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This paper presents a general approach to the anal-
ysis of functional MRI time-series from one or more
subjects. The approach is predicated on an extension
of the general linear model that allows for correlations
between error terms due to physiological noise or cor-
relations that ensue after temporal smoothing. This
extension uses the effective degrees of freedom associ-
ated with the error term. The effective degrees of free-
dom are a simple function of the number of scans and
the temporal autocorrelation function. A specific form
for the latter can be assumed if the data are smoothed,
in time, to accentuate hemodynamic responses with a
neural basis. This assumption leads to an expedient
implementation of a flexible statistical framework.
The importance of this small extension is that, in con-
tradistinction to our previous approach, any paramet-
ric statistical analysis can be implemented. We dem-
onstrate this point using a multiple regression analy-
sis that tests for effects of interest (activations due to
word generation), while taking explicit account of
some obvious confounds. ©1995 Academic Press, Inc.

INTRODUCTION

In a previous communication we considered the ef-
fect of temporal correlations on making statistical in-
ferences about the relationship between a reference
waveform and time-series obtained with “fast” MRI
techniques (e.g., EPI). In this paper we present a more
comprehensive approach to dealing with these correla-
tions, which is based on the general linear model and a
heuristic analysis of the “effective degrees of freedom.”

fMRI time-series contain a number of signals; these
include uncorrelated noise (e.g., Quantum noise and
thermal noise), correlated noise (e.g., physiological
noise from cardiac and respiratory cycles), and a cor-
related signal that conforms approximately to changes
in neural activity convolved with a hemodynamic re-
sponse function (Friston et al., 1994a). Correlated noise
can arise directly from cardiac and respiratory cycles,

their physiological modulation (e.g., the heart rate
variability signal), or aliasing of these effects due to an
interaction with the repeat time. Convolution of the
fMRI time-series with the hemodynamic response
function will, in principle, enhance signal relative to
noise, particularly thermal and other noise with high
frequency components. However, low frequency physi-
ological noise and temporal smoothing render scans
correlated in time. This violates a fundamental as-
sumption of the general linear model, which assumes
each scan is an independent observation. The aim of
this work was to extend the general linear model so
that it could be applied to data with a stationary and
known autocorrelation among the observations and
thereby facilitate the analysis of temporally smoothed
data.

Temporal Autocorrelations and Smoothing

It is important to be clear about the pretext for the
approach advocated in this paper. One of its main te-
nets is that a more powerful test obtains if the data are
smoothed in time. This denoising device is based on the
conjecture that “interesting” hemodynamics are the re-
sult of convolving an underlying neuronal process with
a hemodynamic response function. As such the signal
is always “smoother” than (or as smooth as) the re-
sponse function. This conjecture is based on our previ-
ous analyses of fMRI time-series (Friston et al., 1994a)
and some compelling and convergent empirical results
(e.g., Bandettini et al., 1993). More specifically we as-
sume that a fMRI time-series has a number of linearly
separable [variance] components that include high fre-
quency noise, low frequency noise, and low frequency
signal. The relative amounts of these components will
change with field strength, pulse sequence, and exper-
imental design; however, given that all these compo-
nents exist, smoothing will always increase signal to
noise. Clearly the optimum smoothing kernel is related
to the hemodynamic response function. “Optimum” re-
fers to the kernel that maximizes variance in the signal
frequencies relative to other frequencies. Our previous
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analysis, and review of the literature, suggested that
the hemodynamic response function has an associated
delay and dispersion of about 6-8 s. This corresponds
to a Gaussian kernel of width V6 = 2.45 to V8 = 2.83 s.
The value adopted for temporal smoothing in this pa-
per is 2.83 s. In Friston et al. (1994a) we assumed a
Poisson form for the response function and noted that
this is roughly the same as a Gaussian form at the
degrees of dispersion seen in fMRI.

