
Electrophysiological and neuroimaging studies have shown that
attention to visual motion can increase the responsiveness of the
motion-selective cortical area V5 and the posterior parietal cortex
(PP). Increased or decreased activation in a cortical area is often
attributed to attentional modulation of the cortical projections to that
area. This leads to the notion that attention is associated with
changes in connectivity. We have addressed attentional modulation
of effective connectivity using functional magnetic resonance
imaging (fMRI). Three subjects were scanned under identical
stimulus conditions (visual motion) while varying only the attentional
component of the task. Haemodynamic responses defined an
occipito-parieto-frontal network, including the, primary visual cortex
(V1), V5 and PP. A structural equation model of the interactions
among these dorsal visual pathway areas revealed increased
connectivity between V5 and PP related to attention. On the basis of
our analysis and the neuroanatomical pattern of projections from the
prefrontal cortex to PP, we attributed the source of modulatory
influences, on the posterior visual pathway, to the prefrontal cortex
(PFC). To test this hypothesis we included the PFC in our model as a
‘modulator’ of the pathway between V5 and PP, using interaction
terms in the structural equation model. This analysis revealed a
significant modulatory effect of prefrontal regions on V5 afferents to
posterior parietal cortex.

Introduction
Functional neuroimaging has been extremely successful in

establishing functional segregation as a principle of organization

in the human brain. More recent approaches to understanding

the data have focused on the integration of functionally

segregated areas through characterizing neurophysiological

activations in terms of distributed changes. These approaches

have introduced a number of concepts (e.g. functional and

effective connectivity) and their application to issues in imaging

neuroscience (e.g. functional integration and non-linear cortical

interactions) (Horwitz et al., 1991; McIntosh and Gonzalez-

Lima, 1991; Friston et al., 1993a,b; Lagreze et al., 1993;

McIntosh et al., 1996a). The present work represents a further

step in using neuroimaging to characterize functional integra-

tion in the brain.

The hypothesis that attention can be expressed as a

modulation or change in effective connectivity is captured in a

quotation by LaBerge (1995): ‘The expression of attention in a

brain area appears to be described effectively as an enhancement

of activity in the attended set of pathways relative to the

unattended set of pathways.’ Functional neuroimaging has been

used to infer modulation of extrastriate cortical areas by

attentional processes (Corbetta et al., 1991; O’Craven and Savoy,

1997). Electrophysiological and functional magnetic resonance

imaging (fMRI) studies have identified neuronal responses

attributable to attentional processing at the level of the posterior

parietal cortex (Bushnell et al., 1981; Mesulam, 1981;

Mountcastle et al., 1981; Assad and Maunsell, 1995). Recent

results (Treue and Maunsell, 1996) demonstrate attentional

modulation at the level of V5 in primates. Inferences about

modulation in these studies were based on regionally specific

changes in activity (i.e. BOLD contrast in fMRI or neuronal

activity in single-cell electrophysiology). However, the modu-

lation of pathways can be characterized explicitly in terms of

changes in effective connectivity among cortical areas.

In neuroimaging functional connectivity is defined as the

temporal correlation between remote neurophysiological

events, whereas effective connectivity is defined as the

inf luence one neural system exerts over another (Friston et al.,

1993b, 1995e). Functional connectivity is simply a statement

about the observed correlations; it does not provide any direct

insight into how these correlations are mediated. To clarify the

distinction between functional and effective connectivity let us

consider a simple example. The mediodorsal nucleus of the

thalamus is interconnected with different cortical areas.

Increased activity in this structure will therefore lead to highly

correlated brain activity in the cortical terminal fields of its

projections, despite the fact that the cortical areas may not be

directly connected. Eigenimage analysis (i.e. an analysis based on

functional connectivity) of the cortical data, without the

thalamus, would reveal a functional network of cortical areas.

This example highlights the teleological weakness of functional

connectivity and speaks of the importance of modelling

interactions using effective connectivity.

The concept of effective connectivity was originated in the

analysis of separable spike trains obtained from multi-unit

electrode recordings (Gerstein and Perkel, 1969; Gerstein et al.,

1989; Aertsen and Preissl, 1991; Gochin et al., 1991). Effective

connectivity is closer to the intuitive notion of a connection than

functional connectivity and can be defined as the inf luence

one neural system exerts over another (Friston et al., 1995e),

either at a synaptic (cf. synaptic efficacy) or cortical level. In

electrophysiology there is a close relationship between effective

connectivity and synaptic efficacy.

Although functional and effective connectivity can be

invoked at a conceptual level in both neuroimaging and electro-

physiology, they differ fundamentally at a practical level. This is

because the timescales and nature of the neurophysiological

measurements are very different (seconds versus milliseconds

and haemodynamic versus spike trains). In electrophysiology it

is often necessary to remove the confounding effects of

stimulus-locked transients (which introduce correlations not

causally mediated by direct neural interactions) in order to

reveal the underlying connectivity. The confounding effect of

stimulus-evoked transients is less problematic in neuroimaging

because the promulgation of dynamics from primary sensory

areas onwards is mediated by neuronal connections (usually

reciprocal and interconnecting). In other words in functional
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imaging, stimulus-related transients in higher areas must be

mediated by connectivity from lower areas.

One method used to estimate effective connectivity is struct-

ural equation modelling. This technique combines an anatomical

(constraining) model and the inter-regional covariances of

activity. The ensuing functional model represents the inf luence

of regions on each other through the putative anatomical

connections.

