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Abstract 
 

The aim of this thesis was to test predictive coding as a model of cortical 

organization and function using a specific brain response, the mismatch negativity 

(MMN), and a novel tool for connectivity analysis, dynamic causal modelling 

(DCM).  Predictive coding models state that the brain perceives and makes 

inferences about the world by recursively updating predictions about sensory input.  

Thus, perception would result from comparing bottom-up input from the 

environment with top-down predictions.  The generation of the MMN, an event-

related response elicited by violations in the regularity of a structured auditory 

sequence, has been discussed extensively in the literature.  This thesis discusses the 

generation of the MMN in the light of predictive coding, in other words, the MMN 

could reflect prediction error, occurring whenever the current input does not match a 

previously learnt rule.  This interpretation is tested using DCM, a methodological 

approach which assumes the activity in one cortical area is caused by the activity in 

another cortical area.  In brief, this thesis assesses the validity of DCM, shows the 

usefulness of DCM in explaining how cortical activity is expressed at the scalp level 

and exploits the potential of DCM for testing hierarchical models underlying the 

MMN.  The first part of this thesis is concerned with technical issues and 

establishing the validity of DCM.  The second part addresses hierarchical cortical 

organization in MMN generation, plausible network models or mechanisms 

underlying the MMN, and finally, the effect of repetition or learning on the 

connectivity parameters of the causal model. 
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Outline and aims of this thesis 

 
The aim of this thesis was to assess predictive coding as an explanation of cortical 

organization and function using a specific brain response, the mismatch negativity 

(MMN), and a novel tool for connectivity analysis, dynamic causal modelling 

(DCM) of event-related responses (ERs).  The first part of the work described in this 

thesis will focus on the validation of DCM with real group data.  In the second part, 

specific questions are formulated in terms of mechanistic hypotheses that map onto 

DCMs.  Bayesian model comparison was the key for selecting the DCM, amongst 

the models tested, that best explains the data.  The MMN was the paradigm selected 

for this research because it fits theoretically within the predictive coding framework 

and because it is a robust and prominent response in the ERP literature. 

 

This thesis is organized as follows: 

 

Chapter 1 – Introduction – is divided into two parts.  The first part outlines the 

theoretical framework under which the research in this thesis was carried out.  The 

second part presents a review of the genesis of a specific cortical response, the 

MMN, which is a concrete example of an experimental response that can be framed 

in the light of predictive coding. 

 

Chapter 2 – DCM of ERPs: Methods – describes DCM, a novel tool which is 

validated and used for hypothesis testing in subsequent chapters. 

 

Chapters 3-6 – Results chapters – describe the experimental work: the aims, the 

hypothesis or models tested, the set up and the outcomes of four studies.  The 

specific goals of each study were the following: 

 

• To access the validity of DCM for ERPs in terms of its 

reproducibility across a real multi-subject data set (Chapter 3) 

• To investigate the role of backward connections in ERP generation 

and source activity as a function of time (Chapter 4) 
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• To identify an underlying connectivity model for the MMN 

generation (Chapter 5) 

• To explore the effect of learning by repetition in the connectivity 

parameters of the underlying causal model (Chapter 6) 

 

Chapter 7 – General Discussion and Conclusion – provides a general discussion and 

the conclusions of this work; presents its contributions to the field; and indicates 

directions for future research. 



CHAPTER 1.  INTRODUCTION 

 17 

 

 

 

 

 

Chapter 1 

 

Introduction 

 
We experience the world through our senses.  This sensory information from the 

environment is processed by the brain which constructs an inner model, or our 

perception, of what the world seems to be (Mumford, 1992).  One hypothesis of how 

we might process that information is predictive coding, which states that perception 

is formed by combining inputs from the environment with predictions on that input 

(Rao and Ballard, 1999; Friston, 2005).  Rather than a pictorial representation based 

on current sensorial information, perception rests upon recursive input-match-

prediction loops.  An analogy would be seeing an impressionistic picture, gradually 

extracting a realistic portrait and finally seeing its full detail.  The brain’s capacity to 

infer or fill in gaps is an important faculty when faced with ambiguous information, 

in novel environments and for error detection (Yuille and Kersten, 2006). 

 

Imaging and electrophysiological techniques have played a fundamental role in 

understanding the human brain.  In general, functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET) have been utilised to identify which 

areas of the brain are active during any given process.  These methods provide 

indirect measures of neuronal activity and have high spatial resolution but low 

temporal accuracy.  In contrast, electroencephalography (EEG) and 

magnetoencephalography (MEG) provide direct measures of neuronal activity and 

have excellent time accuracy but relatively poor spatial resolution.  In short, all these 

techniques are important for understanding where and when in the brain a neuronal 
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process occurs, but it is the study of connectivity, such as described in this thesis, 

that is crucial for understanding how this processing is coordinated. 

 

This thesis addresses two main points.  Firstly, it focuses on the validation of 

dynamic causal modelling (DCM) for evoked responses measured with EEG.  DCM 

is a generative or forward model which assumes that changes in cortico-cortical 

coupling are responsible for event-related potential (ERP) genesis.  Secondly, it 

addresses construction of plausible connectivity models for hierarchical cortical 

organization motivated by predictive coding ideas.  Critically, these models embody 

bottom-up and top-down connections among distant regions.  The Mismatch 

Negativity (MMN), a response to a violation in the regularity of a structured auditory 

sequence, is the exemplar response chosen for study in this thesis. 

 

 

 

1.1 Hierarchical Organisation and Predictive Coding in the brain 
 

The notion that the brain is highly interconnected is critical for understanding brain 

function.  Rather than studying brain areas in isolation, the perspective taken in this 

thesis is to look at the brain as a hierarchically organised system, in which active 

areas communicate with each other through synapses or changes in synaptic strength.  

The next section, on connectivity, will be important for the notion of predictive 

coding and Bayesian inference in the brain, as well as motivating the form of DCMs 

used later. 

 

 

1.1.1 The connected brain 

The neocortex corresponds to 94% of the total cerebral cortex, is made up of six 

layers (layers I-VI) and is 2-4 mm thick.  More than half of the neocortex is 

dedicated to visual processing (55%), about 11% is devoted to somatosensory 

processing while 8% and 3% are involved in motor and auditory processing, 

respectively (Felleman and Van Essen, 1991).  The idea that the brain might be 

hierarchically organised was put forward by Hubel and Wiesel (1962) in the visual 
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domain.  The notion that the brain is hierarchically organised also extends to other 

sensory modalities and integration between different modalities.  Large-scale 

networks seem to be the best candidate solution for the binding problem; or in other 

words, for how we integrate the “symphony of emotions, perceptions, thoughts and 

actions” (Varela et al., 2001).  A general principle of cortico-cortical connections is 

reciprocity: when two areas are linked through anti-parallel or bidirectional 

pathways.  There are, however, a few exceptions to this rule, for example V1 has 

projections to V4 but V4 does not have projections to V1.  Felleman and Van Essen 

(1991) described a set of connectivity rules previously noted by Rockland and 

Pandya (1979) and provided a critical assessment of the principle of hierarchical 

organization in the light of available data.  These rules are formulated for extrinsic 

connections, i.e., excitatory connections that cross the white matter.  In contrast, 

intrinsic connections are confined to an area within the cortical sheet and can be 

either excitatory or inhibitory in nature (see Figure 1.1).  According to these rules, 

forward or ascending connections originate in agranular layers (I-III, V and VI) and 

terminate in the granular layer (layer IV).  Backward or descending connections link 

agranular layers and lateral connections originate in agranular layers and target all 

layers.  Forward and backward connections mediate bottom-up and top-down 

processing, respectively. 

 

 
Figure 1.1 Connectivity rules in the brain.  Forward or bottom-up connections originate in agranular 

layers and terminate in the granular layer.  Backward or top-down connections link agranular layers. 

Lateral connections originate in agranular layers and target all layers.  (Adapted from Felleman and 

Van Essen, 1991; David et al., 2005) 
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1.1.2 The dynamic brain, bottom-up and top-down processing 

Most approaches that study brain function focus on “where in the brain” and “when 

in the brain” a given process is taking place.  Implicitly such ideas treat brain areas as 

independent.  In reality these areas are connected and the activity of one area is 

dependent on activity in other areas.  Rather than inquiring about which areas are 

active at a particular time, the questions in this thesis will address how these areas 

communicate with each other, and which pathways or networks are active 

simultaneously.  Mumford (1991, 1992), amongst others, has put forward ideas about 

the computational architecture of the neocortex that are in agreement with the view 

that the brain is hierarchically organised.  In his work he discusses the notion of 

templates and residuals in thalamo-cortical and cortico-cortical loops.  These ideas 

are based on the concept that each level takes its own part in the computation 

performed by the cortex.  Namely, for two reciprocally connected areas, the “lower” 

area deals with more sensory or concrete information, whereas the “higher” area is 

concerned with more abstract information.  The descending pathways carry templates 

which try to fit the information arriving via the senses.  If the fit is not perfect the 

residuals would be sent upstream until top-down predictions and bottom-up 

constructions reach convergence.  In his own words, “In the ultimate stable state, the 

deep pyramidal [cells] would send a signal that perfectly predicts what each lower 

area is sensing, up to expected levels of noise, and the superficial pyramidals 

wouldn’t fire at all. […] The brain would operate by a relaxation algorithm, in which 

the loop is repeated until it stabilizes […] no more residuals to send upstream” 

(Mumford, 1992). 

 

 

1.1.3 The brain as an empirical Bayesian device 

Predictive coding ideas gained shape with the work by Rao and Ballard (1999) which 

demonstrated that an efficient strategy for encoding of natural images results from 

cortico-cortical feedback.  Predictive coding formulations have been put together 

with notions of empirical Bayes, and statistical physics for solving the problem of 

perceptual learning and inference in the brain (Friston, 2003; 2005).  Bayesian 

models have been employed in neuroscience and cognition by several research 

groups interested in the understanding of topics such as sensorimotor integration 

(Wolpert et al., 2005), sensorimotor decisions and learning (Körding and Wolpert, 
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2004; 2006), perception of tactile stimulation (Bays et al., 2006) and multisensory 

integration (for a review see Deneve and Pouget, 2004).  Others employ the same 

ideas in visual perception (for a review see Kersten et al., 2004; Yuille and Kersten, 

2006), in semantic memory (Steyvers et al., 2006), in understanding reasoning 

(Tenenbaum et al., 2006; Chater et al, 2006), and causality (Griffiths and 

Tenenbaum, 2005), decision-making (Behrens et al., 2007) and social interactions 

(Wolpert et al., 2003; Kilner et al., 2007).  Hierarchical Bayes offers a good analogy 

for what may be happening in the brain: the prior probability of the causes, )(!p , 

formulated in higher hierarchical levels flow down to be combined with the 

likelihoods of the data given the causes, )|( !yp , in the lower hierarchical levels to 

compute the posterior probability, )|( yp !  which is then passed upstream to enter 

the following loop.  According to the Bayes rule: 

 

)|()()|( !!! yppyp "        (1.1) 

 

This is a recursive process that stops once we reach reconciliation, i.e., until the 

inputs no longer cause updates to the posteriors of the generative model; or our 

recreation of what caused sensory input.  In essence, this adds a probabilistic flavour 

to the template notion of pattern recognition discussed in Mumford (1992).  

Moreover, it makes the link to the neurobiological substrate underlying this 

computation, i.e., message-passing in cortical hierarchies and learning through 

changes in synaptic efficacy or connection strength.  In brief, the brain tries to infer 

the causes of sensory input (i.e. builds a generative model) and to learn the 

relationship between input and cause (i.e. builds recognition models) by adjusting the 

synaptic efficacy so that the free energy is minimized (Friston et al., 2005).  The 

concept of free energy refers to the difference between the true probability 

distribution over the causes and our guess of what it might be.  Perceptual inference 

in the brain involves re-entrant dynamics that self-organise in order to suppress the 

free energy or prediction error.  Prediction error corresponds to the mismatch 

between the predicted state of the world, at any level, and that predicted on the basis 

of the state in the level above.  During suppression or minimization of the free 

energy, the brain changes its configuration by adjusting its parameters.  This is done 

so that the brain’s internal representations of the world match those furnished by the 
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external inputs.  From an empirical Bayesian perspective, perceptual inference at any 

level in the brain rests upon a balance between top-down priors from the level above 

via backward connections, and a bottom-up likelihood term encoded by forward 

connections from the level below (Friston et al., 2006a). 

 

The following section provides a review of the MMN literature, especially focussing 

on the underlying cortical mechanisms behind the MMN.  The hypothetical 

framework for this specific brain response is described at the end of this chapter.  In 

brief, it is proposed that the MMN can be understood in the light of predictive coding 

and empirical Bayes (see Figure 1.5).  In this view, evoked responses (ER) 

correspond to prediction error; in other words, ERs are an expression of 

unpredictable events.  In this thesis, the MMN was chosen as an exemplar of an ER 

that corresponds to prediction error, but this can presumably be extended for ERs in 

general.  Predictive coding states that prediction error is conveyed to higher cortical 

areas via forward connections, where predictions are updated in the light of new 

available data.  These predictions, the posteriors or empirical priors in the subsequent 

loop, are then send back to the lower cortical areas via backward connections.  This 

is repeated at all levels, so higher levels provide guidance to lower levels.  Hence, 

this recurrent process ceases when reconciliation between predictions and sensory 

input is reached.  The research performed in this thesis provides experimental 

evidence that the MMN is an ER that can be interpreted in the light of predictive 

coding (Friston, 2005).  In summary, the predictive coding framework postulates that 

evoked responses correspond to prediction error that is explained away during 

perception and is suppressed by changes in synaptic efficacy during perceptual 

learning.  In this context, the MMN would be the result of prediction error, which is 

due to an unexpected deviant, or oddball, embedded in learnt sequences of standard 

events.  The MMN would arise when there is a mismatch between the current 

stimulus input (unpredictable deviants) and a memory trace of previous input 

(predictable standards).  This is the working hypothesis that inspired the research 

described below. 
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1.2 The mismatch negativity: a review of the underlying mechanisms 
 

The MMN is a brain response to violations of a rule established by a sequence of 

sensory stimuli (typically in the auditory domain) (Näätänen, 1992).  The MMN 

reflects the brain’s ability to perform automatic comparisons between consecutive 

stimuli and provides an electrophysiological index of sensory learning and perceptual 

accuracy.  Although the MMN has been studied extensively, the neurophysiological 

mechanisms underlying the MMN are not well understood.  Several hypotheses have 

been put forward to explain the generation of the MMN; amongst these accounts, the 

"adaptation hypothesis" and the "model adjustment hypothesis" have received most 

attention.  This section presents a review of studies that focus on neuronal 

mechanisms underlying the MMN generation, discusses the two major explanative 

hypotheses, and proposes predictive coding as a general framework that attempts to 

unify both. 

 

 

1.2.1 The MMN: a brief introduction 

Small changes in the acoustic environment engage an automatic auditory change 

detection mechanism reflected in the MMN.  The presentation of an oddball or 

deviant event, embedded in a stream of repeated or familiar events, the standards, 

results in an evoked response that can be recorded non-invasively with 

electrophysiological techniques such as EEG and MEG.  The MMN is the negative 

component of the waveform obtained by subtracting the event-related response to the 

standard event from the response to the deviant event.  This brain response is 

measured with EEG and has a magnetic counterpart called MMNm.  The MMN is 

elicited by sudden changes in stimulation; peaks at about 100-250 ms from change 

onset and exhibits the strongest intensity in temporal and frontal areas of topographic 

scalp maps (Sams et al., 1985).  Given its automatic nature, the MMN might be 

associated with pre-attentive cognitive operations in audition and, for this reason, it 

has been suggested that it reflects ‘primitive intelligence’ in the auditory cortex 

(Näätänen et al., 2001).  Here this notion is finessed and it is suggested that the 

mechanisms behind the generation of the MMN can be understood within a 

predictive coding framework that appeals to empirical Bayes. 
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While the MMN has been studied intensively in the auditory modality, some studies 

show evidence for the existence of a visual MMN counterpart (Astikainen et al. 

2004; Czigler et al. 2004; see Pazo-Alvarez et al., 2003 for review). Omitted stimuli 

or deviances such as direction of movement, form, orientation, location, contrast, 

size, spatial frequency and colour, elicit a negative component in the N2 latency 

range (250 – 450 ms).  Nevertheless, there is controversy as to whether these N2-like 

waves elicited by a visual stimulus change reveal the same degree of automaticity as 

in the auditory MMN, and whether the emergence of this component is really based 

on a memory comparison process.  A potential analogue to the MMN has also been 

reported in the somatosensory system, which seems to be generated in fine 

discrimination tasks (Kekoni et al., 1997; Akatsuka et al., 2005).  Numerous studies 

have focused on ERP scalp maps, especially in clinical applications, when 

comparing, for instance, schizophrenic patients (Umbricht et al., 2003) or dyslexic 

subjects (Baldeweg et al., 1999) with normal controls.  The MMN has also been 

proved useful in understanding auditory perception and formation of sensory 

memory representations (Atienza et al. 2002, van Zuijen et al., 2006). 

