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Friston et al. (1995, NeuroImage 2: 45-53) presented a
method for detecting activations in fMRI time-series
based on the general linear model and a heuristic
analysis of the effective degrees of freedom. In this
communication we present corrected results that re-
place those of the previous paper and solve the same
problem without recourse to heuristic arguments.
Specifically we introduce a proper and unbiased esti-
mator for the error terms and provide a more gener-
ally correct expression for the effective degrees of
freedom. The previous estimates of error variance
were biased and, in some instances, could have led to
a 10-20% overestimate of Z values. Although the pre-
vious results are almost correct for the random regres-
sors chosen for validation, the present theoretical re-
sults are exact for any covariate or waveform. We com-
ment on some aspects of experimental design and data
analysis, in the light of the theoretical framework dis-
cussed here. ©1995 Academic Press, Inc.

1. INTRODUCTION

In this paper we review the approach considered in
Friston et al. (1995) for the analysis of fMRI time-
series. This previous paper had two shortcomings.
First, the expression for the variance of the parameter
estimates was inappropriate and biased. Second, the
subsequent analysis, using the effective degrees of
freedom, was based on heuristic arguments which can,
as we show below, be replaced with proper derivations.

This paper is divided into two parts. The first section
presents theoretical results that are required to imple-
ment the extension of the general linear model de-
scribed in Friston et al. (1995), in a more correct fash-
ion. This section concludes with a reanalysis of the
data presented in Friston et al. (1995) to compare the
original and revised approaches.

Second, we review some issues in experimental de-
sign and data analysis that depend directly on the
mathematical theory presented here and on the theory

of Gaussian fields that is used in making statistical
inferences about activation foci. The latter pertain to
spatial smoothing, statistical power, and the size of the
underlying physiological activation. We demonstrate
some of our points with further analyses of the data
used in previous sections.

2. EXTENDING THE GENERAL LINEAR MODEL

2.1. Theory

The aim of Friston et al. (1995) is to estimate the
parameter vector B of the linear model

X=GB +e,

where X represents the unsmoothed time-series, and
the components of the error vector e are independent
and normally distributed with mean 0 and variance ¢*
(Eq (1) of Friston et al., 1995). X is linearly smoothed by
multiplying by a matrix K whose rows represent the
hemodynamic response function, and “. .. the aim of
this work is to extend the general linear model so that
it can be applied to data with a stationary and known
autocorrelation. . ..”

There is a large literature on this topic, and one of
the best early references is Watson (1955). It can be
shown that the optimum estimator of 8 that “. . . max-
imizes variance in the signal frequencies relative to
other frequencies” (Friston et al., 1995) is obtained by
deconvoluting or unsmoothing the data by multiplying
by K! and applying least-squares to the uncorrelated
data X (Gauss-Markov Theorem). Because this inver-
sion is very sensitive to the correct specification of K,
Friston et al. chose to apply least-squares to the
smoothed observations instead, to obtain the estimator
of B

b = (G*TG*)'G*TKX,

where G* = KG. Although not fully optimal, b is unbi-
ased and the loss in efficiency is more than offset by the
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gain in robustness (see below). From here the deriva-

tion departs from that presented in Friston et al. (1995)

and proceeds as

¢ Eq. (3) (Friston et al., 1995), which gives an expres-
sion for the variance of b, should be

Var{b} = cA(G*TG*) 1G*TVG* G*TG*)1,

where V = KK” (Watson, 1955; Seber, 1977).

* This immediately implies that the test statistic for a
particular linear compound ¢ of the effects (Eq. (5),
Friston et al., 1995) should read

T = cbl(c(G*TG*) ™t G*TVG(G*TG*)1cT) s,

where € is an unbiased estimator of o2.

¢ The estimator of o? given in Eq. (6) (Friston et al.,
1995) is biased, and the correct unbiased estimator
is obtained by dividing the residual sum of squares
by its expectation, to give

€2 = rr/trace (RV),

where r = RKX is the vector of residuals and R is the
residual-forming matrix given by

R =I- G*G*'G*)'G*"

and I is the identity matrix (Seber, 1977). Note that the

“effective degrees of freedom” v defined in the next sec-

tion is not used in this calculation. We shall see, how-

ever, that it does play a role in giving a better approx-
imation to the null distribution of the T statistic de-
fined above.