Structural equation modelling is a linear technique and

therefore cannot model non-linear context or activity-dependent

changes in connection strength (i.e. modulation). However, this

problem can be circumnavigated, by comparing two models,

one where the modulatory inf luence is present and one where it

is absent. The more compelling alternative is to specify a new

variable within the model, comprising a (second-order) term that

models the interaction between an input to a region and

modulatory afferents. This can be compared with modulation at

a synaptic level, where a neuronal afferent can modulate the

‘gain’ of a synaptic connection.

In this paper we present fMRI data from three individual

subjects, scanned under identical stimulus conditions, and

changing only the attentional component of the tasks employed.

In the first stage we identified regions that showed differential

activations in relation to attentional set. In the second stage

changes in effective connectivity between these areas were

assessed using structural equation modelling (McIntosh et al.,

1994). In the final stage we show how these attention-dependent

changes in effective connectivity can be explained by

modulation, of the dorsal visual pathway, by frontal cortical

areas. These effects are characterized by extending standard

structural equation modelling to include non-linear interaction

terms or moderators (Kenny and Judd, 1984). We also

demonstrate  the regional specificity  of  the interaction  (i.e.

modulation) and give an intuitive illustration of modulation using

a simple regression analysis. The methods section of the paper is

divided into three sections. Firstly we introduce structural

equation modelling. We then describe how we identified those

regions involved in attentional processing and finally introduce

the neuroanatomical model used in the analysis.

Materials and Methods

Structural Equation Modelling

Structural equation modelling or path analysis is a technique developed in

economics, psychology and the social sciences. The basic idea differs

from the usual statistical approach of modelling individual observations.

In multiple regression or ANOVA the regression coefficients or

parameters of the model are based on the minimization of the sum of

squared differences between the predicted and observed dependent

variables. Structural equation modelling approaches the data from a

different perspective. Instead of considering variables individually, the

emphasis is on the covariance structure. Parameters are estimated in

structural equation modelling by minimizing the difference between the

observed covariances and these implied by a structural or path model

(see Appendix for operational equations). The parameters of the model

are  connection strength or path coefficients  and correspond to an

estimate of effective connectivity. McIntosh and Gonzales-Lima (1994)

used structural equation modelling to  demonstrate  the dissociation

between ventral and dorsal visual pathways for object and spatial vision

with positron emission tomography (PET) data in the human. Grafton and

colleagues used structural equation modelling to assess the effect of

pallidotomy on effective connectivity in the motor system of Parkinson

patients (Grafton et al., 1994). Recently structural equation modelling

was used to characterize changes in effective connectivity during

memory tasks (McIntosh et al., 1996b; Nyberg et al., 1996)

In terms of neural systems a measure of covariance represents the

degree to which the activities of two or more regions are related. The

study of covariance structures in neuroimaging has a unique advantage

compared to applications in other fields: the interconnections among the

dependent variables (regional activity of brain areas) are anatomically

determined and the activation of each region can be measured directly.

This is in contrast to ‘classical’ structural equation modelling in the

behavioural sciences, where, sometimes, the models are hypothetical or

‘latent’ and cannot be assessed directly.

Anatomical Model

An important issue in structural equation modelling is the determination

of the underlying anatomical model. This model comprises regions and

connections between those regions. Different methods can be combined

to identify important regions: categorical comparisons between different

conditions and eigenimages highlighting structures of functional

connectivity, in conjunction with results from primate electrophysiology

have been used (McIntosh and Gonzalez-Lima, 1991; Grafton et al.,

1994). The connectivity between the identified regions is mostly based on

neuroanatomical tracer studies in primates. A model is always a

simplification of reality. In the context of effective connectivity one has to

find a compromise between complexity, anatomical accuracy and

interpretability. There are also mathematical constraints on the model. If

the number of free parameters (unknowns) exceeds the number of

observed covariances, the system is underdetermined and no single

solution exists.

Statistical Inference

Statistical inference in structural equation modelling can address two

points. The goodness of the overall fit of the model, i.e. how significantly

different are the implied and observed covariance structures, and the

difference between alternative models (nested or stacked model

approach). In the context of multivariate, normally distributed variables

the minimum of the maximum likelihood function (used to estimate the

free parameters) times the number of observations minus one, follows a

χ2 distribution with (q/2)(q + 1) – p degrees of freedom (Bollen, 1989). p

is the number of free parameters and q is the number of observed

variables. In the context of the stacked model the χ2 statistic difference

test can be used to compare two models (e.g. data from different groups

or conditions) in the context of structural equation modelling (Grafton et

al., 1994). A so-called ‘null-model’ is constructed where the estimates of

some parameters (i.e. path coefficients) are constrained to be zero or

equal for both groups. The alternative model allows these parameters to

differ between the groups. The significance of the difference between

the models is expressed by the difference in the χ2 goodness of fit

indicator (χ2 difference test or likelihood ratio test; Bollen, 1989). This χ2

statistic has n degrees of freedom, where n is the difference in the

degrees of freedom between the null-model and the one in question. For

example, if the null-model constrains one parameter to be equal between

groups, the resulting degree of freedom for the χ2 statistic would be one.

Path Coefficients

How are path coefficients interpreted? The path coefficient represents

the response of the dependent variable to a unit change in an explanatory

variable, whilst the other variables in the model are held constant (Bollen,

1989). It is also possible to standardize path coefficients with the ratio of

the standard deviations of the two connected variables (the standard

deviation of the caused variable constituting the denominator). This

standardized coefficient can be interpreted as the response, in units of

standard deviation, of the dependent variable for a standard deviation

change in the explanatory variable.