In summary, based on the above assumptions, one
concludes that it is always better to smooth the data, in
time, to increase hemodynamic variance components
with a neuronal basis, relative to other components. It
may be thought that the reduction in the effective de-
grees of freedom that ensues could reduce statistical
power. However, the increased degrees of freedom ob-
served in unsmoothed data derive from uncorrelated
variance components that are almost certainly noise
and, in general, adding noise to an observed response
variable does not increase power. It should be pointed
out that these arguments may have to be revised with
advances in fMRI pulse sequences and an increased
understanding of the relationship between neuronal
dynamics and hemodynamics, but at present they rep-
resent a reasonable and consistent set of assumptions.

In this paper we make the simplifying assumption
that, after temporal smoothing, the correlations that
manifest are stationary and (almost) completely ac-
counted for by the convolution (or smoothing opera-
tion). Clearly this is wrong if there are substantial low
frequency physiological components in the original
data. However, in raw data, physiological components
are often small relative to uncorrelated components
(e.g., thermal noise, digitizing noise, or quantal ef-
fects). Furthermore the difference between the as-
sumed correlations and those observed will be small
even if physiological noise dominates. For example,
consider a component due to physiological effects that
could be emulated by convolving white noise with a
Gaussian kernel of parameter (i.e., standard deviation)
1 s. Smoothing with a Gaussian kernel of parameter 3
s would render the correlation length (standard devia-
tion of the autocorrelation function) of this component
V{2(1% + 3%)} = 4.47 s. The correlation length due to the
convolution alone, or equivalently any uncorrelated
components after convolution, is 3V2 = 4.24 s. The dis-
parity is not great.

This paper is divided into two parts. The first part
presents the theory and provides operational equa-
tions. The theory section reviews the general linear
model and considers the incorporation of temporal
smoothing. The effect of smoothing is modeled in terms
of identically distributed error terms with a known sta-
tionary covariance structure. This form for the error
terms leads to an expression for the effective degrees of
freedom that is used to compute the ¢ statistic testing
for a linear compound of effects (e.g., activation effects,
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time effects, subject or block effects, and so on). These
sections conclude with a brief review of results devel-
oped in statistical parametric mapping. These results
are required to make statistical inferences about the
regional effects in the resulting SPM{¢}. The second
half presents a validation and application of the theo-
retical results using fMRI data obtained during a se-
ries of word generation tasks.

THEORY

All parametric statistics are based on the general
linear model (Chatfield and Collins, 1980). In the con-
text of functional imaging the general linear model is
used to make statistical inferences by performing uni-
variate tests at each and every voxel. This is known as
statistical parametric mapping. The nature of the hy-
pothesis, or inference sought, can be very diverse. In
what follows we present a framework that can accom-
modate any form of parametric statistical test ranging
from correlation with a single reference vector, in a
single subject design, to mixed multiple regression/
ANCOVA models in many subjects. This general ap-
proach has been described in detail elsewhere but will
be summarized for completeness in this paper. The ex-
tensions to the general linear model considered in this
paper concern temporal smoothing and the effect that
this has on the effective degrees of freedom associated
with the error terms.

The General Linear Model

The general linear model for a time-series can be
written in matrix notation as

X=H-n+D-y+e

=G- B+e, (1
where X is a column vector of response variables, in
this case, mean corrected values from a single voxel in
a fMRI time-series. The columns of H model the effects
of interest, for example, one or more reference wave-
forms or vectors, performance, or some psychophysical
score. The columns of D model effects of no interest
that are considered confounds, for example, time, a
subject-specific effect, or the global activity, the scan. H
and D are partitions of the design matrix G = [H D].
The design matrix has one row for every scan and one
column for every effect (factor or covariate) in the
model. The columns of the design matrix can be covari-
ates (e.g., “time on target” or global activity) or can be
“indicator” variables that take the value 0 or 1, depend-
ing on whether a specific effect is present or not (e.g.,
the data come from the third subject or were obtained
under the condition “A”). Note that there is no mathe-
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matical distinction between covariates and indicator
type variables. B = [n? 717 is a column vector of pa-
rameters for the “effects” modeled by each column of
the design matrix. The errors e are assumed to be in-
dependent and identically normally distributed with
covariance 3 = o2 - 1, where 1 is the identity matrix.