 

A major area of MMN research is concerned with the underlying neuronal 

mechanisms of its generation.  Several competing hypotheses have been put forward, 

based on experimental results obtained with ERPs, MEG and fMRI.  The most 

common interpretation is that the MMN arises whenever there is a break of regularity 

in a structured auditory sequence (Näätänen, 1992), and that a temporo-prefrontal 

network, comparing the current sensory input with a memory trace of previous 

stimuli, is responsible for generating the MMN at the scalp level (Giard et al., 1990; 

Rinne et al., 2000; Opitz et al., 2002; Doeller et al., 2003).  From this perspective, the 

MMN is assumed to reflect an automatic auditory change detection process that 

triggers a switch in the focus of attention (Escera et al., 1998; 2003).  However, this 

notion has been challenged recently by claims that the MMN rests on a much simpler 

mechanism, namely neuronal adaptation in the auditory cortex.  The adaptation 

hypothesis proposes that the apparent MMN results from the subtraction of a N1 

response to a novel sound, from the N1 response to a non-novel or repeated sound; 

where the N1 to a repeated sound is delayed and suppressed, as novelty decreases 

(Jääskeläinen et al., 2004). 
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The following section reviews a variety of studies that have focused on a mechanistic 

understanding of how the auditory MMN is generated, discusses the major 

hypotheses, and suggests a general and unifying framework, predictive coding, for 

understanding the MMN.  This point will be discussed in further detail in the final 

chapter of this thesis (see General Discussion and Conclusion, Chapter 7). As 

defined in the previous section, predictive coding is a general theory of perceptual 

inference.  Under predictive coding the brain is regarded as a hierarchically 

organized cortical system, in which each level strives to attain a compromise 

between bottom-up information about sensory inputs provided by the level below 

and top-down predictions (or priors) provided by the level above (Mumford 1992; 

Rao and Ballard 1999; Friston, 2003).  Within this framework the MMN would result 

from a failure to predict bottom-up input and consequently to suppress prediction 

error (Friston, 2005; Baldeweg, 2006, Garrido et al., 2007a; see also Chapter 3).  

The predictive coding account of the MMN unifies the competing hypotheses of 

neuronal adaptation and model adjustment (Garrido et al., in submission).  This will 

be discussed further in Chapter 5. 

 

 

1.2.2 General characteristics of the MMN 

 

1.2.2.1 Scalp topography 

The MMN is the negative component of a difference wave between responses to 

standard and deviant events embedded in an oddball paradigm.  This negative 

response, of about 5µV maximum peak, is distributed over auditory and frontal areas, 

with prominence in frontal regions with a reversed polarity at mastoid sites (see 

Figure. 1.2). 

 

The MMN peaks at about 100 to 250 ms after change onset but this latency varies 

slightly according to the specific paradigm or the type of regularity that is violated: 

frequency, duration, intensity, or the inter-stimulus interval (Näätänen et al., 2004) 

(see Figure. 1.2).  In more complex paradigms an abstract rule is broken, such as 

inter-stimulus relationships (Tervaniemi et al., 1994; Paavilainen et al., 2001; Vuust 

et al., 2005) or phoneme regularity (Näätänen, 1997).  Barely discriminable tones 

elicit a later MMN peaking at about 200–300 ms (Näätänen and Alho, 1995). 
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Figure 1.2 Scalp topography and latency of the MMN.  a: ERP responses to standard and deviant 

tones overlaid on a whole scalp map of 128 EEG electrodes.  b: ERP responses to the standard and 

deviant tones at a fronto-central channel.  c: MMN, difference wave obtained by subtracting ERP to 

standards from ERP to deviants.  d: MMN response averaged over a time window of [100, 200] ms 

interpolated to give a 3D scalp topography. (From Garrido et al., 2007a) 

 

1.2.2.2 MMN under different paradigms 

The MMN is elicited in the presence of any discriminable change in some repetitive 

aspect of auditory stimulation. This discriminable change can be of different types: 

frequency, duration, intensity, perceived sound-source location, silent gap instead of 

a tone, or one phoneme replaced by another.  In a recent study, Näätänen et al., 

(2004) proposed a new paradigm in which a standard alternates with one of five 

deviant types that differ in duration, location, intensity, gap and frequency.  Because 

of its effectiveness, this paradigm is particularly useful in clinical research as it can 

be used to obtain five different types of MMN responses over the same experimental 

time, whereas only one type of MMN is obtained in traditional paradigms. 
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It is generally believed that the MMN is evoked by any violation of an acoustic 

regularity or pattern.  Indeed, the MMN is elicited by violations of abstract rules 

established in a structured auditory sequence (Näätänen et al., 2001).  For example, 

in complex auditory patterns, it has been found that an MMN is elicited by an 

occasional ascending tone or tone repetition in a sequence of regularly descending 

tone pairs (Tervaniemi et al., 1994); by changing the direction of within-pair 

frequency change, independently of their absolute frequencies (Saarinen et al., 1992); 

and by violations of the rule that the higher the frequency, the louder the intensity 

(Paavilainen et al., 2001).  The MMN is also detected when the stimuli are spectrally 

rich.  This type of paradigm facilitates attentive pitch discrimination in comparison to 

pure sinusoidal tones; in other words, the MMN is larger and has shorter latency 

(Tervaniemi et al., 2000a).  Moreover, MMN responses are elicited by violating 

regularity in roving paradigms (Baldeweg et al. 2004, Haenschel et al., 2006, Garrido 

et al., in submission, see also Chapter 6), or in more sophisticated paradigms 

comprising irregularities in rhythms (Vuust et al, 2005), musical sequences (van 

Zuijen et al., 2004;), and violations in phoneme regularity (Näätänen, 1997). 

 

1.2.2.3 An index of memory traces? 

It is commonly accepted that the MMN rests on the relation between the present and 

previous stimuli, rather than on the stimulus alone.  Hence, the MMN may depend on 

a memory trace formed by preceding stimuli at the beginning of a stimulus block; 

i.e., during the presentation of the standard events. If the deviant, or the new event, 

occurs while this memory trace is still active, automatic change-detection is 

activated, giving rise to a MMN response (Näätänen, 2000).  The duration of this 

period, also called echoic memory, has been reported to last at least 10s in normal 

subjects (Bottcher-Gandor and Ullsperger, 1992). 

 

1.2.2.4 Dependence on attention? 

The MMN is one of the earliest ontological cognitive components that can be 

observed in an ERP trace (Alho et al., 1990).  An important characteristic of the 

MMN response to an auditory oddball paradigm is the fact that it can be detected 

even when the subject is not paying attention.  The MMN can be measured without 

any task requirements and is elicited even when the subject performs a task that is 

not related to the stimulus.  The MMN can be elicited irrespective of attention, 
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during non-attentive states such as sleep (Sallinen et al., 1994), or even in coma; 

where the presence of a MMN has been proposed as a predictor for recovery of 

consciousness (Kane et al., 1993). This demonstrates the brain’s capacity to perform 

complex comparisons between consecutive sounds automatically (Näätänen et al., 

2001).  Although the MMN is seldom affected by attention, some studies suggest that 

the MMN is attenuated when the subject’s attention is outside the focus of the 

auditory stimulus (Arnott and Alain, 2002; Müller et al., 2002).  On the other hand, 

the degree to which the visual stimulus is attended does not seem to have an 

influence on the MMN (Otten et al., 2000).  To avoid overlap with other ERP 

components some authors argue that the best condition to observe an MMN is when 

subject attention is directed away from the stimulus (Näätänen, 2000). 

 

It has been reported that the generation of the MMN, in particularly the source over 

the frontal lobe, is associated with an involuntary attention switching process, an 

automatic orienting response to an acoustic change (Escera et al., 1998; 2003).  In 

addition, it has been suggested that the frontal generator of the MMN is related to an 

involuntary amplification or contrast enhancement mechanism that tunes the auditory 

change detection system (Opitz et al., 2002). 

 

 

1.2.3 The relevance of the MMN and its applications 

The fact that MMN can be elicited without special task requirements, independently 

of the subject’s motivation and in the absence of attention, during sleep, or even 

before coma recovery, makes it particularly suitable for testing different clinical 

populations, infants and newborns (see Kujala et al., 2007 for a recent review).  The 

following two subsections present a brief review of recent studies that used the 

MMN to address important questions in cognitive processing and clinical 

neuroscience. 

 

1.2.3.1 MMN in cognitive studies 

The MMN is considered to represent the only objective marker for auditory sensory 

accuracy (Näätänen, 2000).  MMN studies have made important contributions to our 

understanding of the formation of auditory perception and streaming (see Denham 

and Winkler, 2006; for a review), construction of sensory memory representations, as 
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well as how these are influenced by attention (Sussman et al., 1998; Sussman and 

Steinschneider 2006).  It has been shown that whereas attention is not always 

necessary for auditory stream segregation (Sussman et al., 2007), switches in 

attention are important for streaming reset (Cusack et al., 2004).  Woldorff et al. 

(1993) have shown that focused auditory attention can modulate sensory processing 

as early as 20 ms.  Others have used the MMN to characterise the mechanisms of 

involuntary attention switching (Escera et al., 1998; 2003). 

 

Several studies have used the MMN to understand mechanisms of perceptual 

learning.  Tremblay et al. (1998) showed that training-associated changes in neural 

activity, indicated by the MMN, precede behavioural discrimination of speech.  The 

MMN was also found to correlate with gains in auditory discrimination after sleep 

(Atienza et al., 2002; 2005).  Implicit, intuitive and explicit knowledge have been 

characterized in terms of the elicited responses; the MMN and P3, combined with 

behavioural measures (van Zuijen et al., 2006). 

 

1.2.3.2 MMN in clinical neuroscience 

The MMN has proved useful in various clinical contexts (see Näätänen, 2000; 2003 

for reviews on clinical research and applications).  The most promising clinical 

application of MMN is in schizophrenia research.  More than 30 studies have found 

significant reductions of MMN amplitude in patients with schizophrenia, both for 

frequency and duration deviants (Umbricht & Krljes, 2005).  Moreover, individual 

MMN amplitudes correlate with disease severity and cognitive dysfunction 

(Baldeweg et al 2004) and functional status (Light and Braff, 2005), although there 

are conflicting reports about its association with genetic risk for schizophrenia 

(Michie et al., 2002; Bramon et al., 2004).  Two features make the MMN a 

particularly interesting paradigm for schizophrenia research (see Stephan et al., 2006 

for a review).  First, the MMN depends on intact NMDA receptor signalling: 

pharmacological blockage of NMDA receptors has been shown to significantly 

reduce the MMN, both in invasive recordings studies in monkeys (Javitt et al., 1996) 

and human EEG/MEG studies (Kreitschmann-Andermahr et al., 2001; Umbricht et 

al., 2000; 2002).  This is important because the NMDA receptor has a critical role in 

the plasticity of glutamatergic synapses, which is at the core of current 

pathophysiological theories of schizophrenia (Friston and Frith, 1995; Harrison & 
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Weinberger, 2005; Javitt, 2004; Stephan et al., 2006).  Second, clinical investigations 

of schizophrenic patients require very simple paradigms that are robust to changes in 

attention and performance.  As discussed above, the MMN fulfils these requirements 

very well. 

 

The MMN has proved useful for investigating several diseases in addition to 

schizophrenia.  Another important application is in the field of dyslexia: dyslexic 

patients show a diminished MMN, albeit only for frequency deviants and not for 

duration.  This suggests that dyslexia is associated with auditory frequency 

discrimination impairment (Baldeweg et al., 1999).  A reduced MMN in children 

with learning disabilities suggested that the deficit originates in the auditory pathway 

at a processing stage prior to conscious perception (Kraus et al., 1996).  This is in 

accord with Rinne et al. (1999) who showed that speech processing occurs at early 

pre-attentive stages in the left hemisphere (at about 100-150 ms after sound onset).  

 

 

1.2.4 The mechanisms of MMN generation 

Despite the vast literature on MMN research, the mechanisms that underlie its 

generation remain a matter of debate.  Two major competing hypotheses have 

emerged, the model adjustment hypothesis and the adaptation hypothesis.  The 

following subsections describe these two competing hypotheses and discusses the 

experimental evidence that favours one or the other.  Finally, predictive coding is 

suggested as a general unifying framework that can accommodate both hypotheses.  

This idea is supported by the results from the connectivity modelling approach to the 

MMN described in Chapters 5 and 6 (see also Garrido et al., in submission). 

 

1.2.4.1 The model adjustment hypothesis 

The MMN can be regarded as an index of automatic change-detection governed by a 

pre-attentive sensory memory mechanism (Tiitinen et al., 1994).  Several studies 

have proposed mechanistic accounts of how the MMN might be generated.  The 

most common interpretation is that the MMN is a marker for error detection caused 

by a break in a learned regularity or familiar auditory context.  The MMN would 

then result from the difference, or mismatch, between the current and the preceding 

input.  The early work by Näätänen and colleagues suggested that the MMN results 



CHAPTER 1.  INTRODUCTION 

 31 

from a comparison between the present auditory input and the memory trace of 

previous sounds (Näätänen 1992).  In agreement with this theory, others (Winkler et 

al., 1996; Näätänen and Winkler, 1999; Sussman and Winkler, 2001) have postulated 

that the MMN could reflect on-line modifications of a perceptual model that is 

updated when the auditory input does not match its predictions.  This is the so called 

model-adjustment hypothesis.  In the context of the model adjustment hypothesis, the 

MMN is regarded as a marker for error detection, caused by a deviation from a 

learned regularity.  In other words, the MMN results from a comparison between the 

auditory input and a memory trace of previous sounds, reflecting an on-line updating 

of the model for predicting auditory inputs (Winkler et al., 1996; Näätänen and 

Winkler, 1999).  According to this hypothesis, the MMN is a response to an 

unexpected stimulus change.  This hypothesis has been supported by Escera et al. 

(2003) who provided evidence for the involvement of the prefrontal cortex in 

providing top-down modulation of the deviance detection system in the temporal 

cortices.  In the light of Näätänen’s model, it has been claimed that the MMN is 

caused by two underlying functional processes, a sensory memory mechanism 

related to temporal generators and an automatic attention-switching process related 

to the frontal generators (Giard et al., 1990).  The role of prefrontal generators is 

supported by studies of patients with prefrontal lesions who showed diminished 

temporal MMN amplitudes (Alain et al., 1998).  Furthermore, it has been shown that 

the temporal and frontal MMN sources have separate temporal dynamics (Rinne et 

al., 2000) but interact with each other (Jemel et al., 2002).  This notion is also 

compatible with strong and reciprocal anatomical connectivity between auditory and 

prefrontal areas that has been found in primate tract tracing studies (Romanski et al., 

1999).  According to source reconstruction studies, the generators of the MMN are 

located bilaterally in the temporal cortex (Hari et al., 1984; Giard et al., 1990; Alho, 

1995).  In addition, there is evidence for generators in the prefrontal cortex, often 

stronger and reported more consistently on the right hemisphere for tone paradigms 

(Levänen et al., 1996) and on the left hemisphere for language paradigms (Näätänen 

et al., 1997; Tervaniemi, 2000b; Pulvermüller, 2001).  A sensory memory 

mechanism has been associated with the temporal generators, whereas a cognitive 

role, or comparator-based mechanism, has been assigned to the prefrontal generators 

(Giard et al., 1990; Gomot et al., 2000; Maess et al., 2007).  Numerous studies have 

consistently reported evidence for multiple generators of the MMN in the primary 
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auditory cortex (A1).  This has been reproduced across different modalities such as 

EEG (Deouell et al., 1998; Jemel et al., 2002; Marco-Pallarés et al., 2005; Grau et al., 

2007), MEG (see for example Tiitinen et al., 2006; or Hari et al., 1984) and 

combined EEG with MEG measures (Rinne et al., 2000).  The latter study revealed 

that prefrontal generators are activated later than the generators in the auditory 

cortex; this supports the hypothesis of a change detection mechanism in the 

prefrontal cortex, which is triggered by the temporal cortex.  This study found 

temporal sources with both M/EEG, whereas prefrontal sources were only found 

with EEG; possibly because the frontal sources have a radial orientation and the 

MEG sensors are blind to the fields generated by radial sources (see Figure 1.3).  An 

alternative explanation for why source current distribution looks different in EEG 

and MEG is the higher level of spatial smearing in EEG source reconstruction 

compared to EEG. 

 

 
Figure 1.3 MMN generators estimated from EEG and MEG data.  The centre of gravity changes 

from temporal to frontal areas over time.  Frontal sources were detected only with EEG, either due to 

their radial orientation or to the higher level of spatial smearing in EEG source reconstruction.  These 

sources were determined with minimum norm estimates (MNE). (Adapted from Rinne et. al, 2000) 
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Functional MRI (Molholm et al., 2005; Rinne et al. 2005) and combined fMRI-EEG 

studies (Opitz et al., 2002; Doeller et al., 2003; Liebenthal et al., 2003) have reported 

findings that are consistent with the results of the source reconstruction studies 

described above.  Some of the combined fMRI-EEG studies show a double peak over 

frontal scalp locations suggesting the existence of two subcomponents for the MMN.  