Non-linear Interaction Terms

Current applications of structural equation modelling generally use linear

models. However, it is possible to incorporate additional variables

containing a non-linear function [e.g. f(x) = x2] of the original variables

(Kenny and Judd, 1984). Interactions between variables can be

incorporated in a similar fashion; wherein a new variable, containing the

product of two interacting  variables, is  introduced  as an additional

inf luence. Although the time series are normalized, the product of two

variables (say V5 and PFC) will still show some correlation with the
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individual terms. Therefore one can residualize the product PV5, PFC = V5 ×

PFC using least squares (equation 1) to give an interaction term IV5, PFC

that is orthogonal to V5 and PFC. This procedure can be compared to

partial correlation analysis, where the effect of the established predictors

is removed from a new predictor to assess the improvement in fit.

PV5, PFC = [V5 PFC].b + IV5, PFC

i.e.

IV5, PFC = PV5, PFC – [V5 PFC] ([V5 PFC]T.[V5 PFC])–1.[V5 PFC]T.PV5, PFC (1)

where [V5 PFC] denotes a matrix containing the time-series of V5 and

PFC as column vectors, and b is a 2 × 1 vector, containing regression

coefficients. The resulting time-series of IV5, PFC can be seen as the residual

time-series after regressing the term PV5, PFC on the main effects, V5 and

PFC.

Even if the variables are multinormally distributed, the product of two

such variables is not. Under these circumstances, maximum likelihood

estimators (ML) are still consistent, but the χ2 fit index and tests of

statistical significance may not be valid (Bollen, 1989). To overcome this

problem, parameters can be estimated by weighted least squares (WLS)

(Browne, 1984; Kenny and Judd, 1984) (see Appendix). As we used

non-linear  interaction terms in the second part of our analysis, the

parameters were estimated using WLS, whereas the path coefficients in

our linear models were estimated by ML.

Experimental Design and Image Acquisition

The experiment was performed on a 2 Tesla Magnetom VISION (Siemens,

Erlangen) whole-body MRI system equipped with a head volume coil.

Contiguous multislice T2*-weighted fMRI images (TE = 40 ms; 90

ms/image; 64 × 64 pixels [19.2 × 19.2 cm]) were obtained with

echo-planar imaging (EPI) using an axial slice orientation. A T2*-weighted

sequence was chosen to enhance blood oxygenation level dependent

(BOLD) contrast. The volume acquired covered the whole brain except

for the lower half of the cerebellum and the most inferior part of the

temporal lobes (32 slices; slice thickness 3 mm, giving 9.6 cm vertical

field of view). The effective repetition time was 3.22 s.

Subjects were scanned during four runs, each lasting 5 min 22 s. One

hundred image volumes were acquired in each run. Each condition lasted

Figure 1. Stimulus as seen by the subject and experimental design. The stimulus during the ‘no attention’ and ‘attention’ conditions (A). Two hundred and fifty white dots (size 0.1º)
were moving radially from a fixation point (size 0.3º) towards the border of the screen (17º diameter) at a constant speed of 4.7º/s. During the ‘fixation’ condition only the fixation
mark was visible. (B) Experimental design. Each subject was scanned over four blocks. M denotes the first 10 discarded scans of each block with magnetic saturation effects. F,
‘fixation’; A, ‘attention’, N, ‘no attention’; S, ‘stationary’ condition. Each condition lasted 32 s, corresponding to 10 volume images (see Materials and Methods for a description of the
conditions).
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Figure 2. Spatial localization and time-course of activation for regions of interest. Regions of interest for a single subject superimposed on the T1 weighted MRI. The time course
for all regions of interest is shown. The different shades of the background code different conditions (see Fig. 1B).

Table 1
Location of regions of interest for path analysis

Area Subject 1 Subject 2 Subject 3

Location F statistic Location F statistic Location F statistic

V1 R 0, –93, 0a 254 12, –81, –9 199 15, –96, 15 160
V1 L 0, –93, 0a 254 –9, –90, –12 142 –18, –93, 6 205
V5 R 42, –84, 9 77 51, –72, –12 41 45, –63, –6 55
V5 L –36, –87, 9 111 –33, –78, –12 99 –54, –72, 3 123
PP R 21, –69, 60 43 21, –57, 66 42 24, –69, 60 52
PP L –21, –60, 63 36 –30, –54, 60 47 –18, –69, 54 27
PFC R 57, 21, 24 21 48, 12, 24 20 51, 9, 30 14

Coordinates and the F statistic for each region included in the structural equation models. The maximum activation of V1 showed no lateralization in one subject, therefore the same region is used for both
hemispheres. The maximum of each region was significant at P < 0.05 (corrected).
aMaximum in the midline.
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32.2 s, giving 10 multislice volumes per condition. During all conditions

the subjects looked at a fixation point (size 0.3°) in the middle of a

transparent screen. Images were backprojected on the screen by an LCD

video-projector. In conditions with visual motion 250 white dots (size

0.1°) moved radially from the fixation point in random directions towards

the border of the screen, at a constant speed of 4.7°/s, where they

vanished (Fig. 1A). The active screen area was circular with a diameter of

17°. The screen refresh rate was set to 67/s.