* Finally, the expression for the effective degrees of
freedom is incorrect, although it can serve as a sim-
ple approximation. The original result was derived
by removing the fitted values from the observations
but ignoring the consequent changes in the covari-
ance structure of the residuals. The correct degrees
of freedom, which should replace Eq. (9) (Friston et
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al., 1995) can be derived for any covariance struc-
ture without using Fourier methods®:

E{) =%,  Var{e®} = 20*trace(RVRV)/trace(RV)>?
(Seber, 1977). The effective degrees of freedom is then

_2E{)®  trace(RV)?
U= Varl]  trace(RVRV)

Unfortunately, there is no simple expression for v for a
Gaussian kernel, and in particular, it cannot be fac-
tored into a part depending on the degrees of freedom
of the model and a part depending on the hemodynamic
response function, as in Eq. (10) (Friston et al., 1995).

2.2. Implications for the Original Analysis

In general the variance of the parameter estimates is
underestimated by Eq. (3) (Friston et al., 1995) but the
estimator of the variance is overestimated by Eq. (6)
(Friston et al., 1995), so that the two tend to cancel
each other out in the 7T statistic (Eq. (5) Friston et al.,
1995). It can be shown that they do cancel out almost
exactly for the random regressors that were chosen for
validating the methods, which explains why the biases
were not observed. However, for other nonrandom re-
gressors these effects do not cancel and large discrep-
ancies can occur.

The correct results were applied to the original ex-
ample used for validation. There were 100 observations
with nine regressors: a constant, a linear trend, a
square-wave of 10 values of +1 (on) followed by 10 val-
ues of -1 (off) repeated five times, and six random re-
gressors generated from a standard Gaussian distribu-
tion. The same smoothness s = V8/3 = 0.94 scans was
used?:

* The standard deviations of the parameter estimates
given by Friston et al. divided by the correct stan-

! Note that there is a minus sign missing in front of w? in the
expression for g(w;) immediately above Eq. (10) (Friston et al., 1995).

2 Note that due to the assumption of a Poisson form for the hemo-
dynamic response function (Friston et al. 1994a) the relationship
between lag and smoothness is not scale-invariant and requires both
to be calculated in seconds.

FIG. 1.

(Upper left) Statistical parametric map of the 7 statistic (after transformation to a Z value) reflecting the significance of a

compound of effects. The SPM is displayed in a standard format as a maximum intensity projection viewed from the back, the right-hand side,
and the top of the brain. The anatomical space corresponds to the atlas of Talairach and Tournoux (1988). The SPM has been thresholded
at 2.33 and the color scale is arbitrary. (Upper right) Top, the contrast used for this SPM. The contrast is displayed above the appropriate
effects (columns of the design matrix). Bottom, table of regional effects (activations or regional differences) characterized by the volume of
each region (&), its significance based on patial extent P(n,,,, > k), the highest Z value (2), its significance based on P(Z_,, > u), and the
location of this primary maximum. We have also included up to three secondary maxima for each region and their associated significance
based on the corrected and uncorrected P value. (a) Using the original estimators for the error variance and effective degrees of freedom as
described in Friston et al. (1995). (b) Same as for a but using the correct estimators described herein. (c) Same as for b but increasing the
spatial smoothing of the data from 4 to 8 mm. (d) Same as for ¢ but increasing the spatial smoothing of the data from 8 to 16 mm.
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Threshold = 2.33; Volume [S] = 40116 voxels; df = 41
FWHM = [8.3 8.1 8.9] mm (i.e. 1071 RESELS)
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FIG. 1—Continued
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FIG. 1—Continued

177



178

WORSLEY AND FRISTON

d SPM{Z}
contrast
sagittal coronal
72
1 P e i
\\ ,/ " '\\
: Y of4
SELREZMREEST.
32 ;
C 64
-104 _ 68 20
VPC VAC
P i : 40
i \
o ;
h H
X 80
\4\‘ A
sal LT D 100
transverse 2 4

Design Matrix

16mm smoothing

region size{k} P(nmax>k) Z P(Zmax > u) (Uncorrected)  {X,y,z mm}

1 316 0.274 3.97 0.080 (0.000) -20 -66 20
3.53 0.332 (0.000) -18 -74 24
3.14 0.964 (0.001) -24 -78 28

2 1345 0.004 3.93 0.092 (0.000) 0 -2 36
3.90 0.102  (0.000) 8 -2 32
3.80 0.141  (0.000) -18 -8 36

