

(
Tr(VpDa) +mT

pDamp

)
+

1

r1

r2p =
N

2
+ r2

For the precisions on the observation noise we have

q(λ) =
N∏

n=1

q(λn) (21)
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q(λn) = Ga(λn; bn, cn)

1

bn
=

G̃n

2
+

1

u1

cn =
T

2
+ u2

where G̃n is the expected prediction error defined in Appendix B of [32].

B Regression coefficients

B.1 Priors

For the regressions coefficients we have

p(W ) =
K∏

k=1

p(wT
k ) (22)

p(wT
k ) = N(wT

k ; 0, α−1
k D−1

w )

where Dw is a spatial precision matrix. This can be set to correspond to eg. a
Low Resolution Tomography (LORETA) or Gaussian Markov Random Field
(GMRF) prior, as described in earlier work [34]. These priors are specified
separately for each slice of data. Specification of 3-dimensional spatial priors
(ie. over multiple slices) is desirable from a modelling perspective but is
computationally too demanding for current computer technology.

We also write wv = vec(W ), wr = vec(W T ), wv = Hwwr where Hw is a
permutation matrix. This leads to

p(W ) = p(wv) (23)

= N(wv; 0, B
−1)

where B is an augmented spatial precision matrix given by

B = Hw(diag(α)⊗Dw)HT
w (24)

This form of the prior will be used in the derivation of KL-divergences in
appendix E4.

The above Gaussian priors underly GMRFs and LORETA and have been
used previously in fMRI [41] and EEG [27]. They are by no means, however,
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the optimal choice for imaging data. In EEG, for example, much interest has
focussed on the use of Lp-norm priors [4] instead of the L2-norm implicit in
the Gaussian assumption. Additionally, we are currently investigating the
use of wavelet priors. This is an active area of research and will be the topic
of future publications.

B.2 Posteriors

We have

q(W ) =
N∏

n=1

q(wn) (25)

q(wn) = N(wn; ŵn, Σ̂n)

Σ̂n =
(
λ̄nÃn + B̄nn

)−1

ŵn = Σ̂n

(
λ̄nb̃

T
n + rn

)
rn = −

N∑
i=1,i6=n

B̄niŵi

where B̄ is defined as in equation 24 but uses ᾱ instead of α. The quanti-
ties Ãn and b̃n are expectations related to autoregressive processes and are
defined in Appendix B of [32]. In the absence of temporal autocorrelation
we have Ãn = XTX and b̃Tn = XTyn. The above density can be written as a
distribution over wv

q(W ) = q(wv) (26)

= N(wv; ŵv, Σ̂v)

where ŵT
v = [ŵT

1 , ŵ
T
n , ..ŵ

T
N ] and Σ̂v = blkdiag

(
Σ̂1, Σ̂n, .., Σ̂N

)
. This form of

the posterior will be used in the derivation of KL-divergences in appendix
E4.
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C AR coefficients

C.1 Priors

Similarly, for the autoregressive coefficients we have

p(A) =
P∏

p=1

p(ap) (27)

p(ap) = N(ap; 0, β
−1
p D−1

a )

Again, Da is a user-defined spatial precision matrix, av = vec(A), ar =
vec(AT ) and av = Haar where Ha is a permutation matrix. We can write

p(A) = p(av) (28)

= N(av; 0, J
−1)

where J is an augmented spatial precision matrix

J = Ha (diag(β)⊗Da)H
T
a (29)

This form of the prior will be used in the derivation of KL-divergences in
appendix E5.