Before scanning, subjects were exposed to five 30 s trials of the

stimulus. The speed of the moving dots was changed five times during

each trial. Subjects were asked to indicate any change in speed. Changes

in speed were gradually reduced over the trials (7, 5, 3, 2%), until a 1%

change was presented on the last occasion. A 1% change in the initial

speed of 4.7°/s is equivalent to a difference of 0.047°/s. We did not

characterize performance in any psychophysical detail. However, during

easy trials (7 and 5%) subjects performed at 100%. During the more

difficult complicated trials (3, 2 and 1%) subjects continued to detect four

or five changes in speed which did not coincide with the actual changes

in speed. Once in the scanner, changes in speed were  completely

eliminated, so that identical visual stimuli were shown in all motion

conditions. Four conditions — ‘fixation’, ‘attention’, ’no attention’ and

‘stationary’ — were used (Fig. 1B). During the ‘attention’ and ’no

attention’ conditions subjects fixated centrally, while white dots emerged

from the fixation point to the edge of the screen. During ‘fixation’ the

screen was dark with only the fixation dot visible. The difference

between the visual motion conditions lay in the explicit instructions

given to the subjects. In the ‘attention’ condition the instruction was

‘detect changes’ and during the ‘no attention’ condition the subjects were

instructed to ‘just look’. The verbal commands were digitally recorded

and played 10 s before the condition started. There were no verbal or

tactile responses required.

The behavioural data were obtained by asking subjects to estimate the

number of changes in speed after the experiment. We avoided asking

subjects after each run, because of the implicit demands that would have

been placed on working memory. Other ways of indicating changes

on-line (e.g. button press) were dismissed because response-associated

movements and their preparation would have confounded premotor (e.g.

occulo-motor) responses, known to be involved in attentional processing

(Rizzolatti et al., 1987).

All the subjects were debriefed after the experiment and all of them

told us that they detected between four and five changes in speed during

the ‘attention’ conditions. All three subjects were rather surprised when

we told them that speed changes had been eliminated.

Each run was preceded by 10 scans of a blank screen to eliminate

magnetic saturation effects and then started with a ‘fixation’ task,

followed by ‘attention’ ,‘fixation’, ‘no attention’ and so on. Each run of

scanning ended with the fourth condition ‘stationary’, which consisted of

the fixation point and 250 stationary dots. To avoid habituation effects the

third and fourth runs were counterbalanced, starting with a ‘no attention’

condition instead of an ‘attention’ condition. There was a gap of 5 min

between each run while the scanner image processor reconstructed the

images.

Image Analysis and Categorical Comparisons

Image processing and statistical analysis were carried out using SPM96

(Worsley and Friston, 1995; Friston et al., 1995c, 1996). All volumes were

realigned to the first volume (Friston et al., 1995a). A mean image was

created using the realigned volumes. A structural MRI, acquired using a

standard three-dimensional T1 weighted sequence (1 × 1 × 3 mm voxel

size), was co-registered to this mean (T2*) image. Finally all the images

were spatially normalized (Friston et al., 1995a) to a standard template

(Talairach  and Tournoux, 1988; Evans et  al., 1993). The data  were

smoothed using a 6 mm full width at half maximum isotropic Gaussian

kernel. Data analysis was performed by modelling the different conditions

(‘attention’, ‘no attention’, ‘fixation’ and ‘stationary’) as reference

waveforms in the context of the general linear model as employed by

SPM96 (Friston et al., 1995b). Specific effects were tested with

appropriate linear contrasts of the parameter estimates for each

condition, resulting in a t-statistic for each and every voxel. These

t-statistics (transformed to Z-statistics) constitute a statistical parametric

map (SPM). These SPMs are then interpreted by referring to the

probabilistic behaviour of Gaussian random fields. Data were analysed for

each subject individually. The threshold adopted was P < 0.05 (corrected

for multiple comparisons).

We  used comparisons between  ‘attention’ and  ‘no attention’, to

identify regions that showed differential responses due to attentional set.

To identify regions important in early visual processing, we used the

comparison between conditions involving visual motion and ‘fixation’.

Identification of Regions of Interest

Regions of interest were defined by categorical comparisons using the

SPM{Z} comparing ‘attention’ and ‘no attention’ and comparing ‘no

attention’ and ‘stationary’. With a stimulus consisting of radially moving

dots we predicted the involvement of primary visual cortex (V1), V5, the

human analogue of the middle temporal area MT of the macaque and the

posterior parietal complex. The location of V1 was coincident with the

calcarine fissure (Zeki et al., 1991), and the location of V5 was in accord

with previous functional imaging studies (Zeki et al., 1991; Watson et al.,

1993; Tootell et al., 1995). The location of the posterior parietal region

was similar to that in previous PET studies of attention (Corbetta et al.,

1991; Coull et al., 1996; Vandenberghe et al., 1996). The exact

coordinates and the F-statistic of the maximum in each region are given in

Table 1. Each region was defined using a region of interest (ROI) with a

diameter of  8 mm, centred around  the most significant (P < 0.05,

corrected) voxel as revealed by the categorical comparison. Figure 2

shows the location of ROIs for a single individual. A single time-series,

representative of this region, was defined by the first eigenvector

(identified by a singular value decomposition) of all the voxel time-series

in the ROI. This denoising technique is equivalent to using the first

principal component time-series of the ROI (see Sadasivan and Dutt,

1996, for a related application in EEG).

All the time-series were adjusted for confounds (e.g. global mean,

low-frequency components) after applying the general linear model with

condition specific predictors (Friston et al., 1995d). Since our scanning

protocol used sequential axial slice acquisition in descending order,

signals in different slices were measured at different time points. A TR of

3.2 s for 32 slices and a vertical field of view of 9.6 cm can therefore lead

to a  sampling lag of ∼2 s. To correct for this, we interpolated and

resampled the data. This can be seen as moving the time-series backwards

or forwards in time to remove artefactual temporal differences.