The general linear model can now be extended to
include temporal smoothing. Let K be a convolution
matrix using a Gaussian kernel with parameter s,
where, by Eq. (1)

K-X=G*B+K-e, )]
where K - X represents temporally smoothed data. G*
=K - G is a similarly convolved design matrix G, whose
columns may include a suitably delayed box-car refer-
ence vector convolved with K, and K is chosen to em-
ulate the dispersion associated with the hemodynamic
response function. At first glance it may seem odd to
convolve all the columns of the design matrix G espe-
cially those containing indicator type variables or co-
variates with no special relationship to “smooth” he-
modynamics (e.g., global activity). However, it should
be remembered that the effect in K- X, modeled by
every column of G, is smoothed or distributed in time
and it is therefore necessary to smooth the correspond-
ing explanatory variable in G to give G*.

In this convolved version of the general linear model
[Eq. (2)] the error terms are identically distributed
with covariance 3 = ¢ - K- K”. Least-squares esti-
mates of B, say b = [h” g”]%, are given by

b = (G*TG*G*T - K - X,

where

E{b} = g and Var{b} = c(G*TG*) . 3)
Var{b} is the variance—covariance matrix for the pa-
rameter estimates. After estimating B, the adjusted
smoothed data X* are given by discounting the effects
of no interest estimated by g (e.g., time effects, subject,
or more generally block effects):
X*=K-X-D-g) C))

and are sometimes a useful form in which to report the
data.

Testing a Hypothesis

In this section we address statistical inferences
about the effects of interest (e.g., the significance of the
regression coefficient for a reference waveform in H).
The null hypothesis that the effects embodied in H are
not significant can be tested with the ¢ statistic using
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linear compounds or contrasts of the parameter esti-
mates b. A contrast (row vector) ¢ is simply a set of
weights that sum to zero. We present the more general
test for linear compounds of the effects and note that if
there is only one effect, ¢ = 1. The significance of a
particular linear compound of effects is tested with

T=c-bllc- e - (GTG*) 1. chle, 5)
where, from Eq. (3) Var(c-b) = ¢ - ¢® - (G*TG*)"1- T
€? is the estimate of ¢ and is based on the residual or
error terms r obtained from the difference between the
actual and the estimated values of K - X:

PIK'X—G*'b,

where

(6)

vis the degrees of freedom associated with r, and T has
the Students ¢ distribution with degrees of freedom v. If
the error terms (elements of r) were independently dis-
tributed, v would simply be the number of scans (V)
minus the number of effects estimated, i.e., N —
rank(G*). However, the error terms are known to be
correlated because of the temporal smoothing (3 =
a” - K - K7). This brings us to the extension of the gen-
eral linear model that uses an expression for v in terms
of N, rank(G*) and the kernel in the convolution ma-
trix K.

The Effective Degrees of Freedom

In this section we consider the effective degrees of
freedom of the error terms using a simple analysis in
the frequency domain. Following Worsley et al. (in
preparation) we shall argue that the sum of squares
due to error S =r” - r = r'T - v’ has a scaled ? distri-
bution, where r’ is considered to be a [N — rank(G*)]-
variate random vector with the same covariance as r;
i.e., r' is the projection of the original error vector r
onto a [N — rank(G*)] dimensional subspace. This pro-
jection corresponds to the removal of rank(G*) dimen-
sions from the original data that represent the effects
modeled in G*. Using this conjecture the effective de-
grees of freedom are simply determined using the
known moments (mean and variance) of S over many
realizations of r’. Let g(w,;) be the spectral density of
the process r’ following a discrete Fourier transform,
where w; = 27/[N — rank(G*)]. The expectation or
mean of S is simply the sum of the expectations of all N
— rank(G*) components at each frequency w;.