C.2 Posteriors

We have

q(A) =
N∏

n=1

q(an) (30)

q(an) = N(an;mn, Vn)

where

Vn =
(
λ̄nC̃n + J̄nn

)−1
(31)

mn = Vn(λ̄nd̃n + jn)

jn = −
N∑

i=1,i6=n

J̄nimi

and J̄ is defined as in equation 29 but β̄ is used instead of β. The subscripts in
J̄ni denote that part of J̄ relevant to the nth and ith voxels. The quantities
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C̃n and d̃n are expectations that are defined in equation 50 of [32]. The
distribution over A can be re-written as

q(A) = q(av) (32)

= N(av;mv, Vv)

where mT
v = [mT

1 ,m
T
n , ..m

T
N ] and Vv = blkdiag (V1, Vn, .., VN). This form of

the posterior will be used in the derivation of KL-divergences in appendix
E5.

D Average likelihood

The average log-likelihood for model m is given by

V (m) =
N∑

n=1

Vn(m) (33)

where

Vn(m) =
T − P

2
(ψ(cn) + log bn)− λ̄n

2
G̃n −

T − P

2
log 2π (34)

where ψ() is the digamma function [35] and the quantity G̃n is defined in
equation 77 of [32]. This expression is identical to that given in equation 92
of [32].

E KL divergences

E.1 Normal densities

The multivariate Normal density is given by

N(x;µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
(35)

The KL divergence for Normal densities q(x) = N(x;µq,Σq) and p(x) =
N(x;µp,Σp) is

KLN [q(x), p(x)] = 0.5 log
|Σp|
|Σq|

+ 0.5Tr(Σ−1
p Σq) (36)

+ 0.5(µq − µp)
T Σ−1

p (µq − µp)−
d

2

where |Σp| denotes the determinant of the matrix Σp.
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E.2 Gamma densities

The Gamma density is defined as

Ga(x; b, c) =
1

Γ(c)

xc−1

bc
exp

(−x
b

)
(37)

For Gamma densities q(x) = Ga(x; bq, cq) and p(x) = Ga(x; bp, cp) the KL-
divergence is

KLGa[q(x), p(x)] = (cq − 1)ψ(cq)− log bq − cq − log Γ(cq) (38)

+ log Γ(cp) + cp log bp − (cp − 1)(ψ(cq) + log bq) +
bqcq
bp

where Γ() is the Gamma function [35].

E.3 Precisions

For α, β and λ these divergences are straightforward to calculate as they
reduce to a sum of KL-divergences between gamma densities which have a
known form and are computationally simple to evaluate.

KL[q(α), p(α)] =
K∑

k=1

KLGa[q(αk), p(αk)] (39)

KL[q(β), p(β)] =
P∑

p=1

KLGa[q(βp), p(βp)] (40)

KL[q(λ), p(λ)] =
N∑

n=1

KLGa[q(λn), p(λn)] (41)
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E.4 Regression coefficients

For the regression coefficients we have

KL[q(W ), p(W )] = KLN [q(wv), p(wv)] (42)

= −1

2
log |Σ̂v| −

1

2
log |B̄|+ 1

2
Tr(B̄Σ̂v) +

1

2
ŵT

v B̄ŵv −
KN

2

The only problematic term here is log |B̄|. But we note that (i) Hw is a
permutation matrix so it won’t affect determinants and (ii) if X is an m×m
matrix and Y is an n × n matrix then det(X ⊗ Y ) = det(X)ndet(Y )m. We
can therefore write

log |B̄| = N
K∑

k=1

logαk +K log |Dw| (43)

We can also write

log |Σ̂v| =
N∑

n=1

log |Σ̂n| (44)

Tr(B̄Σ̂v) =
N∑

n=1

Tr(B̄nnΣ̂n)

ŵT
v B̄ŵv =

N∑
n=1

ŵT
n B̄nnŵn + ŵT

n

N∑
i=1,i6=n

B̄niŵi


We can therefore write the divergence as a sum of ‘unique contributions’ from
voxel n

KL[q(W ), p(W )] =
N∑

n=1

KW (n) (45)

KW (n) = −1

2
log |Σ̂n| −

1

2

∑
k

log ᾱk −
K

2N
log |Dw|+

1

2
Tr(B̄nnΣ̂n)

+
1

2

ŵT
n B̄nnŵn + ŵT

n

N∑
i=1,i6=n

B̄niŵi

− K

2
(46)