Results

Changes in Effective Connectivity Related to ‘Attention’

Versus ‘No Attention’

The dorsal visual pathway was subject to a path analysis. Our

model included the primary visual cortex (V1), V5 and the

posterior parietal complex (PP). Although connections between

regions are generally reciprocal, due to mathematical restric-

tions (the relative numbers of known and unknown variables

and  stability of the model) we only included unidirectional

paths. We also excluded V2 for simplicity. Figure 3 gives an

overview of the simple structural model used. The time-series

for each region was normalized to zero mean and unit variance.

To assess effective connectivity in a condition-specific fashion,

we used time-series that comprised observations during the

condition in question.  Path  coefficients  for both conditions

(‘attention’ and ‘no attention’) were estimated using a maximum

likelihood function with the software package AMOS (Amos for

Windows, version 3.5, SmallWaters Corp., Chicago, IL). The

covariance matrices used were calculated on the basis of 96

observations for ‘attention’ and ‘no attention’. The variance of

the residual inf luences were estimated but their path

coefficients were constrained to be unity to reduce the number

of estimated parameters (McIntosh et al., 1994). Different

(stacked) models were compared to assess the significance of

changes due to attention: restricted models, in which either the

path from V1 to V5 or from V5 to PP were forced to be equal for
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attention and no attention and a corresponding free model in

which these path coefficients were allowed to differ were

compared. The null hypothesis was that freeing the parameters

between the conditions does not significantly improve the fit.

Table 2 shows the path coefficients for ‘attention’ and ‘no

attention’ for all three subjects. The table also shows the

statistical inference based on the stacked model approach.

Comparing path coefficients between ‘attention’ and ‘no

attention’ shows marked changes in the connection between V5

and PP and to a lesser degree between V1 and V5. The χ2 statistic

indicated that allowing for different path coefficients between

‘attention’ and ‘no attention’ leads to a highly significant

improvement of fit in both cases (P < 0.05). In other words

attention can be construed as significantly modulating these

connections.

Modelling Modulation by Interaction Terms — A Unified

Approach

The linear path models of the previous  section comparing

‘attention’ and ‘no attention’ revealed increased effective

connectivity in the dorsal visual pathway in relation to attention.

The question that arises is which part of the brain is capable of

modulating these pathways? Based on lesion studies (Lawler

and Cowey, 1987) and on the system for directed attention as

described by Mesulam (Mesulam, 1990; Morecraft et al., 1993),

the dorsolateral prefrontal cortex or the anterior cingulate were

candidates for such a modulatory role (only the right dorsolateral

prefrontal cortex showed a significant activation during ‘atten-

tion’ relative to ‘no attention’).

Selemon and  Goldman-Rakic (1988) have shown that the

prefrontal cortex is connected to many cortical areas implicated

in spatially related behaviour and attention. They also note that

prefrontal projections throughout the cortex terminate in layer I.

This pattern is typical of feedback connections (Rockland and

Pandya, 1979; van Essen and Maunsell, 1983). Therefore the

prefrontal projections to PP have both the macro- and micro-

anatomical characteristics of a modulatory projection system.

The right prefrontal region was included in our model as a

moderator variable modulating the posterior visual pathway.

Given the neuroanatomical projection from PFC to  PP, we

included a modulation of the pathway between V5 and PP:

assuming a non-linear modulation of this connection, we

included an interaction term IV5,PFC in our analysis. This vector,

mediating the interaction, simply comprises the time-series of

region V5 multiplied by the time-series of the right prefrontal

cortex (orthogonalized according to equation 1). The inf luence

of  this variable on PP corresponds to the inf luence of  the

prefrontal cortex on the connection between V5 and PP. The

interaction model is shown in Figure 4. Because our interaction

model could accommodate changes in connectivity between

‘attention’ and ‘no attention’ the entire time-series was analysed

(i.e. attention-specific changes are explicitly modelled). The

covariance matrix subject to this analysis was based on 360

observations.

As we used the whole time-series in this model, we

incorporated a further variable, accounting for sensory input to

all exogenous variables (i.e. variables that do not receive input

from other variables in the model). This dummy variable

contained ones whenever visual stimulation was present and

zeros during the ‘fixation dot’ condition.

As described in the linear model, we tested for the

significance of the interaction effect by comparing a restricted

and free model. In the restricted model the interaction term (i.e.

path from IV5,PFC to PP) was set to zero. Table 3 shows the path

coefficients and the χ2 difference test for the interaction term

and the main effect of the prefrontal cortex. All interaction

terms were significant (P < 0.05). As  there  is  a  substantial

anatomical connection between PP and PFC we also tested a

model incorporating reciprocal connections between PP and

PFC. In all three subjects this model was stable but showed only

marginally different results: slightly higher significance of the

interaction; slightly lower significance of the main effects.

However, all effects remained significant at P < 0.05.

Testing the Impact of PFC on the Connectivity Between

V5 and PP Using Regression Analysis

The presence of an interaction effect of the PFC on the

connection between V5 and PP can also be illustrated by a

simple regression analysis. If PFC shows a positive modulatory

inf luence on the path between V5 and PP, the inf luence of V5

on PP should depend on the activity of PFC. This can be

visualized by splitting the observations into two sets, one with

observations in which PFC activity is high and another one in

which PFC activity is low (cf. Friston et al., 1995e). It is now

Table 2
Estimates of path coefficients for the linear model

(A) Subject 1
Connections V1 → V5 → PP

Path coefficients (standardized path coefficients)

Right attention 0.91 (0.90) 0.90 (0.78)
no attention 0.56 (0.76) 0.30 (0.25)

Left attention 0.88 (0.87) 0.52 (0.48)
no attention 0.66 (0.76) –0.05 (–0.03)