E{S} = % g(wy). )
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By independence the variance of S is the sum of the
variances of each component at w;. Every component
has a x* distributicn with 1 degree of freedom, scaled
by {g(w;)} %, and the variance of a x* distribution with
1 degree of freedom is 2. Therefore the variance of
each component is simply 2 - {g(w,)}? and the total vari-
ance is

Var({S} = 3 2 - {g(w))>. (8)

Let the distribution of S be given by x*>v(s/a) with v
degrees of freedom. a is the scaling of the required x?
distribution, where

E{S}=E{*v(s/a)) =a - v

and

Var{S} = Var{y?v(s/a)} =2 - a? - v.
Solving for v, using Eqgs. (7) and (8)

Equation (9) gives a general expression for the effective
degrees of freedom for any arbitrary frequency struc-
ture or temporal smoothing in the error (and other)
terms. In the case considered here the smoothing is
Gaussian with parameter s, where X = ¢® - K- K7 and
the autocovariance function and spectral density are

p(i) = o2 - exp(-i¥/4s?)

1/

glw)=2 02 s 7% expw? - s?)

giving

v= [N — rank(G*))/\/(27s?). (10)

Note that the effective degrees of freedom scale up
with increased number of scans (V) and down with the
smoothness (s) and the number of effects modeled
[rank(G*)]. By using the above expressions [Egs. (5),
(6), and (10)] we obtain a value for 7" at each and every
voxel. These constitute a statistical parametric map or
SPM{¢}). To simplify subsequent analysis, the SPM{¢} is
transformed to a SPM{Z} using a probability integral
transform or other standard device.

Relationship to Our Previous Work

In Friston et al. (1994a) we considered the limited
case of correlating a reference waveform with a fMRI
time-series and addressed the problem of how to esti-
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mate the effective degrees of freedom associated with
this correlation. Here we present a framework that is
completely general and is designed to facilitate para-
metric tests of almost any nature. In the foregoing pa-
per we presented an analysis in continuous time to
argue that effective degrees of freedom associated with
the sum of products of two processes x and y, with
spectral densities g,(w), and g,(w) is given by

V= jgx(w)dwjgy(w) dollg (w) gy(w) dw. 1y

In this paper we consider the effective degrees of
freedom associated with the sum of squares of the error
terms. By representing the error terms as x =y, where
g{w) = g (w) the formal equivalence between Eq. (9)
and Eq. (11) becomes obvious.

Statistical Inference

In this section we consider the interpretation of the
SPM{Z} in terms of probability levels or p values. The
problem here is that an extremely large number of non-
independent univariate comparisons have been per-
formed and the probability that any region of the SPM
will exceed an uncorrected threshold by chance is high.
Standard procedures have been developed in statistical
parametric mapping that correct for the multiplicity of
voxels and the spatial correlations among them. These
corrections are based on either the height (Z) or the
spatial extent (n) of a local excursion of the SPM (.e.,
cluster of voxels above a threshold). The distributional
approximations required for these corrections derive
from the theory of Gaussian random fields and will not
be reviewed in detail here [see Friston ef al., 1991;
Worsley et al., 1992; and Friston et al., 1994b, for the
development of this theory in functional imaging and
Adler, 1981, for a comprehensive discussion of the un-
derlying theory. Some newer technical results can be
found in Worsley, 1994]. The main results are:

e The probability of getting at least one voxel with a Z
value of height « or more, in a D dimensional SPM(Z}
of volume V is the same as the probability that the
largest Z value in the entire volume (Z,,,,) is greater
than u, where

PZ_.. >u) < Elm}=V.@Qm P2 w-D,0-1
exp(—u2/2), (12)

and E{m} is the expected number of maxima. W is a
measure of spatial smoothness and is related to the
full width at half maximum (FWHM) of the SPM. In
practice W can be determined directly from the effec-
tive FWHM if it is known, when W = FWHM/V4In2) or
estimated post hoc using the measured variance of the
SPM’s first partial derivatives. See Friston et al. (1991)
and Worsley et al. (1992) for more details.
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o The probability of getting one or more regions of size
k or more in a given SPM{Z)} of volume V, thresholded
at ¢, is the same as the probability that the largest
region (n,,,,) consists of £ or more voxels where

P(nmax =zk)=1- exp[—E{m} . exp(_BkZID)]
and

B=I[ID/2 + 1)+ E{m}/V - ®(-1)]?P. (13)

&(—17) is the integral of the unit Gaussian distribu-
tion evaluated at the threshold chosen (—¢). Equation
(13) gives an estimate of the probability of finding at
least one region with & or more voxels in an SPM{Z}.