Dipole modelling was performed in two time windows to explain the scalp ERP 

distribution (Opitz et al., 2002 and Doeller et al., 2003).  The early component is 

reported to peak in the time window of 90 – 120 ms and can be modelled with 

dipoles located bilaterally in the superior temporal gyrus (STG).  ERPs within the 

late time window, 140 – 170 ms, can be modelled with dipoles placed in left and 

right inferior frontal gyrus (IFG) (see Figure 1.4).  The sources in the temporal areas 

might be involved in processing changes of the sound’s physical properties, whereas 

the sources on the frontal areas might reflect reorientation of attention.  Recent work 

has linked the early component (in the range of about 100-140 ms) to a sensorial, or 

non-comparator account of the MMN, originated in the temporal cortex, and the later 

component (in the range of about 140-200 ms) to a comparator-based mechanism of 

the MMN, involving the prefrontal cortex (Maess et al., 2007).  Although MMN 

sources are found consistently over temporal and pre-frontal regions, a few studies 

have reported sources at other locations such as right temporal and parietal lobes 

(Levänen et al., 1996).  Thus, these studies suggest that the MMN is generated by a 

temporo-frontal network which supports the model adjustment hypothesis. 
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Figure 1.4 MMN underlying sources revealed by EEG and conjoint EEG and fMRI measures.  

(a) Dipoles indicated by red arrows at bilateral STG and IFG (adapted from Doeller et al., 2003). (b) 

Dipole locations at bilateral STG and right IFG and (c) significant fMRI activation for deviants 

(adapted from Opitz et al. 2002).  (d) Most significant independent component (computed by ICA-

LORETA analysis, adapted from Marco-Pallarés et al., 2005).  This figure shows consistency for 

MMN sources across different modalities. 

 

1.2.4.2 The adaptation hypothesis 

A recent study (Jääskeläinen et al., 2004) has challenged the more common view that 

the MMN is generated by a temporal-frontal cortical network.  Instead, they suggest 

that the MMN results from a much simpler mechanism of local neuronal adaptation 

at the level of the auditory cortex, causing attenuation and delay of the N1 response.  

The N1 response is the negative component peaking at about 100 ms after stimulus 

onset and is associated with early auditory processing at the level of A1.  They 

propose that the N1 response to standard (or ‘non-novel’) sounds is delayed and 

suppressed (or attenuated) as a function of its similarity to the preceding auditory 

events, reflecting short-lived adaptation of auditory cortex neurons1.  As a 

                                                
1 Neuronal adaptation, or spike-frequency adaptation, results from activation of calcium-dependent 
potassium channels that lead to slow after hyperpolarizing currents, decreasing neuronal excitability 
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consequence, the observed response would be erroneously interpreted as a separate 

component from the N1 wave.  According to the adaptation hypothesis, the fact that 

the neuronal elements within the auditory cortex become less responsive during 

continuous stimulation is sufficient to explain the generation of an apparent MMN.  

With the generation of a delayed and suppressed N1 in the auditory cortex, the MMN 

would emerge as a product of an N1 differential wave when subtracting the ERP to 

the standards from the ERP to the deviant. 

 

The adaptation hypothesis rests on previous MEG studies indicating the presence of 

two subcomponents of the N1 response: a posterior subcomponent, N1p, peaking at 

about 85 ms from stimulus onset, and an anterior subcomponent, N1a, peaking at 

about 150 ms (Loveless et al., 1996).  The amplitude of the posterior component is 

strongly suppressed during the presentation of identical stimuli, whereas this 

adaptation effect is smaller for the anterior component.  In contrast to previous 

studies showing that repetitive standard sounds constitute a prerequisite to MMN 

elicitation, Jääskeläinen et al. (2004) furnish evidence for robust MMN to infrequent 

(or ‘novel’) stimuli when preceded by a single standard stimulus.  Consistent with 

the adaptation hypothesis, EEG measurements employing small deviances around a 

standard tone demonstrate that the smaller the frequency separation between the 

standard and the deviant, the more the amplitude to the deviants is attenuated (May et 

al., 1999). 

 

Although the model-adjustment and the adaptation hypotheses come across as 

opponents, adaptation pertains to neurophysiological mechanisms (Jääskeläinen et 

al., 2004), whereas model-adjustment speaks to functional or perceptual mechanisms 

(Winkler et al., 1996; Näätänen and Winkler, 1999).  While the latter allows for 

adaptation effects (which the authors refer to as refractoriness), the adaptation 

hypothesis precludes a prediction or model-dependent contribution to the MMN.  

The concept of refractoriness has been introduced by Näätänen (1992).  In this view, 

the MMN occurs through the activation of non-refractory cells by ‘fresh’ afferents.  

When a standard stimulus activates neurons that respond to a given frequency within 

their receptive field, these neurons will temporarily become refractory to further 

                                                                                                                                     
and firing rate (see Faber & Sah 2003 for review).  Adaptation is thus a local phenomenon that is 
independent of pre-synaptic mechanisms and rests on changes in post-synaptic responsiveness. 
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stimulation.  Therefore, further standard stimulation within this refractory period will 

evoke a smaller response.  However, a deviant stimulus, i.e., with a different 

frequency, occurring within this period will activate other neurons.  The response 

elicited by the deviant is therefore larger than that to the standard.  (See Picton et al., 

2000, for a review.) 

 

Adaptation is a compelling hypothesis for the generation of the MMN that explains 

the experimental results mentioned above.  However, there are other empirical 

observations that are not compatible with the adaptation hypothesis (see Näätänen et 

al. (2005) for a critical assessment on the adaptation view of Jääskeläinen et al. 

2004).  One of the points against adaptation is the fact that it predicts that the MMN 

duration and latency should match those of the N1, which has been shown not to be 

the case (Winkler et al., 1997).  Secondly, adaptation does not explain why an MMN 

can be elicited in the absence of a N1 response, for example, during sleep (Atienza 

and Cantero, 2001) or when unexpectedly omitting a stimulus (Yabe et al., 1997).  

However, one potential defence in favour of the adaptation hypothesis rests on the 

notion that neuronal dynamics, induced by the rhythmic stimulation, continue to 

oscillate upon cessation or interruption of stimulation (May et al., 1999).  A third 

point of controversy is that, as mentioned above, the violation of abstract rules or 

complex inter-stimulus relationships can also elicit an MMN.  For instance, an 

ascending tone pair in a sequence of descending tone pairs elicits an MMN (Saarinen 

et al., 1992) even though there is no stimulus repetition that could cause adaptation 

of a frequency-specific neuronal population.  Given the tonotopic structure of 

auditory cortex, MMNs of this sort cannot be explained by local adaptation but must 

result from more complex mechanisms involving more than one neuronal population.  

Moreover, the scalp distribution of the MMN is different from the N1 (Giard et al., 

1990).  While the N1 components are larger in amplitude over the contralateral 

hemisphere, the MMN response to changes in acoustical features is right-

hemispheric dominant (Levänen et al., 1996) and left-hemispheric dominant for 

phoneme changes, irrespective of the ear stimulated (Näätänen et al., 1997).  Another 

finding that can not be explained by adaptation alone is that equivalent current 

dipole (ECD) modelling reveals that the temporal source underlying the MMN is 

located anterior to the source underlying the N1 (Hari et al., 1992; Tiitinen et al., 

1993).  Furthermore, the MMN has a second source in the frontal lobe, which 



CHAPTER 1.  INTRODUCTION 

 37 

expresses temporal dynamics that are distinct from the N1 source (Opitz et al., 2002, 

Doeller et al., 2003; Molholm et al., 2005; Grau et al., 2007).  Evidence for a frontal 

generator was also provided from direct intracranial recordings in human epilepsy 

patients (Rosburg et al., 2005).  Finally, pharmacologic manipulations show that 

NMDA antagonists block the generation of MMN without affecting activity in the 

primary auditory cortex (Javitt et al., 1996), which suggests that the MMN and the 

N1 employ different neuronal populations and are expressions of separate cortical 

processes. Finally, if the MMN results from neuronal adaptation, one would predict 

changes in MMN following manipulations of serotoninergic and muscarinic 

receptors.  This is because activation of these receptors is known to enhance neuronal 

adaptation (c.f. McCormick et al., 1998).  As described above, however, there is only 

weak and contradictory empirical evidence for MMN modulation by serotoninergic 

and muscarinic agents. 

 

1.2.4.3 The MMN from the perspective of predictive coding 

Predictive coding (or, more generally, hierarchical inference in the brain) states that 

perception arises from integrating sensory information from the environment and our 

predictions based on a model of what caused that sensory information.  Prediction 

error is minimised through recurrent interactions among levels of a cortical hierarchy 

in order to estimate the most likely cause of the input (Friston, 2003; 2005).  The 

model adjustment hypothesis explains the MMN as a marker for error detection 

caused by a deviation from a learned regularity.  The MMN would thus result from a 

comparison between the auditory input and a memory trace that is embodied in top-

down predictions.  The ensuing prediction error could then be used for on-line 

updating of a model for predicting auditory inputs (Winkler et al., 1996; Näätänen 

and Winkler 1999).  This is consistent with the predictive coding framework, where 

current inputs are predicted from past inputs (see Figure 1.5).  In the case of a 

prediction error, i.e. when there is a mismatch between the predicted and the actual 

sensory input, the neural system implementing the model must be adjusted (for 

example, by short-term synaptic plasticity).  During the repetition of subsequent 

standards, that adjustment is reflected neurophysiologically in the suppression of 

prediction error and the disappearance of the MMN (Friston, 2005; Baldeweg, 2006).  

This view is identical to predictive coding models of vision, which postulate that 

perception relies on hierarchically organised neural systems in which each level 
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compares predictions from higher-level areas to incoming sensory information from 

lower areas (Rao and Ballard, 1999; Yuille and Kersten, 2006): Using backward 

connections, higher cortical areas attempt to fit their abstractions, or learned 

reconstructions of the world, to the data received from lower cortical areas.  The 

lower areas, in turn, attempt to reconcile the predictions from higher areas with the 

actual input, and return, by means of forward connections, a prediction error signal, 

i.e. information on the features not predicted by the higher areas (Mumford, 1992).  

Hence, lower and higher areas communicate via reciprocal pathways until 

reconciliation; in other words, until the prediction error is suppressed and the 

encoding of sensory causes at higher cortical areas is optimised (Friston, 2003). 

 

Critically, hierarchical inference (e.g., predictive coding) also rests on optimising the 

relative influence of bottom-up prediction error and prediction error based on top-

down prior expectations. This is involves optimising the efficacy of lateral 

interactions or intrinsic connections, within an area or source (Friston, 2003). Put 

simply, when a standard stimulus can be predicted more precisely by top-down 

afferents, less weight is assigned to bottom-up influences and the post-synaptic 

responsiveness to sensory inputs decreases.  This is exactly what the adaptation 

hypothesis predicts.  In short, hierarchical inference, using prediction error, provides 

a principled framework in which the model adjustment and adaptation heuristics 

become necessary for sensory inference. 
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Figure 1.5 The MMN interpreted in terms of predictive coding.  (a) illustrative schematic of the 

general framework of hierarchical Bayes and predictive coding as an explanation for ERPs. (b) the 

MMN, a concrete example and plausible underlying mechanisms. 

 

Predictive coding formulations entail specific mechanisms that might underlie the 

MMN.  A promising approach, to address these mechanisms, is to create 

biophysically realistic models that can represent competing hypotheses.  These 

models can be tested empirically and provide evidence to disambiguate amongst 

competing theories.  A pioneering study of this sort was performed by May et al. 

(1999) who constructed a model of tonotopically organised auditory cortex 

consisting of leaky integrate-and-fire neurons and compared its predictions to 

experimentally measured MEG/EEG data.  Their question was whether the MMN 

could be explained by a local post-synaptic mechanism (i.e., neuronal adaptation) 

alone, or whether additional non-local synaptic mechanisms were required.  They 

chose lateral inhibition (i.e., reciprocal inhibitory connections amongst neighbouring 

neuronal populations) as a candidate mechanism of the latter sort.  They found that 

their experimental data could best be approximated by a model that combined 

adaptation and lateral inhibition. 
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Another class of models are those that use DCM to test the likelihood of plausible 

connectivity graphs (a network of connected nodes or sources) underlying the MMN, 

and to infer the coupling parameters of the most likely network.  This is the approach 

used in this thesis as described in the following chapters.  The major aim of this 

thesis was to test a predictive coding account of the MMN by testing several 

competing hypotheses that map onto connectivity models or DCMs (see Garrido et 

al., in submission; and Chapters 5 and 6).  The hypotheses referred above, namely 

adaptation, model adjustment and predictive coding were tested with Bayesian 

model comparison of their corresponding DCMs.  The results reported in this thesis 

favour a predictive coding interpretation for the MMN generation.  This is discussed 

in more depth in Chapter 7 (General Discussion and Conclusion). 

 

 

 

1.3 Summary of experimental work 
 

Chapters 3-6 describe the experimental work developed for this thesis which 

entailed testing a predictive coding account of the MMN generation by using DCMs.  

Having established the predictive validity of DCM for ERPs in Chapter 3, DCM is 

used to investigate the role of backward connections, or top-down processing in ERP 

generation and source activity as a function of time; this is described in Chapter 4.  

The selection of a DCM for the MMN, amongst plausible mechanistic hypotheses, 

namely adaptation, model adjustment and predictive coding, is presented in Chapter 

5.  Finally, the effects of learning (through repetition) on the connectivity parameters 

of the underlying causal model are explored in Chapter 6. 
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Chapter 2 

 

Dynamic Causal Modelling of Event-Related 

Potentials: Methods 

 
This chapter describes Dynamic Causal Modelling (DCM) of event-related potentials 

(ERPs).  DCM is the method used in this thesis to test the alternative accounts of 

ERP generation, specifically for the MMN.  This chapter provides an extended 

description of DCM. All results chapters in this thesis (Chapters 3-6) use this 

method.  The specific methods for each study will be described in the corresponding 

chapter. 

 

 

 

2.1 Dynamic Causal Modelling 
 

DCM is a procedure that models interactions among cortical regions, allows one to 

make inferences about system parameters and investigate how these parameters are 

influenced by experimental factors.  With DCM it is possible to assess how a given 

experimental manipulation activates a cortical pathway rather than a cortical area or 

source.  This approach uses a biologically informed model that allows for inferences 

about the underlying neuronal networks generating evoked responses such as event-

related potentials (ERPs) and fields (ERFs). 
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Most approaches to connectivity in the MEG/EEG literature use functional 

connectivity measures, such as phase-synchronisation, temporal correlations or 

coherence between the activities of two areas at the scalp or source level.  Functional 

connectivity is used to establish statistical dependencies between time series and is 

useful because it does not require an underlying model or knowledge of the causal 

nature of the interactions.  However, there are circumstances when the causal 

architecture of the interactions is the focus of interest.  As opposed to functional 

connectivity, DCM uses the concept of effective connectivity, which refers explicitly 

to the influence one neuronal system exerts over another.  This influence is 

parameterised in a causal or an explicit generative model, which can then be 

estimated using model inversion.  In DCM, the brain is regarded as a deterministic 

nonlinear dynamic system that is subject to inputs and produces outputs (Friston et 

al., 2003).  Effective connectivity is estimated by perturbing the system and 

measuring the response using Bayesian model inversion.  Furthermore, by taking the 

marginal likelihood over the conditional density of the model parameters, one can 

estimate the probability of the data given a particular model.  This is known as the 

marginal likelihood or evidence and can be used to compare different models, or 

mechanistic hypotheses underlying a specific perceptual or cognitive process. 

 

As opposed to other connectivity tools such as structural equation modelling or 

autoregressive models, DCM treats inputs as known and determinist, whereas the 

former models treat inputs as stochastic.  Another point of departure is that 

conventional connectivity approaches assume that the observed responses are driven 

by endogenous and random fluctuations.  Furthermore, DCM can accommodate non-

linear systems.  These features make of DCM a more biologically realistic model, but 

also more dependent on biological constraints. 

 

 

2.1.1 The forward model 

An evoked potential is a perturbation in the spontaneous electroencephalographic 

activity resulting from sensory stimulation that causes subsequent activation.  

Activity measured with EEG mainly arises from extracellular current flow ensuing 

from postsynaptic potentials in synchronously activated pyramidal cells.  Previous 

work has shown that ERP responses can be produced by perturbations in cortical 
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networks (Jansen and Rit, 1995; David et al., 2005).  DCM is a spatiotemporal model 

that includes an electromagnetic forward model that implicitly performs source 

reconstruction with Bayesian inversion.  Hence, DCM provides a supplement to 

conventional electromagnetic forward models by positing further constraints on the 

neuronal dynamics in each source and how each source influences connected 

sources.  This influence is parameterised by the connectivity parameters for forward, 

backward and lateral connections. 