Right χ2 (P value) 25 (<0.01) 17 (<0.01)
Left χ2 (P value) 8 (<0.01) 8.5 (<0.01)

(B) Subject 2
Connections V1 → V5 → PP

Path coefficients (standardized path coefficients)

Right attention 0.74 (0.71) 0.63 (0.62)
no attention 0.49 (0.61) 0.28 (0.30)

Left attention 0.98 (0.95) 0.87 (0.87)
no attention 0.81 (0.89) 0.37 (0.49)

Right χ2 (P value) 6.1 (<0.01) 8.1 (<0.01)
Left χ2 (P value) 10 (<0.01) 33 (<0.01)

(C) Subject 3
Connections V1 → V5 → PP

Path coefficients (standardized path coefficients)

Right attention 0.95 (0.70) 0.74 (0.73)
no attention 0.56 (0.55) 0.49 (0.51)

Left attention 0.89 (0.80) 0.67 (0.56)
no attention 0.75 (0.79) 0.17 (0.19)

Right χ2 (P value) 8.5 (<0.01) 5.1 (<0.05)
Left χ2 (P value) 2.6 (=0.1) 13 (<0.01)

Unstandardized and standardized path coefficients for the model of Figure 3 comparing ‘attention’
and ‘no attention’ for both hemispheres. Statistical inference for each path is based on the lack of
fit χ2 value (see Materials and Methods). The comparison of path coefficients between ‘attention’
and ‘no attention’ shows marked changes in the connection between V1 and V5 and between V5
and PP. The χ2 statistic indicated that freeing the path coefficients for ‘attention’ and ‘no attention’
leads to a highly significant improvement of fit.

Figure 3. Linear structural model for the dorsal visual stream. A sketch of the
simplified model of the dorsal visual pathway, tested with structural equation modelling.
Note that only unidirectional paths are included.
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possible to perform separate regressions of PP on V5 for both

sets. If the hypothesis of a positive modulation is true, the slope

of the regression of PP on V5 should be steeper under high

values of PFC. Figure 5 shows exactly this in all three subjects

and provides the regression coefficients for the split-data. The F

statistics and associated P values ref lect the significance of the

interaction term (V5 × PFC), in the presence of the two main

effects (V5 and PFC) in the following regression model:

PP = b1 V5 + b2 PFC + b3 V5 × PFC (2)

Regional Specificity

In this section we address the regional specificity of the

interaction. This effect can  be seen  as the  contribution  of

the interaction between two areas (V5 and PFC) in explaining

the variation of activity in a third (PP). In this context a

modulatory effect of PFC on the efferent projections from V5

would be expressed as a contribution from V5 that depended on

activity in PFC. If the connection between V5 and PP is

modulated by the PFC, the time-series of IV5,PFC (the

orthogonalized product of the V5 and PFC time-series) should

predict a component  of the activity in the PP. To test this

hypothesis we used the interaction term IV5,PFC as a regressor or

explanatory variable and tested for the significance of the

regression using a conventional SPM{Z} analysis. Figure 6 and

Table 4 show the SPM{Z}s overlaid on a structural MRI and the

coordinates for all three subjects. Subjects 2 and 3 showed

the most   significant effect in the right parietal cortex.

Interestingly, in subject 1 the voxel with the most significant

positive regression was found in the left parietal region, followed

by the right parietal region. The regional specificity and

reproducibility of this effect is remarkable.

Discussion
In this paper modulation of the dorsal visual pathway serves as

an example of interactions in structural equation modelling in

fMRI. We adopted a conservative modelling approach, where

most regions were defined a priori, based on primate electro-

physiological  studies  and human functional  imaging studies

(Zeki et al., 1991; Tootell et al., 1995). Motion perception has

been well studied and critical areas have been identified in

primates and man. Furthermore it is known that attention can

modulate activity in the dorsal visual pathway at the level of V5

(Beauchamp and DeYoe, 1996; Treue and Maunsell, 1996;

O’Craven and Savoy, 1997; ) and PP (Beauchamp and DeYoe,

1996).  The anterior cingulate and the prefrontal cortex are

thought to exert a modulatory inf luence on visual connections.

However, it transpired that the only region showing significant

attention-specific activations in our data was the right dorso-

lateral prefrontal cortex. The prefrontal cortex is known to play

a special role in regulating the interplay of cortical regions

(Shallice 1988). This has also been shown in the context of

attention in patients with prefrontal lesions (Pierrot Deseilligny

et al., 1986). In terms of effective connectivity McIntosh and

colleagues have demonstrated feedback from Brodmann area 46

to the dorsal visual pathway during spatial vision (McIntosh et

al., 1994). It is also interesting to note that in their model, which

included interhemispheric connections, the inf luence of the

right prefrontal region often dominated over the left prefrontal

region.

Modulation

Modulation is an extremely f lexible mechanism, especially on a

small timescale, that may be critical for attention. In a

mathematically and biologically compelling model Olshausen

and colleagues (Olshausen et al., 1993) have used the concept of

modulation to simulate involuntary shifts of attention between

objects in a given visual scene. As a possible mechanism for

modulation, or gating, at the neuronal level they propose voltage-

gated calcium channels (Llinas, 1988), that enable non-linear

coupling between inputs. This has been shown for synaptic

inputs into layer I of neocortex (Cauller and Connors, 1992),

which supports the conjecture that attentional modulation could

be exerted by prefrontal afferents, because prefrontal

connections terminate predominantly in layer I. The modulation

of the connection between V5 and PP by prefrontal inf luences

might therefore be mediated by a change in synaptic efficacy

underpinned by voltage-dependent calcium channels activated

by prefrontal afferents.