In this paper we present P values that are based on
both the spatial extent and the peak height. The un-
corrected P values are simply ¢(—¢). Note that neither
of the above expressions for P values specify what
threshold to use. For high resolution, fMRI lower
thresholds (e.g., 2.8) may be more powerful (see Friston
et al., 1994b).

contrast

27 % @ 8
Design Matrix

FIG. 1. Design matrix and an example of one of the six contrasts
used in the validation analysis. (Top) A contraste=[00000100]
testing for the significance of the effect modeled in the sixth column
of the design matrix. (Bottom) The design matrix G with six random
covariates or waveforms on the left and two confounds on the right.
These two confounding covariates correspond to a time effect and to
global or whole volume activity. Because elements of this matrix can
take negative values the gray scale is arbitrary and has been scaled
to the minimum and maximum. The form of the design matrix is the
same as in the text—K - [H D]. Note that the length of the contrast
is the same as the number of columns, or effects, in the design ma-
trix, which is the same as the number of parameters one is explicitly
estimating.
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APPLICATION TO EMPIRICAL DATA
AND VALIDATION

In these sections we describe the experimental de-
sign and data used to illustrate the application of the
above theory. In particular we focus on validation by
assessing the distribution of voxel values under the
null hypothesis. In order to assess the validity of our
simplifying assumptions we used real data but a totally
random design matrix partition H. Because the effects
of interest are random, the null hypothesis (that the
effects modeled by H are negligible) is almost certainly
true and the ensuing distribution of Z values should
conform to the unit normal distribution.

Data Acquisition and Experimental Design

One hundred 7,* weighted volume images (128 x 64
% 10 voxels) were obtained from a single male subject
using a GE/ANMR 1.5T system with EPI capabilities.
The volumes consisted of 10 sequential transverse sec-
tions and were acquired every 3 s. Voxel size was 3 X
3 X 7-mm voxels with 0.5-mm slice separation. The

With correction df = 38.5
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FIG. 2. Analysis of the Z distribution obtained under the null
hypothesis. Z values were pooled over the six SPM{Z} derived using
the design matrix in Fig. 1. The resulting distributions are shown
(top) using the effective degrees of freedom (calculated as described
in the main text) and (bottom) using the conventional degrees of
freedom that would ensue if the error terms were assumed to be
independent.
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subject was scanned under two silent word generation
conditions. The baseline (repeating internally a heard
word) and activation (generating a word that began
with a heard letter) conditions were presented in
blocks of 10 scans, with 10 baseline, 10 activation, 10
baseline, and so on. The tasks were paced at one word
every 3 s.

SPM{Z}

sogittal coronal

Data Prepossessing

The 100 volume images were realigned to the first as
described elsewhere (Friston et al., submitted) and re-
sampled down to 2 X 2 X 4-mm vozxels. The data were
then smoothed with an isotropic Gaussian kernel with
FWHM of 4 mm. This spatial smoothing was imple-

contrast

tronsverse

1 2 3
Design Matrix

Activations

region size {(k} P(nmax>k) Z P(Zmax > u) (Uncorrected)  {x,y,z mm}

1 440 0.000 4.67
4.60
3.85
2 138 0.021 4.59
3.81
3 533 0.000 4.18
3.97
3.90
4 106 0.071 4.04
343

0.048  (0.000) 0 -4 4
0.064 (0.000) 22 -8 40
1.058  (0.000) 0 14 28
0.066 (0.000) 14 -72 20
1242 (0.000) 6 -76 24
0.341  (0.000) 18 50 8
0710  (0.000) 30 32 16
0.909  (0.000) 36 12 20
0.567  (0.000) -36 46 4
3947  (0.000) -26 50 4

Threshold = 2.33; Volume [S} = 37912 voxels; df = 41
FWHM =[8.3 8.1 8.9] mm (i.e. 1027 RESELS)