 

 

2.1.2 Hierarchical MEG/EEG neural mass models 

DCMs for MEG/EEG use neural mass models (David and Friston, 2003) to explain 

source activity in terms of the ensemble dynamics of interacting inhibitory and 

excitatory subpopulations of neurons, based on the model of Jansen and Rit (1995).  

This model emulates the activity of a source using three neural subpopulations, each 

assigned to one of three cortical layers; an excitatory subpopulation in the granular 

layer, an inhibitory subpopulation in the supra-granular layer and a population of 

deep pyramidal cells in the infra-granular layer.  The excitatory pyramidal cells 

receive excitatory and inhibitory input from local interneurons (via intrinsic 

connections, confined to the cortical sheet), and send excitatory outputs to remote 

cortical areas via extrinsic connections.  David et al. (2005) describe a hierarchical 

model using extrinsic connections among multiple sources that conform to the 

connectivity rules described in Felleman and Van Essen (1991).  These rules allow 

one to build a network of coupled sources linked by extrinsic connections.  Within 

this model, bottom-up or forward connections originate in the infra-granular layers 

and terminate in the granular layer; top-down or backward connections link agranular 

layers and lateral connections originate in infra-granular layers and target all layers.  

All these extrinsic cortico-cortical connections are excitatory and are mediated 

through the axons of pyramidal cells.  Exogenous inputs to the model have the same 

characteristics as forward connections and deliver exogenous (i.e., sensory) input, u , 

to the granular layer (see section 1.1.1 in Chapter 1, for details on connection rules). 

 

The DCM is specified in terms of its state equations and an observation model or 

output equations.  The set of state equations summarise the average synaptic 



CHAPTER 2.  DCM OF ERPS: METHODS 

 44 

dynamics in terms of spike-rate-dependent current and voltage changes, for each 

subpopulation 

 

),,( !uxfx =&          (2.1) 

 

This means that the evolution of the neuronal state, x , is a function (parameterised 

by ! ) of the state and the input u .  The output equation couples the specific states 

(the average depolarisation of pyramidal cells in each source), 
0
x , to the MEG/EEG 

signals y  using a conventional linear electromagnetic forward model. 

 

!" += 0)( xLy         (2.2) 

 

The lead field matrix, )(!L , (i.e., the forward model) is parameterised in terms of the 

location and orientation of each source as described in Kiebel et al. (2006) and 

corresponds to the contribution of each source to the signal measured by the 

electrodes at the scalp level.  Hence, this equation establishes the relationship 

between the neuronal states, 
0
x , and the EEG. 

 

Equation (2.1) summarises the state equations, specifying the rate of change of the 

potentials as a function of the current and how currents change as a function of the 

currents and the potentials (see Jansen and Rit, 1995; David et al., 2005; 2006; and 

David and Friston, 2003 for further details).  The state equations embody the 

connection rules described above, where !  includes extrinsic coupling parameters 

(forward, backward and lateral connections LBF
CCC ,, , respectively), intrinsic 

coupling parameters (
4,...,1=i! ), synaptic parameters (

ie
H

,
 and 

ie,
! ), input parameters 

(
21

,!!  and 
21

,!! ) and conduction delays (! ).  Equation (2.3) is an expanded 

version of Equation (2.1) that shows the nine differential equations for a single 

source.  See also Figure 2.1 for a schematic description of how these equations are 

associated to the three cortical layers in a cortical source, and how these relate to 

forward, backward and lateral connectivity parameters in a DCM.  
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Figure 2.1 Schematic DCM for a single source.  Each source is modelled with three subpopulations: 

inhibitory interneurons and pyramidal cells that correspond to the supra- and infra-granular layers and 

the spiny stellate cells that correspond to the granular layer.  This summarises the state equations that 

are assigned to each subpopulation and the connection rules referred above.  (Adapted from David et 

al., 2006) 

 

These state equations are first-order differential equations and are derived from the 

behaviour of the three neuronal subpopulations, which operate as damped linear 

oscillations: 
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where 
8,...,1=ix  are the mean transmembrane potentials and currents of the three 

populations within a given source.  In accordance with the connection rules described 

above, it can be seen that the state dynamics are mediated by lateral connectivity in 

all three layers of the single source model (see 
8
x& , 

5
x&  and 

4
x& ) whereas backward 

connections mediate the state dynamics in the agranular layers (see 
8
x&  and 

5
x& ) and 

forward connections mediate state dynamics in the granular layer (see 
4
x& ). 

 

The integration of this dynamic model to form predicted responses, as defined by the 

differential equations pertaining to each subpopulation, rests on two operators 

(Equations 2.4 and 2.5).  This integration can be expressed as a convolution )(tp  

that transforms the average density of its pre-synaptic inputs into an average 

postsynaptic membrane potential (David and Friston, 2003).  The convolution kernel 

is given by: 
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where 
e

H  and 
i

H control the maximum postsynaptic potentials and 
e
!  and 

i
!  

represent the rate constants for excitatory and inhibitory synapses, respectively.  The 

remaining operator, S , transforms the average postsynaptic membrane potential of 

each subpopulation, x , into firing rate, which is the input to other subpopulations.  

This operator is assumed to be an instantaneous sigmoid nonlinearity. 

 

( )
( ) 2

1

exp1

1
!

!+
=

rx
xS        (2.5) 

 

where r is a fixed parameter that controls its curvature ( 0.56=r ).  The intrinsic 

coupling parameters, ! , and the intrinsic conduction delays, 
ii

! , are fixed 

parameters.  All the others are free parameters that have a prior Gaussian 

distribution, specified with a mean and variance.  All parameters have weakly 

informative priors.  Amongst the extrinsic coupling parameters, the prior 

expectations on the forward connections are weaker than the priors on the backward 

connections, which are in their turn weaker than the lateral connections.  This 

accounts for the fact that forward connections exert stronger effects than backward 

and lateral connections. 

 

The input that drives the system is fed through the input connections U
C  which are 

conceptually equivalent to a forward connection that delivers the input, u , to the 

granular layer.  This input function models the afferent activity relayed by 

subcortical structures and has the form of a burst with small fluctuations: 

 

( ) ( ) ( ) ( )( )! "+#"= "
titttu

c

i
12cosexp 12

1

2
11 $%&&& &&     (2.6) 

 

This function has two components.  The first component is a gamma density function 

with shape and scale constants, 
21

,!! , which models an event-related burst of input 

that is delayed with respect to stimulus onset and dispersed by the subcortical 

synapses and axonal conduction.  The second component is a discrete cosine set 

modelling systematic fluctuations in the input as a function of peri-stimulus time.  

See David et al. (2005; 2006), David and Friston (2003), Jansen and Rit (1995), and 

Friston et al. (2007) for further details. 
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It is important to emphasize that DCM, as specified here, depends on the 

assumptions made.  In this thesis, DCM was used to model an ER that pertains to the 

auditory domain.  However, DCM can be used, in principle, to model ER in the 

context of other sensory modalities; this is valid as long as the assumptions made 

hold true. 

 

 

 

2.2 Bayesian Model Comparison 
 

Inversion of a specific DCM model, m , corresponds to approximating the posterior 

probability on the parameters, ),|( myp ! . This is proportional to the probability of 

the data (the likelihood) conditioned upon the model and its parameters, ),|( myp ! , 

times the prior probability on the parameters, )|( mp ! , according to the Bayes rule: 

 

)|(),|(),|( mpmypmyp !!! "       (2.7) 

 

This approximation uses variational Bayes that is formally identical to Expectation-

Maximisation (EM), as described in Friston (2002).  The EM can be formulated, in 

analogy to statistical mechanics, as a co-ordinate descent on the free energy, F , of a 

system.  The aim is to minimise the free energy with respect to a variational density 

)(!q .  When the free energy is minimised ),|()( mypq !! = , the free energy 

)|(ln mypF !=  is the negative marginal log-likelihood or negative log-evidence.  

After convergence and minimisation of the free energy, the variational density is 

used as an approximation to the desired conditional density and the log-evidence is 

used for model comparison. 

 

One often wants to compare different models and select the best before making 

statistical inferences on the basis of the conditional density.  The best model, given 

the data, is the one with highest log-evidence )|(ln myp  (assuming a uniform prior 

over models).  Given two models 
1
m  and 

2
m  one can compare them by computing 

their Bayes factor or, equivalently, the difference in their log-evidences: 

 



CHAPTER 2.  DCM OF ERPS: METHODS 

 49 

( ) ( )
212,1 lnlnln mypmypB !=       (2.8) 

 

If this difference is greater than about three (i.e., their relative likelihood is more then 

20:1) then one asserts there is strong evidence in favour of the first model (see Penny 

et al., 2004 for details). 

 

The formalism described above is suitable for comparing different models of a given 

data set, for instance data acquired from a single subject.  However, one may wish to 

select the model that best explains multiple data sets, i.e., the best model at the group 

level.  Assuming each data set is independent of the others (i.e., all subjects are 

independent of each other), we can simply multiply the marginal likelihoods, or, 

equivalently, add the log-evidences from each subject 

 

!
=

=
n

j

ijin
mypmyyp

1

1 )|(ln)|,...,(ln       (2.9) 

 

to obtain the log-evidence for the i-th model across all n  subjects. Log-evidences 

will be used extensively in subsequent chapters to compare competing models or 

hypotheses about the MMN. 
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Chapter 3 

 

Dynamic Causal Modelling of Evoked Potentials: 

A Reproducibility Study 

 
The previous chapter presented DCM as a novel tool for modelling and analysis of 

connectivity in the brain.  This chapter addresses the validity of DCM by appraising 

its reproducibility across a multi-subject data set and shows that it can be used in 

realistic context for hypothesis testing.  Three different connectivity models were 

considered to explain ERPs elicited in an oddball paradigm.  Bayesian model 

comparison was used to select the best model within and between subjects.  The 

rationale is that if DCM is a robust method, then the results of model comparison in 

one subject should predict the results in another (i.e., they should be consistent over 

subjects). 

 

 

 

3.1 Introduction 
 

In dynamical causal modelling, one views the brain as a dynamic network of 

interacting sources that produces observable responses.  This perspective furnishes 

spatiotemporal, generative or forward models for evoked responses as measured with 

EEG/MEG (David et al., 2005; Friston et al., 2003). In brief, DCM entails 

specification of a plausible model of electrodynamic responses.  This model is 
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inverted by optimising a variational free-energy bound on the model-evidence to 

provide the conditional density of the model parameters and the model evidence for 

model comparison.  This is an important advance over conventional analyses of 

evoked responses because it places natural constraints on the inversion; namely, 

activity in one source has to be caused by activity in another.  Face-validity of DCM 

for ERPs has been previously established (see David et al., 2005; 2006; Kiebel et al., 

2006).  In this chapter, predictive-validity is addressed in terms of the reproducibility 

of DCM over subjects.  In brief, if DCM discloses a likely underlying brain network, 

then the results of model comparison in one subject should predict the results in 

another (i.e., they should be consistent over subjects).  To ensure the same network 

was engaged in all subjects, a MMN paradigm was used.  This represents one of the 

best studied and reproducible phenomena in ERP research (Näätänen et al., 2001). 

 

 

3.1.1 Dynamic Causal Modelling 

Previous work suggests that event-related responses can be modelled as perturbations 

of cortical networks (David et al., 2005; Jansen and Rit, 1995).  In particular, it has 

been shown that dynamic causal models (DCMs) can explain event-related potentials 

(ERPs) and fields (ERFs) measured with EEG and MEG, respectively.  Furthermore, 

David et al. (2006) showed that differences in evoked responses can be explained by 

changes in effective connectivity or coupling among neuronal sources.  DCM can be 

regarded as an elaboration of conventional spatial forward models of EEG/MEG 

data, in which the sources are coupled according to biological constraints.  The 

inversion of a DCM provides information about the underlying cortical pathways and 

their causal architecture.  In this chapter, the reproducibility of DCM was assessed by 

testing hypotheses about cortical networks suggested by a predictive coding view of 

novelty or mismatch responses.  As discussed in Chapter 1, predictive coding is a 

formulation of perceptual learning and inference that rests on hierarchical Bayes 

(Rao and Ballard, 1999; Friston, 2003).  See section 1.1 of Chapter 1 for full 

description of the conceptual framework.  Critically, by formulating different 

implementations of perceptual learning in terms of different DCMs it was possible to 

adjudicate among competing hypotheses using Bayesian model comparison.  

Moreover it was possible to assess the reproducibility of model comparison over 

subjects. 
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Bayesian model comparison (Penny et al., 2004) selects the model, among 

competing models, that best explains the data.  Given equal prior probabilities for the 

models considered, they are compared using their marginal likelihood or evidence 

for each model.  In this work, the predictive validity of DCM was assessed by testing 

its reproducibility in a multi-subject study, under an auditory oddball paradigm.  

Specifically, reproducibility of DCM was evaluated in terms of model comparison, 

from subject to subject.  The choice of the oddball paradigm was motivated by the 

large body of work in this field and current interest in the mechanisms underlying the 

generation of the MMN; in particular, the specific hypotheses about these 

mechanisms furnished by theoretical treatments (Winkler et al., 1996; Friston, 2005). 

 

 

3.1.2 Mismatch responses 

Small changes in the acoustic environment initiate involuntary attentional capture, 

which may be engaged automatically by an auditory change detection mechanism 

indexed by the MMN.  It has been proposed that a temporo-prefrontal network 

generates the MMN by comparing sensory input with the memory trace of previous 

stimuli.  Novel events (oddballs) embedded in a stream of repeated or familiar events 

(standards) produce a distinct response that can be recorded non-invasively with 

electrophysiological techniques such as EEG and MEG.  The MMN is the negative 

component of the waveform obtained by subtracting the event-related response to a 

standard from the response to an oddball, also called a deviant in the literature.  This 

pre-attentive response, to sudden changes in stimulation, peaks at about 100-250 ms 

from change onset; with the greatest intensity located over the frontal region (usually 

reported for channels Fz and FCz).  Given its automatic nature, the MMN has been 

associated with pre-attentive cognitive operations in audition and has, for this reason, 

been proposed as a reflection of ‘primitive intelligence’ in the auditory cortex 

(Näätänen et al., 2001). 

 

As discussed in Chapter 1 (section 1.2), there have been several compelling 

mechanistic accounts of how the MMN might arise, many focussing on plasticity or 

adaptation (e.g. May et al., 1999).  Winkler et al. (1996) suggested that the MMN 

might arise from a model-adjustment process, whereby the auditory system adjusts 
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its perceptual model to adapt to the stimuli encountered.  A similar conclusion was 

reached from a theoretical treatment of perceptual inference and learning based on 

hierarchical Bayes (Friston, 2005).  In this framework, evoked responses correspond 

to prediction error.  Changes in synaptic connections, during the repeated 

presentation of standards may render suppression of prediction error more efficient.  

This would lead to a reduction in evoked responses and the emergence of a mismatch 

response, when an unlearned stimulus is presented.  This differential response is 

mediated by differences in effective connectivity or coupling.  In short, mechanistic 

theories about the MMN posit changes in synaptic efficacy between the cortical 

levels of a hierarchical setting.  In what follows, model comparison is used to assess 

the reproducibility across subjects in terms of DCMs that best explains differences in 

ERPs to frequent (standards) and rare events (oddballs).  Three models were tested to 

ask whether mismatch responses are better explained by changes in forward 

connections, backward connections, or both, and whether the conclusions generalise 

over subjects, whose data were acquired independently. 

 

 

 

 

3.2 Methods and Statistical analysis 
 

This section describes the methodology used for modelling the ERPs and the 

statistical analysis performed which enabled inferences on: what is the best model; 

and what are the model parameters at the single subject and group levels.  

 

 

3.2.1 Experimental design 

 

3.2.1.1 Subjects 

This study involved a group of thirteen healthy volunteers aged 24–35 (5 female).  

Each subject gave signed informed consent before the study, which proceeded under 

local ethical committee guidelines. 
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3.2.1.2 Task 

Subjects sat on a comfortable chair in front of a desk in a dimly illuminated room. 

Electroencephalographic activity was measured during an auditory ‘oddball’ 

paradigm, in which subjects were presented with “standard” (1000 Hz) and “deviant” 

tones (2000 Hz), occurring 80% (480 trials) and 20% (120 trials) of the time, 

respectively, in a pseudo-random sequence.  The stimuli were presented binaurally 

via headphones for 15 minutes every 2 seconds.  The duration of each tone was 70 

ms with 5 ms rise and fall times.  The subjects were instructed not to move, to keep 

their eyes closed and to count the deviant tones. 