The modulatory inf luence of the prefrontal cortex in our

Figure 4. Structural model for the dorsal visual stream including the dorsolateral
prefrontal cortex. A sketch of the extended model of the dorsal visual pathway with the
modulatory influence of the prefrontal cortex (PFC) on the connection between V5 and
PP.The main effect of PFC is also included to show whether the interaction is significant
in the presence of the main effect. As opposed to the linear model, the stimulus is
included to have an influence on all variables, that receive no input from within the
model (i.e. exogenous variables V1, PFC, IV5, PFC).

Table 3
Estimates of path coefficients for the interaction model

(A) Subject 1
Paths V5 → PP IV5,PFC → PP PP → PFC

Path coefficients

Right 0.46 0.16 0.33
χ2 (P value) – 4.6 (<0.05) 34.6 (<0.01)

(B) Subject 2
Paths V5 → PP IV5,PFC → PP PP → PFC

Path coefficients

Right 0.52 0.31 0.56
χ2 (P value) – 10.1 (<0.05) 43.7 (<0.01)

(C) Subject 3
Paths V5 → PP IV5,PFC → PP PP → PFC

Path coefficients

Right 0.56 0.25 0.43
χ2 (P value) – 33.2 (<0.01) 111.7 (<0.01)

Unstandardized path coefficients for the model in Figure 5 for both hemispheres. Only the path
coefficients affecting the parietal cortex (PP) are shown. The χ2 statistics for the effect of the
interaction term (the multiplied time-series of V5 and the prefrontal cortex [PFC]), and for the main
effect of PFC are shown. It can be seen that both, the direct effect from the PFC as the interaction
(IV5, PFC) are significant.
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Figure 5. Regression between V5 and PP as a function of PFC activation. An alternative
way of showing the modulatory effect of the PFC on the connection between V5 and PP.
All observations were divided into two groups: one with observations in which PFC
activity is high, one in which PFC activity is low. The graphs show separate regression
curves for both groups. The F statistics and associated P values reflect the significance
of the interaction term (V5 × PFC), in the presence of the two main effects (V5 and PFC)
of the following regression model: PP = b1 V5 + b2 PFC + b3 V5 × PFC.

Table 4
Regional specificity of the interaction

Subject Location Z score (P value,
corrected)

x, y, z in mm

1 (1) parietal L 6.2 (<0.05) –30, -57, 63
(3) parietal R 6.0 (<0.05) 18, –69, 60

2 (1) parietal R 6.0 (<0.05) 30, –36, 63
(2) Parietal R 5.4 (<0.05) 18, –57, 63

3 (1) Parietal R 5.5 (<0.05) 48, –42, 63

Z scores, corrected P values and coordinates for the significant regressions of the interaction
effect IV5,PFC. The numbers in front of the region denote the rank of significance. In subjects 2 and
3, the highest correlation was found in the right parietal cortex. In subject 1, the voxel with the
most significant positive correlation was found in the left parietal region, followed by the right
parietal region.

Figure 6. Regional specificity of the interaction term. SPM{Z}  overlaid on  the
individual’s structural MR, assembling voxels showing a significant regression with the
product of V5 and PFC. The threshold was set to P < 0.0001 (uncorrected). In subjects
2 and 3, the most significant correlation was found in the right parietal cortex (30, –36,
63 mm and 48, –42, 63 mm). In subject 1, the voxel with the most significant positive
correlation was found in the left parietal region (–30, –57, 63 mm), followed by the right
parietal region (18, –57, 63 mm). Locations are in reference to the anterior comissure.
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model was restricted to the connection between V5 and PP.

However, the connection between V1 and V5 also exhibited a

change in effective connectivity (Table 2). We did not include a

similar modulatory interaction term at this level; however, it

would be interesting to extend the existing model to allow for a

similar interaction (i.e. V1 → V5 modulated by PP).

Structural Model of Posterior Visual Pathway

Our anatomical model represents a simple version of the dorsal

visual pathway. This model has been used in an application of

structural equation modelling to PET data (McIntosh et al.,

1994), where different connectivity patterns for spatial and

object vision were demonstrated. Our analysis, which was

restricted to the posterior visual pathway, showed changes of

effective connectivity within a given system attributable to

attentional modulation. We also demonstrated modulation of

cortical connections by prefrontal cortex, using interaction

terms. This technique could also be applied to model non-linear

effects between two areas (e.g. intrinsic modulation). This can

be seen as the interaction (e.g. non-linear bias) of a region with

its afferents. This effect  has  been shown  previously  in  the

connectivity between V1 and V2 in fMRI (Friston et al., 1995e).

Regional Specificity

The maximum Z-score pertaining to the regionally  specific

interaction effects was located in the parietal cortex, but did not

exactly coincide with the regions included in our model (e.g.

subject 3). This highlights the simplifying nature of models. It is

likely that the parietal regions defined in our model are further

subdivided and subserve different functions.