FIG. 3. Results of the test for activations due to word generation. (Top right) This is an image representation of the design matrix G.
(Contrast) This is the contrast or vector defining the linear compound of parameters tested (e = [1 0 0]). The contrast is displayed over the
column of G that corresponds to the (activation) effect in question. (Top left) SPM{Z}: This is a maximum intensity projection of the SPM(z}
following transformation to the Z score. The display format is standard and provides three views of the brain from the front, below, and the
left-hand side. Data are presented only for regions with P < 0.1 corrected. The grayscale is arbitrary and the space conforms to that described
in the atlas of Talairach and Tournoux (1988). (Bottom) Tabular data are presented for “significant” regions (P < 0.1 corrected). The location
of the maximal vozxel in each region is given (positive x is left) with the size of the region (k) and up to three Z maxima. For each maxima
the significance is assessed in terms of E{m) > P(Z_,,., > u) using Eq.(12) and P(n_,,, > k) using Eq.(13). In this figure there are three significant

regions at P < 0.05 that are described in the text.
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mented to increase signal to noise and represents a
compromise between sensitivity and spatial resolution.
It should be noted that this step is not a prerequisite
for the application of the theory of Gaussian fields. The
“Gaussian” in Gaussian fields refers to the multivari-
ate distribution of the voxel values, not the shape of the
autocorrelation function (which can have any shape as
long as it is continuous at zero lag).

Voxels that had values greater than 0.8 of the vol-
ume mean in all the images were selected to restrict
the analysis to intracranial regions. The 37912 col-
umns of the resulting mean corrected data matrix cor-
responds to X in the theory sections.

SPM{Z}

sogittal

coronal
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Data Analysis—Validation

A volume SPM{Z} was constructed using Egs. (3), (5),
(6), and (10) and a [100 X 6] design matrix partition H
of Gaussian random variables. We treated time and
global activity as confounding covariates to form D.
Figure 1 depicts the complete design matrix G with the
six random effects on the left and the two confounding
effects on the right. The first confound was a linear
time effect (a mean corrected vector running from one
to 100) and the second was mean corrected global or
volume activity for each scan. A typical contrast ¢ is
shown above (this is not strictly a contrast because it

contrast

tronsverse

1 2 3
Design Matrix

Deactivations

region size (K} P(nmax>k) Z P(Zmex > u) (Uncorrected)  {x,y,z mm}

1 277 0.000 3.96 0.749  (0.000) 2 52 8
3.81 1.216  (0.000) -6 42 0
3.24 6.673  (0.001) -32 34 0

2 149 0.014 3.70 1.723  (0.000) 10 -50 12
3.62 2.238  (0.000) -2 -56 12
3.40 4.227  (0.000) -6 -66 12

Threshold = 2.33; Volume [S] = 37912 voxels; df = 41

FWHM = [8.3 8.1 8.9] mm (i.e. 1027 RESELS)

FIG. 4. The same as Fig. 3 but for deactivations due to word generation.
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does not sum to zero but it gives a valid compound).
This contrast tests for the significance of the regression
coefficient of the sixth random covariate. Six such con-
trasts were specified testing for the effect of each ran-
dom covariate in turn.

The convolution matrix K used a Gaussian kernel
with parameter s = V8 s = V8/3 = 0.94 scans. Despite the
fact we had 100 scans the effective degrees of freedom
were only 38.5. The resulting distribution of Z values
(after transformation) pooled over the six SPM(Z} is
seen in Fig. 2 (top) and concur remarkably well with
the expected distribution under the null hypothesis
(broken line).

To emphasise the importance of accounting for tem-
poral correlations the distribution obtained using the
uncorrected degrees of freedom = N — rank(G) = 91 is
shown in the bottomn panel of Fig. 2. This distribution
gives inappropriately high Z values and would be ex-
tremely prone to false positive interpretation.