The subscripts in B̄ni denote that part of B̄ relevant to voxels n and i.
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E.5 Autoregressive coefficients

For the autoregressive coefficients we can use the same approach

KL[q(A), p(A)] = KLN [q(av), p(av)] (47)

= −1

2
log |Vv| −

1

2
log |J̄ |+ 1

2
Tr(J̄Vv) +

1

2
mT

v J̄mv −
PN

2

Writing as a sum over ‘unique contributions’ from each voxel gives

KL[q(A), p(A)] =
N∑

n=1

KA(n) (48)

KA(n) = −1

2
log |Vn| −

1

2

∑
p

log β̄p −
P

2N
log |Da|+

1

2
Tr(J̄nnVn)

+
1

2

mT
n J̄nnmn +mT

n

N∑
i=1,i6=n

J̄nimi

− P

2

F AR coefficients with tissue-type priors

F.1 AR Priors

We introduce the label s. For example s = {1, 2, 3} could correspond to grey
matter, white matter and CSF. We also introduce the indicator function γns

which is 1 if voxel n belongs to category s and zero otherwise. Ns =
∑

s γns

is the number of voxels in the sth category. S is the number of categories.
A ‘tissue-type’ prior is then defined as

p(A) =
∏
n

p(an) (49)

p(an) = N(an; gn, β
−1
n )

where

gn =
∑
s

γnsas (50)

βn = diag

(∑
s

γnsβs

)

and as is the archetypal vector of AR coefficients for voxel type s, and βs

is the corresponding precision vector. This prior is like a Gaussian mixture
model but one where the labelling is known.
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In this paper, the parameters as and βs are estimated from the data on a
slice-by-slice basis. We use a Gamma prior on the precisions (see section F.3).
For simplicity, there is no prior on as.

F.2 AR Posteriors

We have

q(A) =
∏
n

q(an) (51)

q(an) = N(an;mn, Vn)

where

Vn =
(
λ̄nC̃n + β̄n

)−1
(52)

mn = Vn(λ̄nd̃n + β̄nḡn)

and

ḡn =
∑
s

γnsas (53)

β̄n = diag

(∑
s

γnsβ̄s

)

F.3 AR precision priors

We define the precision for the sth structure type and pth AR coefficient,
βsp, as the pth element of βs. We then have

p(β) =
S,P∏

s=1,p=1

p(βsp) (54)

p(βsp) = Ga(βsp; r1, r2)

F.4 AR precision posteriors

The posterior is given by

q(βsp) = Ga(βsp; r1sp, r2sp) (55)

1

r1sp

=
1

2

∑
n

γns

(
(mnp − asp)

2 + Vn(p, p)
)

+
1

r1
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r2sp =
Ns

2
+ r2

β̄sp = r1spr2sp (56)

F.5 AR means

The archetypal AR coefficient vectors are estimated using

as =

∑N
n=1 γnsan

Ns

(57)

F.6 KL Divergences

KA(n) = KLN [q(an), p(an)] (58)

KL[q(β), p(β)] =
P∑

p=1

S∑
s=1

KLGa[q(βsp), p(βsp)]

G Implementation note

The algorithm we have described is implemented in SPM version 5 and can
be downloaded from [1]. Computation of a number of quantites (eg. C̃n,
d̃n and G̃n defined in appendices C and D) is now much more efficient than
in previous versions [34]. These improvements are described in a separate
document [43]. To analyse a single session of data (eg. the face fMRI data)
takes about 30 minutes on a typical modern PC.