 

 

3.2.2 Data acquisition and pre-processing 

EEG was recorded with a Biosemi system with 128 scalp electrodes.  Data were 

recorded at a sampling rate of 512 Hz with a fixed 1st order analogue anti aliasing 

filter of -3dB at 3.6 kHz.  Vertical and horizontal eye movements were monitored 

using three EOG (electro-oculogram) electrodes.  The horizontal eye movements 

were monitored by two EOGs placed on the inner and outer corners of the subjects’ 

left eyebrow.  The vertical eye movements were monitored by the latter EOG and 

another one placed about 4 to 5 cm below.  The pre-processing and data analysis 

steps were performed offline with SPM5 (http://www.fil.ion.ucl.ac.uk/spm/) in the 

following order: epoching with a peri-stimulus window of -100 to 400 ms, down-

sampling to 200 Hz, band-pass filtering (Butterworth) between 0.5 – 40 Hz and re-

referencing  to the average of the right and left ear lobes.  A 40 Hz cut-off was used 

in order to clean the data from high frequency noise (including the 50 Hz in the 

electric power).  The use of 40 Hz does not compromise the components of interest 

as their frequency is well below this threshold.  Ideally, filtering should have been 

the first of the pre-processing steps so that aliasing was minimized.  Here, however, 

this has been comprised for the sake of computational expediency.  Trials in which 

the absolute amplitude of the signal exceeded 100 Vµ  were excluded.  Two subjects 

were eliminated from further analysis due to excessive trials containing artefacts.  In 

the remaining subjects, an average 18% of trials were excluded.  For computational 

expediency the dimensionality of the data was reduced to three channel mixtures or 

spatial modes.  These were the principal modes of a singular value decomposition of 

the channel data between 0 and 250 ms, from both trial types.  The use of three 
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principal eigenvariates preserved more than 69% of the variance in all subjects (see 

Figure 3.1). 

 

Figure 3.1 Cumulative variance explained by 3 svd components. 
 

3.2.3 DCM specification 

This section describes three plausible models defined by a given architecture and 

dynamics, which were used here to test the validity of DCM.  See Chapter 2 for a 

full description of DCM. 

 

The network architecture was motivated by recent electrophysiological and 

neuroimaging studies looking at the sources underlying the MMN (Opitz et al., 2002; 

Doeller et al., 2003).  Five sources were modelled as ECDs, over left and right A1, 

left and right STG and right IFG.  The mechanistic model attempts to explain the 

generation of each individual response (i.e., responses to standards and responses to 

deviants).  Therefore, left and right A1 were chosen as cortical input stations for 

processing auditory information.  The subcortical input function was parameterised 

as a mixture of a Gaussian bump function (with unknown latency and dispersion) and 

a background alpha rhythm (with unknown phase and amplitude), that attempted to 

model residual alpha ringing.  Opitz et al. (2002) identified sources for the 

differential response, with fMRI and EEG measures, in both left and right STG, and 

right IFG.  Here the coordinates reported by Opitz et al., (2002) (for left and right 

STG and right IFG) and Rademacher et al. (2001) (for left and right A1) are 

employed as prior source location means, with a prior variance of 32 mm2.  These 

coordinates, given in the literature in Talairach space, were converted to MNI space 
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using the algorithm described in (http://imaging.mrc-

cbu.cam.ac.uk/imaging/MniTalairach).  The moment parameters had prior mean of 0 

and a variance of 8 in each direction.  These parameters were used, for each 

individual subject, as priors in the estimation of the posterior locations and moments 

of the ECDs. 

 

 
Table 3.1: Prior coordinates for the locations of the equivalent current dipoles in MNI space 

(mm). 

 

Using these sources and prior knowledge about the functional anatomy the following 

DCM was constructed: An extrinsic input entered bilaterally to A1, which were 

connected to their ipsilateral STG. Right STG was connected with the right IFG.  

Inter-hemispheric (lateral) connections were placed between left and right STG.  All 

connections were reciprocal (i.e., connected with forward and backward connections 

or with bilateral connections). 

 

Given this connectivity graph, specified in terms of its nodes and connections, three 

models were tested.  These models differed in the connections which could show 

putative learning-related changes, i.e., differences between listening to standard or 

deviant tones.  Models F, B and FB allowed changes in forward, backward and both 

forward and backward connections, respectively (Figure 3.2).  All three models were 

compared against a baseline or null model.  The null model had the same 

architecture described above but precluded any coupling changes between standard 

and deviant trials. 
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Figure 3.2 Model specification.  The sources comprising the network are connected with forward 

(dark grey), backward (grey) or lateral (light grey) connections as shown. A1: primary auditory 

cortex, STG: superior temporal gyrus, IFG: inferior temporal gyrus.  Three different models were 

tested within the same architecture (a-c), allowing for learning-related changes in forward F, 

backward B and forward and backward FB connections, respectively. The broken lines indicate the 

connections that were allowed to change. Sources of activity, modelled as dipoles (estimated posterior 

moments and locations), are superimposed in an MRI of a standard brain in MNI space (d). 

 

 

3.2.4 Statistical analysis: Bayesian model comparison 

The statistical analysis in this chapter uses the procedures described in Chapter 2, 

for Bayesian model comparison at both single-subject and group levels.  See section 

2.2 for further details.  The next subsection describes the inference made on the 

parameters of the best model pooled over subjects, i.e., at the group level. 

 

3.2.4.1 Parameter estimation at the group level 

Bayes’ theorem updates our belief about a parameter in the light of new evidence 

from the data.  Bayesian inference can be particularly useful at the second (between-

subject) level of statistical analysis (Neumann and Lohmann, 2003).  In particular, it 

is easy to combine the conditional densities from several subjects to obtain a single 
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conditional density for the group.  The conditional probability of the parameters 

given data from all subjects is: 
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This provides a useful way to summarise the results of several DCMs from different 

subjects. 

 

 

 

3.3 Results 
 

3.3.1 Event-related potentials 

The difference between the ERPs evoked by the standard and deviant tones revealed 

a standard MMN (Figure 3.3).  This negativity was present from 90–190 ms (Figure 

3.3a-c) and had a broad spatial pattern, encompassing electrodes previously 

associated with auditory and frontal areas (Figure 3.3d). 
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Figure 3.3 Grand mean ERPs, i.e., averaged over all subjects. (a) ERP responses to the standard 

and deviant tones overlaid on a whole scalp map of 128 EEG electrodes. (b) ERP responses to the 

standard and deviant tones at channel C21 (fronto-central). (c) MMN, the difference wave obtained by 

subtracting the grand-average ERP to standards from the ERP to deviants, at channel C21. (d) grand 

mean MMN response averaged across subjects and over a time window of [100, 200] ms interpolated 

to give a 3D scalp topography. 

 

Figure 3.3a shows that the MMN is also present on the EOG channels, which is due 

to contamination by the brain evoked responses.  This is demonstrated in Figure 3.4, 

which shows that there is no eye movement artefact in the VEOG and the HEOG that 

could be causing an apparent MMN.  Moreover, this figure also shows the gradient 

of the peak oddball response (at about 100 ms) from the back to the front electrodes, 

as well as the EOG signals.  It can be seen that the peak amplitude increases from the 

back to the central electrodes, and then decreases from there to the EOGs.  This 

reveals how that the activity on the HEOG and VEOG channels is as a consequence 

of the MMN and not visa versa. 
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Figure 3.4 Contamination of the VEOG and HEOG by the brain evoked responses.  (Left) 

VEOG and HEOG signals from all subjects and all trials.  (Right) Grand mean oddball responses for 

from the 128 EEG, the VEOG, and the HEOG channels. 

 

3.3.2 Model selection 

Four different DCMs, forward only (F-model), backward only (B-model), forward 

and backward (FB-model) and the null were inverted for each subject.  Figure 3.6 

illustrates the model comparison based on the increase in log-evidence over the null 

model, for all subjects.  Figure 3.5a shows the log-evidence for the three models, 

relative to the null model, for each subject, revealing that the three models were 

significantly better than the null in all subjects.  The diamond attributed to each 

subject identifies the best model on the basis of the highest log-evidence.  The FB-

model was significantly better in seven out of eleven subjects.  The F-model was 

better in four subjects but only significantly so in three (for one of these subjects  

[subject 6], model comparison revealed only weak evidence in favour of the F-model 

over the FB-model, though still very strong evidence over the B-model.  In all but 

one subject, the F and FB-models were better than the B-model.  Figure 3.5b shows 

the log-evidences for the three models at the group level (i.e., using. Eq. 2.9 – see 
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Chapter 2).  Both F and FB are clearly more likely than B and, over subjects, there 

is very strong evidence in favour of model FB over model F. 

Figure 3.5 Bayesian model selection among DCMs for the three models, F, B and FB expressed 

relative to a DCM in which no connections were allowed to change (null model).  The graphs 

show the free energy approximation to the log-evidence. (a) Log-evidence for models F, B and FB for 

each subject (relative to the null model). The diamond attributed to each subject identifies the best 

model on the basis of the subject's highest log-evidence. (b) Log-evidence at the group level, i.e., 

pooled (summed) over subjects, for the three models. The red line represents the averaged log-

evidence (across subjects) and the black points represent the log-evidence for each subject. This 

shows that there is not an outlier subject with a particularly strong effect driving the group log 

evidence. 

 

Figure 3.6a shows, for the best model FB, the predicted responses at each node of 

the network for each trial type (i.e., standard or deviant) for a single subject (subject 

9).  The coupling gains and the conditional probability of the gains being greater or 

smaller than one are shown for each connection in the network.  The values on each 

connection represent a scaling effect, for example, a coupling change of 2.04 from 

lA1 to lSTG means that the effective connectivity increased by 104% for rare events 

relative to frequent events.  The response, in measurement space, of the three 
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principal spatial modes is shown on the right (Figure 3.6b).  This figure shows a 

remarkable agreement between predicted (solid) and observed (dotted) responses. 

 

 
Figure 3.6 DCM results for a single subject [subject 9] (FB model). (a) Reconstructed responses 

for each source and changes in coupling adjacent to the connections during oddball processing relative 

to standards. The mismatch response is expressed in nearly every source. (b) Predicted (solid) and 

observed (broken) responses in measurement space, which result from a projection of the scalp data 

onto their first three spatial modes. 

 

Figure 3.7 summarises the conditional densities of the coupling parameters for the 

F-model (Figure 3.7a) and FB-model (Figure 3.7b).  The coupling gains and the 

conditional probability of the gains being greater or smaller than one, pooled over 

subjects, are shown for each connection in the network (i.e., using Eqs. 3.1 and 3.2).  

For the F-model the effective connectivity has increased in all connections with a 

conditional probability of 100%.  For the FB-model the effective connectivity has 

changed in all forward and backward connections with a probability of 100%.  

Equivalently, and in accord with theoretical predictions, all extrinsic connections 

(i.e., influences) were modulated for rare events as compared to frequent events. 
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Figure 3.7 Coupling gains and their conditional probability estimated over subjects for each 

connection in the network for models F (a) and FB (b). There are widespread learning-related 

changes in all connections, expressed as modulations of coupling for deviants relative to standards. 

 

 

 

3.4 Discussion 
 

This study evaluated the predictive validity of DCM by looking at its reproducibility 

over subjects in the context of the MMN.  To this end DCM was used to explain 

differences in ERPs in terms of changes in effective connectivity.  Three models of 

connectivity were tested, for each subject, within the same underlying cortical 

architecture but differing in modulations of specific types of connections.  There was 

a very reproducible pattern of results across subjects.  Model comparison revealed 

that conjoint changes in forward and backward connections (FB-model), relative to 

changes in forward (F-model) or backward connections alone (B-model) are 

consistently better across subjects.  In every subject, these models were better than a 

null model that precluded any coupling changes.  The evidences for models F and 

FB were, overall, much bigger than the model evidence for B.  A similar consistency 
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was observed quantitatively, in terms of the conditional densities of each connection; 

as predicted, the coupling estimates change between the two event types, i.e., 

standards and deviants. 

 

In all but one subject the F-model was better than the B-model.  This is an important 

result because both of these models had the same number of parameters.  This means 

that any difference in the model evidences can only be explained by their ability to 

predict the observed response.  The probability that ten out of eleven comparisons 

would select the same model by chance is exceedingly small.  This suggests the 

DCM is sensitive to a systematic difference in ERPs to oddballs and standards; and 

their difference lies in the network architectures used to model the observed 

responses.  Furthermore, the FB-model was significantly better than the other models 

in seven out of eleven subjects.  The fact that this was not the case for all subjects is 

another important result because it shows that a more complex model (that can fit the 

data more accurately) is not necessarily the most likely model.  This slight inter-

subject variability for the winning model might be due to differences in subjects’ 

attention state, which would probably be expressed in the importance that backward 

connections have in the dynamics of the cortical network.  For example, model FB 

would presumably be better explaining the data recorded from a more attentive 

subject.  Another possibility is that different subjects use different strategies for 

counting oddball events, which would be also expressed in the relative importance of 

forward and backward connections in the model. 

 

 

3.4.1 Choice of paradigm 

This paradigm was deliberately chosen such that it evoked two responses exhibiting 

a large difference over peri-stimulus time.  Note that this is not a classical oddball 

paradigm, as employed in the MMN literature.  The large pitch difference between 

responses to standards and deviants elicits large differences for both N1 and MMN 

components, which cannot be disentangled.  In this sense, this paradigm is not 

necessarily appropriate for modelling the MMN alone, but suitable for assessing the 

reproducibility of DCM:  DCM is a model of dynamic responses or transients that 

are continuous in time.  This means that the DCM is not an explanation for a 

particular response component (e.g., the MMN) but the compound response over all 



CHAPTER 3.  DCM OF ERPS: A REPRODUCIBILITY STUDY 

 65 

peri-stimulus times; it is likely that this paradigm induced N1 effects (due to the 

large different in standard and oddball tones) and, at least phenomenologically, a 

P300-like component (although the analysis presented here only went up to 250ms). 

However, all these components could be explained by differences in a simple 

network model of interacting neuronal populations.  It would be interesting to assess 

the ontological status of response components (e.g., N1, MMN, and P300) in the 

light of mechanistic models like DCM (see below). 

 

 

3.4.2 Choice of model 

DCM is not an exploratory technique; it does not explore all possible models: DCM 

tests specific models of connectivity and, through model selection, can provide 

evidence in favour of one model relative to others.  The results of a DCM analysis 

depend explicitly upon the models evaluated, which are generally motivated by 

mechanistic hypotheses.  This means there may exist other equally or more plausible 

models with different architectures (in respect of the areas and connections 

involved).  The network chosen for the DCMs was motivated by the results of 

previous MMN studies (Opitz et al., 2002; Doeller et al., 2003).  It has been shown 

that the generators of the MMN lie bilaterally on the temporal cortex.  In addition, 

some studies have shown bilateral generators on the frontal cortex, which are 

activated later than the auditory cortex generators (Rinne et al., 2000).  Recent 

studies showed a double peak over frontal scalp locations suggesting the existence of 

two sub-components for the MMN (Opitz et al., 2002 and Doeller et al., 2003).  The 

early component is reported to peak around 90 – 120 ms and can be modelled with 

sources located bilaterally in the STG.  Components peaking around 140 – 170 ms 

have been shown to be modelled effectively with dipoles in both left and right IFG 

that are usually stronger in the right hemisphere.  Moreover, the right IFG is reported 

more consistently as in the literature than the homologous source on the left.  This is 

why a unilateral right IFG has been used.  The inclusion of both left and right 

primary auditory cortices was necessary because DCM attempts to explain each ERP 

individually and any differences (in this case, responses to standards and deviants 

and the implicit mismatch).  Therefore, left and right A1 were chosen as the cortical 

targets of thalamic input, for processing auditory information. 
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Indeed there may be other plausible models.  So, why not include more sources in the 

model, for example left IFG?  This is an important question that has a principled 

answer.  Each model is defined by its number of sources and their connectivity.  

Given a particular model, DCM will optimize the parameters of that model.  To 

explore the space of models, one uses the marginal likelihood or log-evidence to 

compare one model with another.  This enables one to adjudicate between different 

models with different sources.  This is potentially an important application of DCM 

in the context of model selection.  This chapter focuses on the reproducibility of 

different connectivity architectures.  In the following chapters an exploration of 

model space will be presented (see Chapters 5 and 6). 

 

 

3.4.3 Mechanisms of ERP generation 

As detailed in Chapter 1, the mechanism of MMN generation is unknown.  

Traditionally, this response is thought to be associated with an automatic cortical 

change-detection process, which detects a difference between the current and the 

preceding input.  It has been proposed that the MMN would reflect modifications to 

existing parts of a model of the acoustic environment.  This model adjustment 

hypothesis discusses the existence of a dynamic system of change detection which 

updates its model of sensory input as the changes occur (Winkler et al. 1996; 

Sussman and Winkler, 2001).  Doeller et al. (2003) suggested that the prefrontal 

cortex is involved in a top-down modulation of the deviance detection system in the 

temporal cortices.  The traditional interpretation has been criticised by Jääskeläinen 

et al. (2004) who proposed that the MMN results from an adaptation mechanism (see 

also May et al., 1999) and is erroneously interpreted as a separate component 

generated by change-specific neurons.  The N1 response to standard (or ‘non-novel’) 

sounds is thought to be delayed and suppressed (or attenuated) as a function of its 

similarity to the preceding auditory events, reflecting short-lived adaptation of 

auditory cortex neurons.  Under this hypothesis, the response termed as MMN, 

would therefore be a product of an N1 differential wave emerging in the subtraction 

of the standards from the deviant's ERP.  Recently, the MMN has been framed within 

a predictive coding scheme; where it is interpreted as a failure to suppress prediction 

error, which can be explained quantitatively in terms of coupling changes among 

cortical regions (Friston, 2005).  This predicts the adjustment of a generative model 
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of current stimulus trains (cf., the model adjustment hypothesis) using plastic 

changes in synaptic connections (cf. the adaptation hypothesis).  This point will be 

discussed in more depth in Chapter 5. 