Data Analysis—An Illustration

A volume SPM{Z} was constructed using Eqgs. (3), (5),
(6), and (10) and a design matrix G that contained one
effect of interest and two confounding effects. The ef-
fect of interest was a reference waveform or covariate
obtained by delaying an appropriate box-car waveform
by two scans (note that convolution with K emulates
the dispersion associated with the hemodynamic re-
sponse function). This waveform was designed to test
for activations due to word generation over word rep-
etition. As in the previous sections the confounds were
time and global activity. The significance of the activa-
tion effects were assessed using a compound or con-
trast ¢ = [1 0 0]. Figure 3 shows the results of this
analysis. The design matrix G is depicted in the top
right panel and shows the time-dependent structure of
the three effects modeled. The contrast on top is over
the reference waveform or covariate tested. The
SPM{Z} thresholded at P = 0.01 (uncorrected) reveals
significant (P < 0.05 corrected) activation in the left
prefrontal regions, the cingulate cortex and left precu-
neus. A right prefrontal region is seen that has a cor-
rected P value of 0.07. Foci that failed to reach a cor-
rected P value of 0.1 are not shown. Tabular data on
these regional effects are presented in the bottom
panel and include the size of each region (%), its cor-
rected significance based on £ using Eq. (13), the peak
height Z and the corresponding significance based on
Eq. (12), the uncorrected P value, and finally the rough
location in Talairach coordinates. For each region the
three largest maxima are displayed (if there are more
than one).

Significant deactivations are shown in Fig. 4 using
the same format as in Fig. 3. Deactivations are seen in
the medial prefrontal cortex and in the retrosplenial
cortex. These regions are considered significant by vir-
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tue of their extensive size. The results are very consis-
tent with the known functional anatomy of word gen-
eration established with PET (e.g., Frith et al., 1991).
Of particular note are the reciprocal changes in activity
in the anterior cingulate and posterior cingulate (ret-
rosplenial cortex). This characteristic interaction is of-
ten seen in PET studies.

Figure 5 shows the data from a voxel in the cingulate
gyrus plotted against (left) and with (right) the refer-
ence covariate. These data give an idea of how consis-
tent the response to changing cognition can be. The
symmetry of the bifrontal activation is highlighted in
Fig. 6 where the SPM({Z} (coloured) has been rendered
onto three orthogonal sections through the original
fMRI data (gray) from the first scan.

DISCUSSION

We have described a simple extension to the general
linear model that allows for known autocorrelations in
the error terms. This is an important extension for
fMRI because (i) physiological noise in fMRI time-
series can show temporal correlations and (ii) it is often
necessary to smooth fMRI time-series in order to in-
crease the overall sensitivity of the technique. This ex-
tension means that any statistical analysis can be
implemented, ranging from simple regressions using
reference waveforms to complex interactions or multi-
variate regression in many subjects or groups. The ex-
tension is based on an expression for the effective de-
grees of freedom associated with error. This expression
was derived using heuristic but sensible reasoning
and, empirically, appears to perform very well.

The limitations of the method, as described, include
the following. The images must be reasonable lattice
representations of a Gaussian field. This usually re-
quires the data to be smooth in space with potential
constraints on resolution. However, these constraints
are only relative in the sense that the data should be
smoother than voxel size (we suggest that the effective
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FIG. 5. Plots of the fMRI signal from a voxel in the cingulate
gvrus. (Left) Plotted against the reference covariate seen in the de-
sign matrix of the previous figures (Figs. 3 and 4). (Right) The same
data but plotted as functions of time. The solid line is the reference
covariate and the broken line and dots represent the empirical ad-
justed data X*.
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FIG. 6. The SPM{Z)} from Fig. 3 has been sectioned and rendered
on the fMRI data from the first scan. This display format highlights
the functional anatomy of the bifrontal activations.

FWHM be at least twice voxel size), and voxel size is
under experimental control. For example these tech-
niques could be applied to MRI microscopy data. Sec-
ond, for computational expediency, we assume that the
physiological autocorrelations do not substantially con-
tribute to the autocorrelations after smoothing. This
assumption means that one does not have to estimate
smoothness or spectral densities. While this is proba-
bly justified for most data (see validation section above)
there may be situations where correlations among the
error terms are greater than predicted by the smooth-
ing alone. In these situations the effective degrees of
freedom can be estimated directly from the residual
terms using Eq. (9) or a Gaussian form for the auto-
correlation can be assumed and its parameter esti-
mated from the smoothness of the error terms as de-
scribed in Friston et al. (1994a).

CONCLUSION

We hope that this communication facilitates the
analysis of fMRI data in a way that provides greater
latitude in experimental design and statistical infer-
ence.
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