3 1081 0.010 3.42 0.457 (0.000) -28 38 16
3.40 0.480 (0.000) -38 18 20
3.30 0.639 (0.000) -32 24 24

Threshold = 2.33; Volume [S] = 45485 voxels; df = 39

FWHM =[18.6 18.9 18.1] mm (i.e. 115 RESELS)
FIG. 1—Continued
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dard deviations were 0.86 for the constant term, 0.84
for the linear trend, 0.86 for the square-wave, and
0.99 * 0.05 for the six random regressors. Thus the
original results give nearly the correct answer (on
average) for random regressors. However, the stan-
dard deviations for the other terms, in particular the
square-wave of most interest, are underestimated by
14%, so that the SPM{Z} is overestimated by 16%.

* The original effective degrees of freedom of v = 38.5
is almost correct; the actual value as calculated
above is v=36.2. This is not a serious error since v is
used only to define the null distribution of T, and not
to actually calculate T.

If we replace the nine regressors in the previous ex-
ample by the first nine Fourier components, which are
a constant term and sine and cosine terms of periods
100, 50, 33.3, and 25 scans, then the original standard
deviations are too small by a factor of 0.75 £ 0.01, and
the correct degrees of freedom is reduced from 38.5 to
35.7. At the other extreme, a high-frequency regressor
with +1 and -1 for alternate scans gives a standard
deviation that is almost twice as big as the correct
value.

In summary, the original results give smaller stan-
dard deviations for low-frequency regressors and the
opposite for high-frequency regressors; random regres-
sors, which mix all frequencies uniformly, lie in be-
tween and the original results give almost the correct
answer.

2.3. A Reanalysis of the Data

The data presented in Friston et al. (1995) were re-
analyzed using the original approach and the new re-
sults presented here. Briefly these data were acquired
from a single subject performing one of two word gen-
eration tasks (word repetition and word generation).
Each task was alternated in blocks of 10 scans, where
each scan was acquired every 3 s.

Figures 1a and 1b show the results of these two anal-
yses in standard format. The SPM{Z) is displayed as a
maximum intensity projection on the upper left, after
thresholding at P < 0.01 (uncorrected). The design ma-
trix is shown on the upper right (in image format) and
shows the square-wave reference waveform, linear
term, and constant and global confounds used in the
analysis. Tabular data on the activation foci are shown
in the lower panel. Regional effects are characterized
by the volume of each region (&), its significance based
on spatial extent P(n,,,, > k), the highest Z value (Z),
its significance based on P(Z ., > u), and the location
of this primary maximum. We have also included up to
three secondary maxima for each region and their as-
sociated significance based on the corrected P value
(P(Z .« > ©)) and the uncorrected P value. We have
only shown foci that survive a threshold of P < 0.1
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(corrected) based on either peak height or spatial ex-
tent.

It can be seen that the highest SPM{Z} is reduced
(from 4.76 to 4.18) and similarly for all other Z values.
The corrected P values based on spatial extent show
that the right prefrontal activation can no longer be
considered significant (P > 0.099). The corrected P val-
ues based on peak height are now all greater than 0.05.
In short, the square-wave contrast used in this analy-
sis highlights the dangers of the inappropriate and bi-
ased estimators adopted in Friston et al. (1995).

It is interesting to note that the P values based on
spatial extent appear to be more powerful than those
based on peak height. We shall return to this point
below.

3. THEORETICAL IMPLICATIONS FOR
EXPERIMENTAL DESIGN AND ANALYSIS

3.1. The Effective Degrees of Freedom

Note that the effective degrees of freedom v is not
used to calculate the T statistic, but is used to give a
better approximation to its null distribution. By anal-
ogy with the y? approximation for quadratic forms
(Satterthwaite, 1946), it seems likely that the null dis-
tribution of T can be well approximated by a t distri-
bution with v degrees of freedom rather than a Gauss-
ian distribution (Worsley et al., 1995). Significance of
peaks in SPM{T} can be assessed directly from results
for ¢ fields (Worsley et al., 1993), or, if the degrees of
freedom is large (v > 40), SPM{T} can be converted to
SPM{Z} and the Gaussian theory of Friston et al.
(1991), Worsley et al. (1992), and Friston et al. (1994b)
can be used as an approximation. If other sources of
information about the error variance are available,
e.g., from other subjects or other voxels, then provided
the underlying variances are equal, these can be pooled
to increase the effective degrees of freedom, thereby
reducing the error in € and increasing sensitivity of
the test.