 

 

3.4.4 Consistency over model parameters 

How does one reconcile different results from different DCMs? This chapter looked 

at the reproducibility of DCMs in terms of consistency over subjects in model space.  

Although not the focus of this study, it is also interesting to address the consistency 

of model parameters.  Inference on the parameters of a particular DCM is conditional 

upon the specific model and data used.  Clearly, one could get very different 

conclusions by changing the model (e.g., Figure 3.7).  One may be very confident 

about contradictory results from two different models.  This contradiction is resolved 

by considering the relative likelihoods of the two models.  Generally, one only 

considers inference on the parameters of the best model.  It is possible to use 

Bayesian model averaging; however, this is most useful when the models have 

roughly the same probability.  If the results change under the same model with 

different data sets, then this speaks to inter-subject variability that may be real.  

Clearly, it would be re-assuring to see that the parameter estimates from each model 

were also consistent over subjects.  This can be addressed with a second, between-

subject analysis of the parameter estimates.  The consistency of DCM inversion in 

terms of model parameters can be illustrated with a classical multivariate statistical 

analysis (MANOVA) of subject-specific parameter estimates, from the best model 

(FB); DCM parameters were summarised using the average coupling changes for the 

forward and backward connections.  Using just two dependent summary variables 

ensured sufficient (i.e., nine) degrees of freedom to infer the group averages were 

significantly different from zero.  The resulting F-value (based on Wilk’s lambda; 

d.f. 2,9) was 4.725 corresponding to a p-value of 0.04.  This implies a systematic and 

consistent pattern of changes over forward and backward connections, over subjects.  

The average change in forward connections was 80% and the average change in 

backward connections was 57%.  This is consistent with the average change in 

forward and backward connections for the DCM analysis of grand-mean data (42% 

and 52% respectively).  A more informed way of addressing this issue would involve 
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a hierarchical Bayesian model that includes random effects from each subject.  This 

is a potential direction for future work (see Chapter 7). 

 

 

3.4.5 Technical issues 

This section attempts to clarify few technical issues that are relevant to both this 

chapter and the experimental chapters that follow. 

 

What is the relationship between “inverting” a DCM and inverting a classical 

electromagnetic forward model to locate intra-cranial source locations? 

Model inversion is used in exactly the same way in both contexts.  In fact, inverting a 

DCM subsumes the inversion of a conventional forward model.  This is because 

DCM has two components; a neural-mass model of the interactions among a small 

number of dipole sources and a classical electromagnetic forward model that links 

these sources to extra-cranial measurements.  Inverting the DCM implicitly 

optimizes the location and orientation of the sources.  Indeed, if the neuronal part of 

the model is removed, DCM would reduce to a conventional forward model.  The 

current implementation of DCM for ERPs uses the electromagnetic forward model 

solutions encoded in the fieldtrip software (http://www2.ru.nl/fcdonders/fieldtrip). 

 

Informative priors have been used on source locations.  How important are prior 

source locations in DCM?  Not very important; in other words, changing the location 

priors would not change the results very much.  This is because there is very little 

information in the EEG or MEG measurements about the spatial location of sources.  

In contrast, there is an enormous amount of information about their orientation.  A 

usual heuristic is to imagine that one is trying to infer the location and orientation of 

a pen-torch that is illuminating the inside of a balloon.  When looking at the balloon 

from outside, a small change in the position of the torch will have only a small effect 

on the pattern of illumination.  Conversely, changing its orientation will have a large 

impact.  In brief, location is not an important quantity, whereas orientation is.  For 

this reason, relatively informative priors have been used on the location whereas the 

orientation parameters were left free.  As noted above, it would be relatively 

straightforward to assess the impact of different location priors using model 

selection. 
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What does DCM actually operate on, the channel data or some estimate of source 

dynamics?  DCM operates on the channel data in the same way as sources are 

reconstructed in a conventional setting.  In both cases, one needs to specify the 

number of sources and how their activity is expressed in sensor space.  The only 

difference is that, with DCM, one also has to specify the connections among the 

sources and which sources receive sensorimotor input. 

 

How is the significance of the difference between models evaluated at the between-

subject level? 

For a single subject, a difference in log-evidence of about three is considered strong 

evidence in favour of the more likely model.  This is because a difference of three 

means the evidence for the more likely model is about twenty times the evidence for 

the other.  This can be compared to the use of p = 0.05 = 1/20 used in classical 

inference.  When pooling log-evidences from several subjects, one adds the 

evidences and, implicitly, the differences.  This is because adding logs is the same as 

multiplying probabilities and the probability of getting two independent sets of data 

is simply the product of the probabilities of getting each alone.  It can be seen that 

one will quickly reach a threshold of three if, and only if, the difference in log-

evidences is consistent over subjects. 

 

 

 

3.5 Conclusion 
 

This chapter studied possible mechanisms underlying the generation of the MMN at 

the level of coupling among sources, and the extent to which the ensuing inferences 

generalise over subjects.  Here the predictive validity of DCM has been established 

in the context of testing mechanistic hypotheses underlying a specific brain response.  

The model comparison addressed hierarchical implementations of predictive coding, 

in terms of extrinsic forward and backward connections.  Testing the adaptation 

hypothesis would require modulations of intrinsic connections (i.e. among neural 

subpopulations within cortical units).  This issue will be addressed in Chapter 5 
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where the relative roles of extrinsic and intrinsic connectivity changes are tested (see 

also Kiebel et al., 2007 for details of the methodological advances). 

 

In brief, this study suggests that the emergence of the MMN can be explained by 

repetition-dependent changes in forward and backward connections.  This was found 

consistently across the group of subjects studied.  Changes in forward connections 

might be associated with the construction of higher-level representations of sensory 

data.  This is consistent with the conjecture that the MMN reflects perceptual 

learning of standards, using predictive coding.  This presents the first attempt to 

invert a mechanistic model for the MMN using empirical data, and demonstrates the 

robustness of the method in group studies. 

 

 

 

3.6 Summary 
 

The aim of this work was to establish the predictive validity of DCM by assessing its 

reproducibility across subjects. An oddball paradigm was used to elicit mismatch 

responses.  Sources of cortical activity were modelled as equivalent current dipoles, 

using a biophysical informed spatiotemporal forward model that included 

connections among neuronal subpopulations in each source.  Bayesian inversion 

provided estimates of changes in coupling among sources and the marginal 

likelihood of each model.  By specifying different connectivity models it was 

possible to evaluate three different hypotheses: differences in the ERPs to rare and 

frequent events are mediated by changes in forward connections (F-model), 

backward connections (B-model) or both (FB-model). 

 

The results were remarkably consistent over subjects.  In all but one subject, the 

forward model (F-model) was better than the backward model (B-model).  This is an 

important result because these models have the same number of parameters (i.e., the 

complexity).  Furthermore, the FB-model was significantly better than both, in seven 

out of eleven subjects.  The fact that this was not the case for all subjects shows that 

a more complex model (that can fit the data more accurately) is not necessarily the 
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most likely model.  At the group level the FB-model supervened.  These findings 

demonstrate the validity and usefulness of DCM in characterising EEG/MEG data 

and its ability to model ERPs in a mechanistic fashion. 
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Chapter 4 

 

Evoked brain responses are generated by feedback 

loops 
 

The previous chapter established the predictive validity of DCM.  Importantly, it 

demonstrated that DCM can be used to answer interesting questions about cortical 

organization and function.  This chapter presents the first application of DCM to 

ERPs.  The aim of this study was to investigate the role of backward connections on 

the generation of long-latency ERP responses.  Neuronal responses to stimuli, 

measured electrophysiologically, unfold over several hundred milliseconds.  

Typically, they show characteristic waveforms with early and late components.  It is 

thought that early or exogenous components reflect a perturbation of neuronal 

dynamics by sensory inputs – bottom-up processing.  Conversely, later, endogenous 

components have been ascribed to recurrent dynamics among hierarchically disposed 

cortical processing levels – top-down effects.  The work reported in this chapter tests 

these theoretical formulations by comparing DCMs with and without backward 

connections.  Furthermore, the contribution of backward connections to evoked 

responses was quantified as a function of peri-stimulus time. 
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4.1 Introduction 
 

Event-related potentials or fields in electroencephalography and magneto-

encephalography are one of the mainstays of non-invasive neuroscience.  Typically, 

the response evoked by a stimulus evolves in a systematic way showing a series of 

waves or components.  Many of these components are elicited so reliably that they 

are studied in their own right.  These include very early sensory-evoked potentials, 

observed within a few milliseconds, early cortical responses such as the N1 and P2 

components and later components expressed several hundred milliseconds 

afterwards. Broadly speaking, ERP components can be divided into early and late 

(Syndulko et al., 1982).  Early or short-latency stimulus-dependent (exogenous) 

components reflect the integrity of primary afferent pathways.  Late stimulus-

independent (endogenous) components entail long-latency (more than 100ms) 

responses that are thought to reflect cognitive processes (Syndulko et al., 1982; 

Gaillard et al., 1988).  Early components have been associated with exogenous 

bottom-up stimulus-bound effects, whereas late components have been ascribed to 

endogenous dynamics involving top-down processes such as attention.  Indeed, the 

amplitude and latency of early (e.g., P1 and N1) and late (e.g., N2pc) components 

have been used as explicit indices of bottom-up and top-down processing 

respectively (Schiff et al., 2006).  This chapter demonstrates that late components are 

mediated by recurrent interactions among remote cortical regions; specifically it is 

shown that late components rest upon backward extrinsic cortico-cortical 

connections that enable recurrent or reentrant dynamics. 

 

Other possible mechanisms for ERP generation have been suggested such as phase-

resetting (Makeig et al., 2002) and baseline shift associated with alpha oscillations 

(Nikulin et al., 2007).  Makeig et al. (2002) use independent component analysis 

(ICA) in single-trial data to show that in a human visual selective attention task, 

ERPs are mainly generated by stimulus induced phase resetting of 

electroencephalographic processes.  Mazaheri and Jensen (2006) have argued against 

this view, by showing that in single trials the α oscillations, after visual stimuli, 

preserve their phase relationship with respect to the phase before the stimuli.  

Moreover, they have showed that the ERF can be explained by stimulus-locked 
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activity in the β band that is absent before the stimulus.  Nikulin et al. (2007) have 

proposed an alternative mechanism that explains generation of evoked responses 

with a baseline shifting due to modulations in the amplitude of α oscillations after 

stimuli. 

 

The aim of this chapter is to investigate the role of backward connections in the 

elaboration of long-latency ERP responses.  This enquiry has been enabled by recent 

advances in the analysis of EEG data; specifically, DCM.  A detailed description of 

DCM can be found elsewhere (David and Friston, 2003; David et al., 2005; 2006; 

Kiebel et al., 2006; Garrido et al., 2007a) and in the previous chapters (Chapter 2 

and 3).  Models with and without backward connections were compared against each 

other.  The contribution of forward and backward connections to predicted responses 

at the source level was quantified as a function of peri-stimulus time.  In brief, EEG 

was recorded from healthy subjects whilst listening to a stream of auditory tones 

embedded in an oddball paradigm, as described in the previous chapter.  The same 

data was used here, however, only the ERP elicited by the deviant stimulus was 

analysed.  The results are reported at both the subject and group level; using the ERP 

averaged over trials within-subject and the ERP averaged over all subjects.  In these 

analyses only two models were compared; both had the same source architecture 

(same sources) but were distinguished by the presence of backward connections 

among sources (see Figure 4.2 in the results section).  As opposed to the analyses 

performed in the previous chapter, these models attempted to explain a single ERP as 

a function of peri-stimulus time, instead of the difference between deviants and 

standards during a fixed time window.  Moreover, these models tested for how 

relevant the presence of forward and backward connections is in explaining late ERP 

components, whereas the previous analysis focussed on the importance of 

modulations of these connections in explaining mismatch responses. 
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4.2 Methods and Statistical analysis 
 

4.2.1 Experimental design 

Evoked responses elicited within a pure-tone oddball paradigm were chosen for this 

study because they are known to comprise substantial late components.  The 

experimental design used in this chapter is identical to the one used in the previous 

chapter (see Chapter 3).  In this chapter, however, only the responses to the oddball 

tones were analysed, as opposed to the previous analysis where both deviant and 

standard trials were modelled. 

 

 

4.2.2 Data acquisition and pre-processing 

Data acquisition and pre-processing procedures were very similar to those adopted in 

the previous chapter (Chapter 3).  In this chapter, however, the dimensionality of the 

data was reduced to eight channel mixtures or spatial modes, instead of three.  These 

were the eight principal modes of a singular value decomposition of the channel data 

from trials with responses to deviant tones only.  The use of eight principal 

eigenvariates preserved more than 97% of the variance in every subject (see Figure 

4.1). 

 

Figure 4.1 Cumulative variance explained by 8 svd components. 
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4.2.3 Statistical analysis: Bayesian model comparison 

The statistical analysis in this chapter uses the procedures described in Chapter 2, 

for Bayesian model comparison at both single-subject and group levels.  See section 

2.2 for further details. 

 

 

 

4.3 Results 
 

4.3.1 Dynamic Causal Models specification 

This section describes two DCMs defined by a given architecture and dynamics.  

These two models were tested against each other in order to investigate the role of 

backward connections in the generation of long-latency ERP responses.  See 

Chapter 2 for a full description of DCM. 

 

The network architecture was motivated by recent electrophysiological and 

neuroimaging studies looking at the sources underlying the MMN (Opitz et al., 2002; 

Doeller et al., 2003).  Using prior knowledge about the functional anatomy the 

following DCM was constructed: An extrinsic input entered bilaterally to A1, which 

were connected to their ipsilateral STG.  Right STG was connected with the right 

IFG.  See section 3.2.3 in Chapter 3 for details on the motivation and architecture 

of the models tested.  For simplicity, and in contrast with the previous chapter, no 

lateral connections were included in these models.  The same coordinates were used 

in this chapter as prior source location means, with a prior variance of 16 mm2 (see 

Figure 4.2c).  The choice for a tighter variance, in contrast with the previous 

analysis, reported in Chapter 1, is justified by the limited spatial information in EEG 

measurements about source location.  On the other hand, the information on source 

orientation is much more relevant.  Hence, relatively uninformed priors were used 

for the dipole moment parameters.  The prior mean was zero and the variance was 

256 mm2 in each direction. 

 

Given this connectivity graph, specified in terms of its nodes and connections, two 

models were tested.  These differed in terms of the presence of reciprocal or 
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recurrent connections: model FB had reciprocal, i.e., forward and backward 

connections and model F lacked backward connections, having forward connections 

only (Figure 4.2a, b).  In other words, model FB resembles recurrent dynamics, or 

parallel bottom-up and top-down processing, whereas model F emulates simple 

bottom-up mechanism.  Note that these models, F and FB, are graphically very 

similar to the models tested in Chapter 3. However, here we are interested in the 

existence of connections per se; not changes in connections inducing mismatch 

responses. For example, the F model tested in this chapter has forward connections 

only; there are no backward or lateral connections, as before. 

 
Figure 4.2 Model specification.  The sources comprising the network are connected with backward 

(grey) and/or forward (dark grey) connections as shown. A1: primary auditory cortex, STG: superior 

temporal gyrus, IFG: inferior temporal gyrus.  Two different models were tested within the same 

architecture, with and without backward connections; (a) and (b) respectively.  (c) Sources of activity, 

modelled as equivalent dipoles (estimated posterior moments and locations), are superimposed in an 

MRI of a standard brain in MNI space and their prior mean locations are: lA1 [-42,-22, 7], rA1 [46, -

14, 8], lSTG [-61, -32, 8], rSTG [59, -25, 8], rIFG [46, 20, 8] in mm. 