An important aspect of this analysis is that there is an entirely

equivalent and symmetric interpretation of the physiological

interactions above, namely that they ref lect a modulation of PFC

→ PP connections by V5 activity. This is because an interaction

can be construed as either a modulation of the effects of the first

factor by the second, or equivalently a modulation of the

second’s effects by the first. There is no formal distinction

between what is an effect and what is a modulatory factor. The

potential for V5 modulation has anatomical support since it does

project to the prefrontal cortex (Ungerleider and Desimone,

1986). However, our explanation that PFC modulates the

connection between V5 and PP as an example of top-down

modulation is more likely, given data that support an executive

role for the prefrontal cortex (Pierrot Deseilligny et al., 1986;

Shallice, 1988). Furthermore it has been shown recently in a PET

study that a region within 10 mm of our prefrontal region is

involved in attentional processing in the context of object

categorization (Rees et al., 1997)

Comparison with Other Structural Equation Modelling

Studies

Structural equation modelling has been used to show interesting

changes in effective connectivity in the motor system (Grafton et

al., 1994) and in the visual system (McIntosh et al., 1994) using

PET. However, in PET studies the number of observations is

restricted by the radiation exposure. To achieve a reasonable

sensitivity, the data of the studies cited had to be pooled over

subjects, which can introduce a confounding effect, as it is

difficult to  distinguish  between  variance introduced  by the

subjects (e.g. severity of disease) or the task itself (Grafton et al.,

1994). fMRI offers a unique advantage over PET in this respect,

as it provides sufficient data to assess effective connectivity in

single subjects. However, one is then faced with the problem of

generalizing the results to the population from which the subject

was selected. Both group and single subject analyses may be

confounded if task responses change due to factors that are not

central to investigation, such as adaptation, fatigue or anomalous

task responses.

Connectivity versus Categorical Analyses

One obvious advantage of the assessment of effective connec-

tivity is that it allows one to test hypotheses about the integration

of cortical areas. For example, the categorical comparison

between ‘attention’ and ‘no attention’ revealed prestriate,

parietal and frontal activations. However, the only statement

possible is that these areas show higher rCBF during the

‘attention’ condition as opposed to the ‘no attention’ condition.

The analysis of effective connectivity revealed two additional

results. Firstly, we showed, that attention predominantly affects

the pathway from V1 to V5 and from V5 to PP. Secondly, the

introduction of non-linear interaction terms allowed us to test

the hypothesis about how these modulations are mediated. The

latter analysis suggested that the prefrontal cortex exerts a

modulatory inf luence on posterior cortical areas.

Conclusion

Structural equation modelling applied to fMRI data revealed

marked changes in effective connectivity in the posterior visual

pathway   in   relation to   attentional set. Furthermore the

introduction of non-linear interaction terms allowed us to model

a modulatory inf luence from the dorsolateral prefrontal cortex

on this pathway. These results were not evident from categorical

comparisons. We hope that the assessment of effective

connectivity will be useful in a variety of imaging experiments in

which one hypothesises changes in effective connectivity under

different experimental conditions.

Appendix

Mathematical Implementation of Structural Equation

Modelling

Structural equation modelling minimizes the difference

between the observed S and implied covariance matrix Σ. The

variance–covariance structure S of the observed variables is

given by:

Figure 7. Path model example. Simple path model including three measured variables.
Variables x are ‘caused’ by a set of independent variables z. This could also be construed
as a set of variables x with residual influences z (outside the model). Variables x also
cause each other.
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S = (1/(N – 1)).xT
.x (3)

where x is a N × p matrix of deviation (from the mean) scores of

the p observed variables with N observations and xT is x
transpose. The matrix S is symmetric with the sample variances

down its main diagonal and the covariances off the diagonal.

Consider a model where the variables x are ‘caused’ by a set of

independent variables z (Fig. 7). This could also be construed as

a  set  of variables x with residual inf luences z (outside the

model). In addition the variables x may cause each other.

Algebraically, the model for x is:

x.I = x.B + z (4)

where B is a matrix of unidirectional path coefficients and I is

the identity matrix. Here x appears on both sides of the

equation. This reduces to

x = z.inv(I – B) (5)

Looking at the variance–covariance structure implied by the

model and omitting the denominator 1/(N – 1) we have:

xT
.x = Σ = (z.inv(I – B))

T
.(z.inv(I – B))

= inv(I – B)
T
.C.(inv(I – B)) (6)

where C = zT
.z.

B is not symmetric because of asymmetric connections. C
(variance–covariance structure of z) is a diagonal matrix and

contains the residual variances. If interactions among the

residual inf luences were to be incorporated into the model, their

covariances would appear (symmetrically) off the leading

diagonal in C (not shown in Fig. 7). xT.x is the implied variance–

covariance structure Σ. Parameters in the matrices C and B are

called free parameters. The free parameters are estimated by

minimizing a function of S and Σ. To date the most widely used

objective function for structural equation modelling is the

maximum likelihood (ML) function (Bollen, 1989):

FML = log |Σ| + tr(S.inv(Σ)) – log|S| – p (7)

where tr(.) is the trace of the matrix and p is the number of free

parameters. The Newton–Raphson or other gradient descent

methods are used to estimate the parameters. Starting values can

be provided for the free parameters or estimated by ordinary

least squares (McIntosh and Gonzalez-Lima, 1994).

Weighted Least Squares

If the data do not conform to multinormal distributional

assumptions, then the objective function to minimize (instead of

FML) becomes:

FWLS = [s – σ(θ)]
T W–1

[s – σ(θ)] (8)

where s is a vector of 1/2(p + q)(p + q + 1) unique elements of S,

σ(θ) is the corresponding vector of Σ(θ) obtained from equation

(6), and θ are the t free parameters. Values of θ are selected so as

to minimize FWLS, the weighted sum of squared deviations s from

σ(θ). WLS in structural equation modelling is similar to WLS in

multiple linear regression. The only difference is that one is

minimizing differences between the expected and observed

covariances rather than using the individual observations. If W is

the identity matrix, this reduces to ordinary least squares

estimates. In our case the matrix W is a consistent estimator of

the limiting covariance matrix of n1/2
(s – σ(θ)), where n equals

the number of observations minus 1 (Browne, 1984).
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