3.2. Efficiency and Optimal Experimental Design

As noted above, the least-squares estimator b is not
the most efficient estimator of 8; by this we mean that
it does not have the smallest possible variance among
all unbiased estimators of B. However, we shall now
show that it is almost fully efficient for most regressors
of interest. A well-known theorem in linear models
states that the least-squares estimator is fully efficient
if the regressors are eigenvectors of the variance ma-
trix V or, in this case, eigenvectors of K (Seber 1977).
Now eigenvectors of K are time variables that are un-
changed (in shape) by smoothing with K. From signal
detection theory we know that the time variables un-
affected by a stationary linear filter are the Fourier
sine and cosine functions themselves (provided the
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time interval is long enough). Thus the parameters of
any regression model composed of Fourier sine and co-
sine functions are estimated with full efficiency by b.
Now many signals of neurobiological interest are Fou-
rier sines and cosines, or very nearly so, such as the
square-wave used in many on/off experimental de-
signs. Thus we expect b to be very nearly fully efficient.
Taking this a bit further, it provides a very strong ar-
gument for designing the experiment so that the signal
is a sine or cosine function, thereby optimizing the pa-
rameter estimator. The key requirement for this sim-
ple optimality is that the hemodynamic response must
be stationary and linear; it can otherwise have any
shape.

For the example in Friston et al. (1995), the loss of
efficiency in using b, as opposed to deconvoluting the
data and applying least-squares, is small for the
square-wave (12%), but not for the random regressors
(27 + 2%). This is to be expected, since the square-
wave is almost unchanged by filtering with the hemo-
dynamic response (see Fig. 5 of Friston et al., 1995),
whereas the random regressors are, of course, altered
considerably. If the random regressors are omitted, the
loss in efficiency for the square wave is reduced to 5%.
If we replace the nine regressors in the previous exam-
ple by the first nine Fourier components, which are a
constant term and sine and cosine terms of periods 100,
50, 33.3 and 25 scans, then the loss in efficiency is
negligible: 0.2 £ 0.2%. This is to be expected since the
regressors are now eigenvectors of K.

In summary the periodic presentation of blocked
tasks or conditions, which is so prevalent in the fMRI
literature, may well be an optimal experimental design
from a purely theoretical perspective.

3.3. Spatial Smoothing and the Theory of
Gaussian Fields

The question addressed (if not answered) in this sec-
tion relates to the best smoothing one should apply to
the data before analysis. This is a complex area which
involves a number of themes, some mathematical and
some neurobiological. One knows from standard filter-
ing theory that the “best” smoothing filter or kernel is
one that matches the objects to be identified. For ex-
ample, if cortical activations had, in general, a spatial
extent of 4 mm, then a 4-mm smoothing would be cho-
sen. There is, however, a constraint on the lower limit
of smoothing that can be used: statistical inference in
SPMs generally depends on the theory of Gaussian
fields and implicitly assumes that the data are good
lattice representations of a smooth Gaussian field. This
only holds when the voxel size is appreciably smaller
than smoothness. As pointed out in Friston et al. (1995)
this is not a fundamental limitation because the voxel
size can always be reduced at acquisition. We recom-
mend that smoothness should be at least twice the
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voxel size before applying any results from the theory
of Gaussian fields. If the smoothness approaches voxel
size then the corrected P values based on the theory of
Gaussian fields will approach those based on a Bon-
ferroni correction, and for very small values of the
smoothness estimator, the Gaussian field corrections
can become more severe.

The second issue that now arises is whether to use
corrected P values that are based on spatial extent or
the Z maxima (or equivalently the Euler characteris-
tic). Our previous theoretical analysis (Friston et al.,
1994b) suggested that the power of tests based on spa-
tial extent would increase with resolution or less
smoothing (conversely for tests based on the Z max-
ima). This effect can be seen in Figs. 1b, 1c, and 1d,
where the same data have been analyzed (using the
expressions in this paper) using a Gaussian kernel of
4-, 8-, and 16-mm FWHM, respectively, for smoothing.
By following the fate of nearly every activation focus
(e.g., the left extrastriate region at —14, -72, 20 mm),
one can see that as smoothing is increased, the P value
based on spatial extent decreases and that based on
the maximal Z value increases. This is consistent with
our theoretical predictions. It would, of course, be nice
to combine extent and height in the estimation of the P
value and this is the subject of current work.