 

 

4.3.2 ERPs and Bayesian model comparison 

The ERPs elicited by the deviants were modelled using a DCM with these five 

sources (c.f., equivalent current dipoles) as in previous analyses of mismatch 
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differences (Kiebel et al., 2006; Garrido et al., 2007a).  The evoked response to the 

deviant peaked on average at about 100 ms and had a wide spread negative 

topography at the frontal electrodes, in agreement with previous studies (Figure 

4.3a).  The free parameters of these models included the location and orientation of 

each dipole, excitatory and inhibitory rate constants and post-synaptic densities for 

the three sub-populations of neurons within each source, intrinsic (within-source) 

coupling strengths and extrinsic (between-sources) coupling.  Extrinsic connections 

were divided into forward and backward and conformed to the connectivity rules 

described in Felleman and Van Essen (1991) and David et al. (2005).  Bottom-up or 

forward connections originate in the infra-granular layers and terminate in the 

granular layer; top-down or backward connections link agranular layers and lateral 

connections originate in infra-granular layers and target all layers.  All these extrinsic 

cortico-cortical connections are excitatory and are mediated through the axons of 

pyramidal cells.  To test the hypothesis that backward connections mediate late 

components selectively, the model-evidence, )exp(),|( iii FmypL != " , was 

evaluated for models 
1
m  and 

0
m , with and without backward connections as a 

function of peri-stimulus time; FB and F respectively (see Figure 4.3c).  This 

involved inverting the model using data, from stimulus onset to a variable post-

stimulus time, ranging from 120ms to 400ms, in 10ms steps.  A difference in log-

evidence of about three is usually taken as strong evidence for one model over the 

other (i.e., the likelihood of one model is about twenty times the other).  The 

evidence or marginal likelihood (Penny et al., 2004) was compared between the two 

models as a function of increasing peri-stimulus time windows, for both the grand 

average ERP across subjects and for each subject individually (Figures 4.2c and 4.4 

respectively).  Both analyses revealed the same result.  The longer evoked responses 

evolve, the more likely backward connections appear.  For the group data this is 

evident in Figure 4.3c, which shows that the model with backward connections (FB) 

supervenes over the model without (F).  This is particularly clear later in peri-

stimulus time (220 ms post-stimulus or later). 
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Figure 4.3 Bayesian model comparison among DCMs of Grand mean ERPs.  (a) Grand mean 

ERP responses, i.e., averaged over all subjects, to the deviant tone overlaid on a whole scalp map of 

128 EEG electrodes. The artefact in the left frontal electrode site as shown in Figure 3.3a is no longer 

present. This was caused by a bad channel (in one of the subjects) that has been excluded from this 

analysis.  (b) Overlapped ERP responses to deviant tones from all 128 sensors over the peri-stimulus 

interval [0, 400] (ms). (c) Differences in negative free-energy or log-evidence comparing the model 

with backward connections (FB) against the model without (F).  The gray patch indicates the interval 

chosen to model the ERPs for each individual subject (see also Figure 4.5). 

 

For completeness and validation purposes, we also evaluated a backward connection-

only model.  This was done using the grand mean data (as in Figure 4.3 and 4.4).  

The two graphs below show, as expected, a poor performance of the B model as 

compared to models FB and F (with and without backward connections, 

respectively).  In both cases, models FB and F perform much better than model B 

(see Figure 4.4).  As anticipated, this model had much lower evidence than either the 

forward or forward and backward models considered here (over all peri-stimulus 

times examined).  
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Figure 4.4 Evaluation of the backward connection-only model.  These two graphs show, as 

expected, a poor performance of the B model as compared to models FB and F (with and without 

backward connections, respectively). 
 

Motivated by these results, a window of interest was selected; 180 to 260 ms for 

expediency, to perform an identical analysis for each subject.  The results for 

individual subjects recapitulated the group analysis (Figure 4.5).  For the majority of 

subjects (8 out of 11), the forward model supervenes over the model with backward 

connections, when explaining the data in the first half of peri-stimulus time.  
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Conversely, in the second half, for most subjects (8 out of 11), the model with 

backward connections supervenes over the model without.  This means that forward 

connections are sufficient to explain ERP generation in early periods, but backward 

connections become essential in later periods.  This effect occurs after 220 ms and is 

more evident for longer latencies. In short, backwards connections are not necessary 

to explain early data and only incur a complexity penalty, without increasing 

accuracy.  This does not mean backward connections are ‘switched off’; it simply 

means their effects are not manifest until later in peri-stimulus time, by which time 

activity has returned from higher levels.  At this point, backward connections 

become necessary to explain the data.  This can be seen quantitatively in a plot of the 

log-evidence over time and qualitatively, in terms of the number of subjects 

supporting each model, at larger peri-stimulus time (Figure 4.5 a, b respectively). 
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Figure 4.5 Bayesian model comparison across subjects.  (a) Comparison of the model with 

backward connections (FB) against the model without (F), across all subjects over the peri-stimulus 

interval 180 to 260 ms.  The dots correspond to differences in log-evidence for 11 subjects over time.  

The solid line shows the average log-evidence differences over subjects (this is proportional to the 

log-group Bayes factor (Bf) or to the differences in the free energy of the two models (ΔF)).  The 

points outside the gray zone imply very strong inference (≥ 99% confidence that one model is more 

likely), i.e., model FB supervenes over F for positive points and the converse for negative points.  (b) 

Histogram showing the number of subjects in each of seven levels of inference on models with and 

without backward connections across the peri-stimulus interval 180 to 260 ms. 
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4.3.3 Conditional contribution of extrinsic coupling 

Finally, the contribution of forward and backward connections to predicted responses 

was evaluated at the channel and source level, using the conditional mean of the 

model parameters, µ , from the model with backward connections for the group data 

(see Figure 4.6).  The change in predicted responses, !µ "" ),( tx , was quantified at 

the source level, x , for a change in ! , for selected forward or backward connections.  

The model parameter !  quantifies the extrinsic coupling in the forward or backward 

connections linking two remote areas; it encodes how much the activity in one area 

influences the activity of another.  Figure 4.6 c-e show traces of how source activity 

would change at right A1, STG and IFG due to changes in forward and backward 

connections. It can be seen that unit changes in forward connections have a profound 

effect on responses throughout peri-stimulus time, whereas backward connections 

show a temporal selectivity, in that they modulate the expression of late components 

( !""x  is mostly flat for early peri-stimulus time, less than 200 ms).  In other words, 

changes in the connectivity of a forward connection will cause the source activity to 

change throughout peri-stimulus time, while changes in a backward connection will 

cause the source activity to change at long latencies but will have no effect early in 

peri-stimulus time.  The idea that backward connections are necessary to explain late 

ERP components is also supported by the remarkable improvement of model fit later 

in peri-stimulus time for model FB (afforded by backward connections).  

Conversely, both models provide an equally good fit when modelling ERP responses 

at early latencies (see Figure 4.6a, b).  This means the backward connections add 

unnecessary complexity, which is why the forward model has a greater log-evidence 

in, and only in, early phases of the ERP (see Figure 4.5a).  These graphs show 

predicted and observed responses with and without backward connections projected 

onto the first eigenmode of a principal component analysis (PCA).  It is evident that 

the model fit improves later in time, after about 200 ms, by adding backward 

connections to the network.  This is coincident with the time interval for which 

Bayesian model comparison revealed that the model with backward connections 

explains the data much better at both group and individual subject levels. 
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Figure 4.6 Contribution of extrinsic coupling to source activity.  The graphs show predicted (solid) 

and observed (broken) responses in measurement space for the first spatial mode, which was obtained 

after projection of the scalp data onto eight spatial modes; for (a) FB model and (b) F model.  The 

first mode accounts for the greatest amount of observed variance.  The improvement of model fit due 

to backward connections for later components is evident.  Predicted responses at each source (solid 

line) and changes in activity with respect to a unit change in forward (dotted line) and backward 

connection (dash-dotted line) for (c) right IFG, (d) right STG and (e) right A1.  The gray bar covers 

the same period of peri-stimulus time as in Figure 4.3. 

 

 

 

 

4.4 Discussion 
 

In this chapter, DCM was used to provide direct evidence for the theoretical 

prediction that evoked brain responses are mediated by reentrant dynamics or top-

down effects in cortical networks, and therefore rest on backward connections.  This 

provides an explicit statistical test of the hypothesis that evoked responses depend on 

top-down effects (Syndulko et al., 1982; Gaillard et al., 1988).  Furthermore, the 



CHAPTER 4.  EVOKED BRAIN RESPONSES ARE GENERATED BY 

FEEDBACK LOOPS 

 85 

relative contribution of bottom-up and top-down effects were quantified under a 

biologically informed model.  These results show that backward connections are 

necessary to explain late neuronal responses.  This evidence was furnished by 

comparison of models of oddball responses with and without backward connections.  

Bayesian model comparison revealed that the model with backward connections 

explains both group and individual data better than the model with forward 

connections only.  This was particularly evident for long latencies (more than 200 

ms, see Figure 4.3c and Figure 4.5).  Furthermore, it was possible to quantify the 

contribution of backward connections to evoked responses (in both channel and 

source space) as a function of peri-stimulus time.  As expected, these results show 

that forward connections have a profound effect on responses throughout peri-

stimulus time, whereas backward connections show a temporal specificity, in that 

they mediate the expression of late components (more than 200 ms). 

 

Backward connections are an important part of functional brain architectures, both 

empirically and theoretically.  The distinction between forward and backward 

connections rests on the notion of cortical hierarchies and the laminar specificity of 

their cells of origin and termination (Boussaoud et al., 1990).  Anatomically, 

backward connections are more abundant than forward connections (in the 

proportion of about 1:10/20) and show a greater divergence and convergence.  

Forward connections have sparse axonal bifurcations and are topographically 

organised whereas backward connections show abundant axonal bifurcation and 

diffuse topography transcending various hierarchical levels.  Functionally, backward 

connections have a greater repertoire of synaptic effects: while forward connections 

mediate postsynaptic effects through fast AMPA and GABAA receptors (constant 

decay of about 1-6 ms), backward connections also mediate synaptic effects by slow 

NMDA receptor, which are voltage sensitive and therefore show non-linear 

dynamics or modulatory effects (with time-constants about 50 ms) (Rockland and 

Pandya, 1979; Salin and Bullier, 1995).  Furthermore, the deployment of backward 

synaptic connections on the dendritic tree can endow them with nonlinear and veto-

like properties (Mel, 1993).  Backward connections play a central role in most 

theoretical and computational formulations of brain function (Douglas and Martin, 

2004; 2007); ranging from the role of reentry in the theory of neuronal group 
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selection (Edelman, 1993) to recurrent neural networks as universal non-linear 

approximators (Wray and Green, 1994).  Several previous studies have highlighted 

the functional role of backward connections, especially in the visual domain.  It has 

been suggested that visual perception or awareness emerges from neuronal activity in 

ascending and descending pathways that link multiple cortical areas (Pollen, 1999).  

Accordingly, recurrent processing or cortical feedback is necessary for object 

recognition (Lamme and Roelfsema, 2000) and has been found to be important in 

differentiation of figure from ground, particularly for stimuli with low salience 

(Hupe et al., 1998).  Modern day formulations of Helmholtz’s ideas about perception 

suggest that backward connections play a critical role in providing top-down 

predictions of bottom-up sensory input (Rao and Ballard, 1999).  Indeed, the 

hypothesis that the brain tries to infer the causes of its sensory input, refers explicitly 

to hierarchical models that may be embodied by cortical hierarchies (Friston, 2005).  

In these formulations, the brain suppresses its free energy or prediction error to 

reconcile predictions at one level in the hierarchy with those in neighbouring levels.  

This entails passing prediction errors up the hierarchy (via forward connections) and 

passing predictions down the hierarchy (via backward connections), which is in 

conformity with a predictive coding framework based on hierarchical Bayes (Rao 

and Ballard, 1999; Friston, 2003; 2005).  Experimental evidence, consistent with 

predictive coding models has been furnished by fMRI studies (Murray et al., 2002; 

Bar et al., 2006; Summerfield et al., 2006).  It has been shown that activity in early 

visual areas is reduced through cortical feedback from high to low-level areas, which 

simplifies the description of a visual scene (Murray et al., 2002) and facilitates object 

recognition (Bar et al., 2006).  A recent study has also used DCM to test predictive 

coding models in the context of perceptual decisions, and found an increase in top-

down connectivity from the frontal cortex to face visual areas, when ambiguous 

sensory information is provided (Summerfield et al., 2006).  In predictive coding, 

evoked responses correspond to prediction error that is explained away (within trial) 

by self-organising neuronal dynamics during perception and is suppressed (between 

trials) by changes in synaptic efficacy during learning.  The study described in this 

chapter focused on the underlying mechanisms of responses evoked in an oddball 

paradigm.  The results reported above are yet another piece of empirical evidence in 

favour of predictive coding.  However, the recurrent dynamics that ensue are a 
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plausible explanation for the form of evoked responses in general, and the theoretical 

cornerstone of most modern theories of perceptual inference and learning. 

 

 

 

4.5 Summary 
 

The aim of the work presented in this chapter was to investigate the role of backward 

connections in the generation of late ERP components.  The hypothesis was that 

early components reflect a perturbation of neuronal dynamics by sensory inputs, 

which are associated with bottom-up processing.  Conversely, later, endogenous 

components can be ascribed to recurrent dynamics among hierarchically disposed 

cortical processing levels which are associated with top-down effects.  DCMs of 

responses to deviants, elicited in an oddball paradigm were modelled with and 

without backward connections.  These two models were compared in order to assess 

their likelihood as a function of peri-stimulus time.  This analysis revealed that 

evoked brain responses are generated by recurrent dynamics in cortical networks, 

and that backward connections are necessary to explain late components.  

Furthermore, it was possible to quantify the contribution of backward connections to 

evoked responses and to source activity, again as a function of peri-stimulus time.  

These results link a generic feature of brain responses to changes in the sensorium 

and a key architectural component of functional anatomy; namely backward 

connections are necessary for recurrent interactions among levels of cortical 

hierarchies.
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Chapter 5 

 

A Predictive Coding account of the Mismatch 

Negativity 

 
In the two previous chapters (Chapters 3 and 4) a 5-area reciprocally connected 

network was used to model the MMN.  It could be asked whether this network is 

correctly specified; in other words, does it correspond to the actual underlying 

network?  For example, the network used might include an irrelevant source, it may 

be missing a relevant source, or have wrong connections.  Although there is no such 

thing as a right or wrong model (only better or worse approximations to reality); 

these concerns can be addressed with model comparison and selection.  This chapter 

deals with this issue by testing different biologically plausible networks.  

Furthermore, the network models tested attempt to map onto hypotheses debated in 

the MMN literature; with a specific focus on the relative roles of plastic change in 

extrinsic and intrinsic connections.  These competing hypotheses or models were 

assessed with Bayesian model comparison, which provides a principled way for 

selecting among alternative models. 
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5.1 Introduction 
 

Early work by Näätänen and colleagues suggested that the MMN results from a 

comparison between the auditory input and a memory trace of previous sounds.  In 

agreement with this theory, others (Winkler et al., 1996; Näätänen and Winkler, 

1999; Sussman and Winkler, 2001) have postulated that the MMN could reflect on-

line modifications of the auditory system; in other words, the MMN would 

correspond to updates of the perceptual model during incorporation of a newly 

encountered stimulus into the model – the model-adjustment hypothesis.  Hence, the 

MMN would be a specific response to stimulus change and not to the stimulus alone.  

This hypothesis has been supported by evidence that the prefrontal cortex is involved 

in a top-down modulation of the deviance detection system in the temporal cortices 

(Escera et al., 2003).  In the light of the Näätänen model, it has been claimed that the 

MMN is caused by two underlying functional processes, a sensory memory 

mechanism related to temporal generators, and an automatic attention-switching 

process related to the frontal generators (Giard et al., 1990).  Accordingly, it has been 

shown that the temporal and frontal MMN sources have distinct behaviours over 

time (Rinne et al., 2000) and that these sources interact with each other (Jemel et al., 

2002).  Thus, the MMN could be generated by a temporofrontal network (Opitz et 

al., 2002; Doeller et al., 2003).  These two M/EEG and fMRI studies have linked the 

early component (in the range of about 100-140 ms) to a sensorial, or non-

comparator account of the MMN elaborated in the temporal cortex.  The later 

component (in the range of about 140-200 ms) has been associated with a cognitive 

account of the MMN involving the frontal cortex (Maess et al., 2007).  However, a 

recent study (Jääskeläinen et al., 2004) has challenged the view that the MMN is 

generated by a temporal-frontal cortical network.  Instead, according to Jääskeläinen 

et al. (2004) the observed response could result from a much simpler mechanism of 

local adaptation at the level of the auditory cortex that causes attenuation and delay 

of the N1 response.  The N1 response is the negative component peaking at about 

100 ms from stimulus onset and is associated with early auditory processing 

occurring at the level of A1.  As a consequence of adaptation, the observed response 

(i.e., the MMN) would be erroneously interpreted as a separate component from the 

N1 wave – the adaptation hypothesis.  According to this view, the fact that the 
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neuronal elements within the auditory cortex become less responsive upon 

subsequent stimulation is sufficient to explain the generation of a supposed MMN.  

Generation of this response (a delayed and suppressed N1) would be confined to the 

auditory cortex, and the MMN reported in the literature would emerge as an artefact 

due to the subtraction procedure (see also Chapter 1 for a review of the underlying 

mechanisms of MMN generation). 

 

The aim of this chapter is to disambiguate between these hypotheses for the MMN 

generation: adaptation and model-adjustment.  Competing mechanistic hypotheses 

were framed in terms of network models (or DCMs) characterised by repetition-

dependent changes in coupling within and between cortical areas.  Bayesian model 

comparison of DCMs was used to make inferences about the best model.  The 

models examined were chosen to map onto the hypotheses that the MMN is 

generated by (i) local changes in coupling, i.e. adaptation; in other words, the MMN 

is best explained by neuronal disinhibition, confined to lower-order cortical areas (cf. 