Figure Captions

1. Generative model The figure shows the probabilistic dependencies
underlying our generative model for fMRI data. The quantities in
square brackets are constants and those in circles are random variables.
The spatial regularisation coefficients α constrain the regression coef-
ficients W . The parameters λ and A define the autoregressive error
processes which contribute to the measurements. The spatial regu-
larisation coefficients β constrain the AR coefficients A. The graph
shows that the joint probability of parameters and data can be written
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p(Y,W,A, λ, α, β) = p(Y |W,A, λ)p(W |α)p(A|β)p(λ|u1, u2)p(α|q1, q2)p(β|r1, r2),
where the first term is the likelihood and the other terms are the pri-
ors. The likelihood is given in equation 11 and the priors are defined
in greater detail in Appendices A, B and C.

2. Approximate posteriors The full approximate posterior distribution
is q(W,A, λ, α, β) =

[∏N
n=1 q(wn)q(an)q(λn)

]
q(α)q(β). The boxes in

the figure show each component of the approximate posterior along
with update equations for their sufficient statistics.

3. Face paradigm (a) Experimental stimuli, (b) Time series of stimuli
presentation.

4. AR(1) images for synthetic data. Each row in this figure corre-
sponds to analysis of a different data set. The leftmost column shows
the AR(1) profile used to generate the data. The second, third and
4th columns show AR profiles as estimated by models with tissue-type
priors having 1, 2 and 3 (known) discrete levels, respectively. The fifth
column shows the estimated profiles from models with spatial GMRF
priors. The final column shows bar plots of the posterior model prob-
abilities. The first three bars correspond to models with tissue-type
priors having 1, 2 and 3 levels and the fourth bar corresponds to the
spatial GMRF model. These results show that our approximation to
the model evidence can correctly detect the type of structure in the
coefficients.

5. Cluster of Interest (COI) Analysis for a Uniformly Activated
Region The figure shows of a plot of sensitivity versus number of voxels
in the cluster, N, for models using a spatial prior (circles and solid line)
and a shrinkage prior (crosses and dotted line).

6. Cluster of Interest (COI) Analysis for a Non-Uniformly Acti-
vated Region The figure shows of a plot of sensitivity versus number
of voxels in the cluster, N, for a model using a spatial prior (circles and
solid line), ROI analysis using the mean voxel time series (crosses and
dotted line) and an ROI analysis using the principal component time
series (plusses and dashed line).

7. Noise-free time series from type 2 data (thin line), generated from
an FIR model, and type 1 data (thick line), generated from a best
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fitting Informed basis set model. These data were used to compare
the sensitivity of nested versus non-nested model comparison, in the
context of selecting an optimal hemodynamic basis set.

8. Nested versus Non-Nested The figure shows of a plot of sensitivity
versus number of voxels in the cluster, N, for non-nested model com-
parison (circles and solid line) versus nested model comparison (crosses
and dotted line).

9. AR(1) images for face data. The top row shows estimated profiles
from a tissue-type prior (smoothed CSF versus other, prior (iii)) and
the bottom row shows the estimated profiles from models with spatial
GMRF priors. Columns in this figure show results for slices z=-27, 3,
33 and 63mm.

10. Average effect of faces The top row shows maps of the difference in
contributions to the log evidence, Un(2)− Un(1), for slices z=-24, -21,
-18 and -15mm. The bottom row shows the same map but thresholded
so that only effects with a posterior probability greater than 0.999
(difference in log evidence = 4.6) survive.

11. Main effect of repetition The top row shows maps of the difference in
contributions to the log evidence, Un(3)−Un(2), for slices z=-24, -21, -
18 and -15mm. The bottom row shows the same maps but thresholded
so that only effects with a posterior probability greater than 0.999
(difference in log evidence = 4.6) survive.

12. Comparing hemodynamic basis sets The bar plots show the log-
evidence for each hemodynamic basis set for COIs in (a) Left Occipital
Cortex x = −45, y = −60, z = −24mm, (b) Right Occipital Cortex x =
45, y = −66, z = −24mm, (a) Sensorimotor Cortex x = 36, y = −9, z =
66mm. The evidence values have been normalised (by subtraction) so
that the minimal log-evidence is zero.
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