The final issue considered here is the optimal
smoothing to use. If activations in the brain are highly
focal, then the best smoothing would be a minimal one.
Conversely, if brain activations are diffuse and extend
over many millimeters, then a high degree of smooth-
ing is advised. The problem is that both sorts of acti-
vations may be prevalent. Consider the right prefron-
tal activation in Fig. 1b (4-mm smoothing). If we in-
crease the smoothing to 8 mm (Fig. 1c¢), this activation
disappears. Conversely the Z value for the extrastriate
region increases when we go from 4- to 8-mm smooth-
ing. Note also that all Z values decrease when we go
from 8- to 16-mm smoothing. This suggests that the
right prefrontal activation is more focal than the ex-
trastriate and that all the activations are closer to 8
mm in spatial extent than 16 mm. More generally,
these anecdotal observations suggest that activations
can be expressed over different scales in the same ex-
periment. In this instance there is no “best” filter in
any generic sense and one has to accept a priori that
the analysis will be most sensitive to activations with
the same size as the smoothing kernel. One intriguing
alternative is to search over smoothing or “scale” space
and apply suitable corrections using Gaussian field
theory. This is again the subject of recent work (Poline
and Mazoyer, 1994a,b; Siegmund and Worsley, 1995).

CONCLUSION

In this short paper we have introduced some sub-
stantial revisions to earlier work that addressed the
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problem of statistical inference in temporally corre-
lated fMRI time-series and have discussed some impor-
tant issues and constraints that arise in the theoretical
framework that has been developed to facilitate these
inferences.
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Note added in proof. The same comments and conclusions of this
paper apply to two others recently published in this journal: Friston
et al., 1995a,b). The first paper on characterising evoked hemody-
namics with fMRI (Friston et al., 1995a) is a straightforward linear
models approach for distinguishing between early and late evoked
hemodynamic responses (Eq. (3) of Friston et al., 1995a; note that &
should multiply ¢ in the exponent, not divide it). The study tests first
for a combined early and late response and then for a difference
between early and late responses. Applying the corrected theory of
this paper, the Z statistics of the first test, shown in Fig. 2 of the
original paper, should be multipled by 0.757; this changes the max-
imum Z to 5.29 x 0.757 = 4.00, which is not significant (P = 0.35). The
Z statistics of the second test (Fig. 3) should be multiplied by 0.790,
changing the maximum Z to 5.56 x 0.790 = 4.39, which is marginally
significant (P = 0.083). The conclusions are the same as those in the
original paper, although they cannot be made with the same degree
of statistical confidence: there is no evidence for a combined re-
sponse, but there is some evidence for a differential response be-
tween early and late components.

The immediately succeeding paper, Friston et al. (1995b), applies
standard multivariate statistical approaches to the same problem.
These methods are valid only for uncorrelated time observations, so
the authors suggest a heuristic correction based on replacing the
error degrees of freedom by the “effective” degrees of freedom given
by Eq. (9) of Friston et al. (1995). Problems of biased error variance
explained above appear to be avoided because error variance does not
enter explicitly into the proposed test statistic, Wilk’s A (Friston et
al., 1995b, Eq. (8)). However, exactly the same biases occur, due to
inappropriate correction for temporal correlation. The reason is
straightforward. In the case of a single effect (4 = 1 in the notation of
Friston et al., 1995b), and a single voxel (so that only one time series
is available and J = 1), the test statistic —(r — ¥2)log(A) (Friston et al.,
1995b, Eq. 9)) is asymptotically identical to 72 (Friston ef al., 1995,
Eq. (5)). More precisely, —(r ~ ¥2)log(A) = (r — Ya)log(1 + T%/r) = T for
large r. Since T is biased, then —(r — ¥2)log(A) is also biased, and the
test as originally proposed usually gives more false positives than
claimed. The same applies to the test for canonical variates (Friston
et al., 1995b, Eq. (12)). Correcting these tests using the methods of
this paper works in the simple case of A = J = 1, but simulation
results show that such a correction does not appear to work in the
more complex case of many voxels and their principal components.
This will be the subject of a future communication. For the moment,
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P values derived from Egs. (9) and (12) of Friston et al. (1995b)
should be treated with extreme caution.
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