Jääskeläinen et al., 2004); (ii) hypotheses entailed by interactions of a temporo-

frontal network or model-adjustment (Winkler et al. 1996, Doeller et al. 2003), and 

(iii) a combination of both mechanisms, as suggested by formal models of perceptual 

learning (Friston, 2005; Baldeweg 2006), i.e., local adaptation within an area and 

changes in interactions between areas that reflect a reduced mismatch response 

mediated by top-down predictions.  The experimental results suggest that rather than 

being mutually exclusive, both intrinsic (adaptation) and extrinsic (model 

adjustment) changes in coupling are required to explain the MMN.  These results are 

discussed in terms of predictive coding and hierarchical inference in the brain. 
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5.2 Methods and Statistical analysis 
 

5.2.1 Experimental design 

 

5.2.1.1 Subjects 

A group of twelve healthy volunteers aged 24–34 (4 female) gave signed informed 

consent before the study, which proceeded under local ethical committee guidelines. 

 

5.2.1.2 Stimuli and Task 

The experimental design used in this study is similar to that described in the previous 

two chapters (Chapters 3 and 4).  However, in this experiment standards and 

deviants have a smaller relative difference (10% in this paradigm as opposed to 

100% in the paradigm used previously).  Here, the electroencephalographic activity 

was measured during a classical auditory ‘oddball’ paradigm, in which subjects were 

presented with “standard” (500 Hz) and “deviant” tones (550 Hz), occurring 80% 

(480 trials) and 20% (120 trials) of the time, respectively, in a pseudo-random 

sequence. This was done in order to prevent conflation of the MMN with the N1, 

because the bigger the difference between standards and deviants, the smaller the 

MMN latency (about 100 ms) which overlaps with the N1 peak.  The stimuli were 

presented binaurally via headphones for 10 minutes every 0.5 seconds (c.f., the ISI of 

2 seconds, as used in previous chapters).  The use of a shorter ISI was another 

strategy for dissociating the MMN and the N1 response. 

 

In order to preclude emergence of a N2 and a P300 components, a second 

modification was introduced: subjects performed a distracting visual task and were 

instructed to ignore the sounds.  The task consisted of button-pressing whenever a 

fixation cross changed its luminance. This occurred pseudo-randomly every 2 to 5 

seconds (and did not coincide with auditory changes). 

 

 

5.2.2 Data acquisition and pre-processing 

Data acquisition and pre-processing procedures were very similar to those adopted in 

the previous chapters (Chapter 3 and 4).  In this study, however, data were re-
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referenced to the nose, instead of to the average of the right and left ear lobes.  The 

method used for artefact removal was robust averaging.  Robust averaging is an 

iterative algorithm that produces the best estimate of the average by weighting data 

points as a function of their distance from estimate of the mean for each iteration (cf. 

Wager et al., 2005).  For computational expediency the dimensionality of the data 

was reduced to eight channel mixtures or spatial modes (as in Chapter 4).  The use 

of eight principal eigenvariates explained more than 74% of the data in all subjects 

and preserved the interesting components of evoked responses (see Figure 5.1).  As 

in Chapter 3, responses to both deviants and standards were modelled. 

 

 
Figure 5.1 Cumulative variance explained by 8 svd components. 

 

 

5.2.3 DCM extension: modulation of intrinsic connectivity 

In this chapter, DCM is used to investigate connectivity models in a specific context: 

namely, explaining the basis of the MMN.  Here, the main hypotheses, adaptation 

and model-adjustment, are framed in terms of connectivity models or DCMs, 

characterised by repetition-dependent changes in coupling within and between 

cortical areas.  Specifically, adaptation effects are modelled in DCM by changes in 

intrinsic or self-connections that are confined to a cortical area (within-area effects).  

This section presents a brief summary of requisite methodological developments, 

which are described in detail in Kiebel et al. (2007). 
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As mentioned in Chapter 2, DCMs for MEG/EEG use neural mass models (David 

and Friston, 2003), to explain source activity in terms of the ensemble dynamics of 

the interacting inhibitory and excitatory subpopulations of neurons, based on the 

model of Jansen and Rit (1995).  This model emulates the activity of a source using 

three neuronal subpopulations, each assigned to one of three cortical layers; an 

excitatory subpopulation in the granular layer, an inhibitory subpopulation in the 

supra-granular layer and a population of deep pyramidal cells in the infra-granular 

layer.  The excitatory pyramidal cells receive excitatory and inhibitory input from 

local interneurons (via intrinsic connections, confined to the cortical sheet), and send 

excitatory outputs to remote cortical areas via extrinsic connections.  The full set of 

the state equations for this dynamics have been described in Equation 2.3 and 

Figure 2.1, Chapter 2.  See also David et al., 2005; 2006; David and Friston, 2003.  

Within this model, bottom-up or forward connections originate in the infra-granular 

layers and terminate in the granular layer; top-down or backward connections link 

agranular layers and lateral connections originate in infra-granular layers and target 

all layers.  All these extrinsic cortico-cortical connections are excitatory and are 

mediated through the axons of pyramidal cells.  See Chapter 1 for details on 

hierarchical organisation in the brain.  The connection strengths for extrinsic 

connections are encoded in the parameters for forward, backward and lateral 

connections.  Interactions among the subpopulations depend on internal coupling 

constants, which control the strength of intrinsic connections and reflect the total 

number of synapses expressed by each subpopulation.  Intrinsic connectivity is 

encoded in the maximum amplitude of the synaptic kernel, 
e

H , which corresponds to 

the peak of the post-synaptic potential and the intrinsic excitability of cells (see 

Equation 2.4, Chapter 2).  Hence, the modulation of intrinsic or self connections 

corresponds to gains on 
e

H  and emulates local adaptation; in other words, it models 

a mechanism by which changes in source activity are caused by the dynamics of the 

source itself. 

 

 

5.2.4 Model specification 

The networks chosen were motivated by the results of previous studies of the 

generators of the MMN (Opitz et al., 2002; Doeller et al., 2003; Rinne et al., 2000; 
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Jääskeläinen et al., 2004) and formulated in terms of the hypotheses mentioned 

above: adaptation, model-adjustment and predictive coding. 

 

Eight plausible models were specified in terms of specific architectures that mapped 

onto eight different explanatory mechanisms.  The model search started with a 

parsimonious model that gradually increased in its complexity by addition of 

hierarchical levels (i.e., sources and extrinsic connections in the network).  Model S2 

comprised two nodes in the left and right A1.  Nodes and connections were added to 

the network to elaborate a symmetric three-level hierarchical model.  This model was 

motivated by recent electrophysiological and neuroimaging studies that identified 

underlying sources for the MMN (Doeller et al., 2003; Opitz et al., 2002).  These 

studies found bilateral sources located in the STG and the IFG, which are usually 

stronger and identified more consistently in the right hemisphere.  All models can 

therefore be considered as special cases of this three-level hierarchical model, S6i 

(see Figure 5.3). 

 

These models attempt to explain the generation of trial-type-specific individual 

responses (i.e., responses to standards and responses to deviants) under the constraint 

that differences among trial types have to be explained by, and only by, differences 

in coupling in specified connections. Therefore, all extrinsic connections (i.e., 

plasticity) were allowed to change.  In addition, every model was considered with, 

and without, changes in intrinsic connections in the left and right A1.  These two 

regions were chosen as cortical input stations for auditory information.  As in the 

previous chapter, each active source, i.e., each node in the network was modelled 

with a single ECD.  The same priors on source location means and variances were 

used in this study (see Figure 5.5; see also Chapters 3 and 4).  These parameters 

were used as priors to estimate the posterior locations and moments of the ECDs, for 

each subject. 

 

The simplest model, S2, is a two source network that maps to the hypothesis that 

ERPs to standards and deviants are generated by bilateral activity in A1.  This model 

does not allow changes in the connectivity parameters and cannot model a MMN 

difference.  Model S2i is similar to S2 but allows for intrinsic coupling changes 

within A1.  Here, it is hypothesised that differences between responses to standards 
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and deviants are caused by changes in A1 due to differences in self-connections, i.e., 

within area.  Model S4 is a two-level hierarchical model comprising four sources.  It 

is built upon S2, with left and right STG. These sources were reciprocally connected 

(i.e., connected through forward and backward connections) to their ipsilateral A1.  

This model allowed for plastic changes in extrinsic connections.  Model S4i is 

analogous to S4 with additional self-connections within A1.  A third-level 

hierarchical model, comprising five sources, model S5, built upon S4 and included 

right IFG, as well as plastic changes between cortical areas.  Right STG was 

reciprocally connected with its ipsilateral IFG.  Model S5i is like S5 but had self-

connections within A1.  Models S6 and S6i, six area models, are extensions of S5 

and S5i respectively that included the left IFG connected reciprocally to ipsilateral 

STG, as well as plastic changes between cortical areas. 

 

In summary, the models differed in terms of their nodes and in the connections which 

could show putative learning-related changes, i.e., differences between listening to 

standard or deviant tones.  Models S2, S4, S5 and S6 allowed changes in extrinsic, 

forward and backward connections, which map to hypotheses that ERP differences 

with standards and deviants are due to coupling changes in extrinsic connections.  

Models S2i, S4i, S5i and S6i allowed for changes in the same extrinsic connections 

plus changes in intrinsic connections within left and right A1.  These models map to 

the hypothesis that differences in ERPs are due to conjoint coupling changes in 

extrinsic and intrinsic connections (see Figure 5.3 for a graphical representation of 

the models). 

 

 

5.2.5 Statistical analysis: Bayesian model comparison 

The statistical analysis in this chapter uses the procedures described in Chapter 2, 

for Bayesian model comparison at both single-subject and group levels.  See section 

2.2 for further details.  The next subsection describes the inference made on the 

parameters of the best model pooled over subjects, i.e., at the group level. 
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5.3 Results 

 
5.3.1 Event-related potentials 

Data were recorded from 128 EEG sensors while subjects were presented with a 

classical auditory oddball paradigm.  Figure 5.2a shows the grand mean responses 

(i.e., averaged across subjects) to the standard (prob. occurrence = 0.8, f = 500 Hz) 

and to the deviant tones (prob. occurrence = 0.2, f = 550 Hz).  Responses to deviant 

tones exhibited a widespread negativity over the temporal and frontal electrodes, 

peaking at about 200 ms from change onset, which is consistent with previous 

studies.  Note that this late latency for the MMN is due to the small difference 

between the two tones, standards and deviants.  The difference between the ERPs 

evoked by the standard and deviant tones revealed a distinct MMN (see Figure 

5.2b).  Figure 5.2c shows the 2D scalp topography for the difference wave at its 

peak.  This negativity had a broad spatial pattern encompassing electrodes associated 

with auditory and frontal areas.  These spatiotemporal responses over sensors are 

characteristic of a typical MMN; however, the aim of this study was to identify the 

cortical network that generates it. 

 

 
Figure 5.2 Grand mean ERPs, i.e., averaged over all subjects. (a) ERP responses to the standard 

and deviant tones overlaid on a whole scalp map of 128 EEG electrodes. (b) ERP responses to the 
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standard and deviant tones. The MMN difference wave was obtained by subtracting the grand-average 

ERP to standards from the ERP to deviants, at channel C21 (fronto-central). (c) Grand mean MMN at 

peak interpolated to give a 3D scalp topography. 

 

 

5.3.2 Bayesian Model Selection 

Eight network models (DCMs) were specified on the basis of the two proposed 

mechanisms for MMN generation (Winkler et al., 1996 and Jääskeläinen et al., 

2004), as well as previous work on the localization of MMN generators (Opitz et al., 

2002; Doeller at al., 2003).  These eight DCMs were inverted for each of the twelve 

subjects (see Figure 5.3 and Materials and Methods for a graphical description of 

the models).  The model search started with the most parsimonious model (S2); one 

hierarchical level comprising two sources (bilateral primary auditory cortex - A1), 

and gradually increased its complexity by adding sources and connections, until it 

reached a three-level hierarchical model with six reciprocally interconnected sources 

(bilateral A1, STG and IFG).  For each hierarchy, all extrinsic connections were 

allowed to change.  In addition, each model was tested with and without coupling 

changes within the primary auditory cortex.  All models are simpler versions of the 

most complex (S6i).  Model S2i attempts to explain the MMN in terms of the 

adaptation hypothesis: differences in the ERPs between oddballs and standards are 

explained by changes in intrinsic connection strengths confined to the primary 

auditory cortex.  Model S4i can also be regarded as an adaptation model, if the 

differences in the ERPs to standards and deviants are driven by modulations in the 

intrinsic connections.  On the other hand, models S4, S5 and S6 embed mechanisms 

in line with the model adjustment hypothesis, namely changes in extrinsic 

connections mediating recurrent interactions among cortical levels.  Finally, models 

S5i and S6i correspond to the hypothesis that both local adaptation, in primary 

auditory cortex and interactions within a temporo-frontal network underlie the 

generation of the MMN.  These models can be discussed in terms of predictive 

coding (see below).  Model S2 is a naïve or null model encoding the hypothesis that 

there are neither local coupling changes (within an area), nor cortical interactions 

(between areas) underlying the MMN (i.e., no MMN).  This null model tries to 

explain two distinct ERPs with the same model parameters, which is obviously futile. 
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Figure 5.3 Model specifications.  The sources comprising the networks are connected with forward 

(dark grey), backward (grey) or lateral (light grey) connections as shown. A1: primary auditory 

cortex, STG: superior temporal gyrus, IFG: inferior temporal gyrus.  Eight different models with 

increasing hierarchical complexity were tested. The first row of models, [S2, S4, S5, S6], allowed for 

learning-related changes in only extrinsic (forward and backward) and the second row [S2i, S4i, S5i, 

S6i] allowed for conjoint extrinsic and intrinsic connectivity changes.  Each column comprises similar 

network models, which differ only in allowing for changes of intrinsic connectivity within A1.  From 

one column to the next, the number of active sources increased and were reciprocally connected (with 

forward and backward connections) to extant nodes. 

 

Figure 5.4 shows the profile of negative free energy across the eight models 

considered; this is a lower-bound approximation to the model log-evidence, which 

measures how good a model is as compared to another.  The model with the highest 

evidence explains the data with the best balance of accuracy and complexity.  These 

results show that model S5i (highlighted in the figure) is the model that best explains 

the group data.  The log-evidence at the group level, i.e., pooled over subjects, was 

determined under the assumption of data independence over subjects (see Equation 

2.9 in Chapter 2). Very strong evidence (ΔF > 5) was found for this model, relative 

to the remaining models tested.  The two models with a single hierarchical level (S2 
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and S2i) performed very poorly, compared to the hierarchical models.  Model S5i 

was the best amongst the hierarchical models.  This is an asymmetrical three-level 

hierarchical network comprising five extrinsically interconnected cortical areas 

(emulating long range connections between A1, STG, and the right IFG) and has 

intrinsic connections at the level of the left and right A1 (emulating local adaptation).  

This suggests that although local adaptation within the primary auditory cortices is 

supported by the data (compare S2 and S2i in Figure 5.4), it is not sufficient; a much 

better explanation rests upon local adaptation within A1 as well as plasticity changes 

in recurrent connections among multiple hierarchical cortical levels. 

 

 
Figure 5.4 Bayesian model selection.  This graph shows the free energy approximation to the log-

evidence at the group level, i.e., pooled over subjects, for the eight models.  The best model is a three-

level hierarchical network comprising five interconnected cortical areas with local adaptation within 

primary auditory cortices (model- S5i). 

 

Figure 5.5 presents the results of model inversion quantitatively, for the best model, 

using the grand mean response over subjects.  Figure 5.5a shows the prior locations 

of the dipolar sources overlaid in a MRI image of a standard brain.  These six sources 

(bilateral A1, STG and IFG) were used to construct eight network models.  Figure 

5.5b illustrates the estimates of activity on inverting the best DCM, S5i, a three-level 

hierarchical network comprising five sources interconnected via reciprocal extrinsic 

connections linking A1 to STG, and STG to IFG.  All these connections were 

allowed to change between standards and oddballs, with additional plasticity in 
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intrinsic connections at the level of left and right A1.  The predicted responses at the 

source level and for each trial type (i.e., standard or deviant) are shown at each node 

of the network.  This figure demonstrates that differences in the ERPs to standards 

and deviants are expressed in differences in source activity that are caused by 

differences in coupling between and within these sources.  The averaged (over 

subjects) coupling gains and associated p-values are shown against each connection.  

These values represent a scaling effect.  For example, a coupling change of 0.52 from 

lSTG (left STG) to lIFG (left IFG) means that the effective connectivity decreased 

to 52% for rare events relative to frequent events, and a coupling gain of 1.47 in the 

intrinsic connection within right A1, means a 47% increase, with a significant p-

values of 0.015 and 0.014, respectively.  A consistent effect of coupling changes was 

found across the group for intrinsic connections within left and right A1 (increase in 

connectivity), and for the forward connection that originates in STG and terminates 

in IFG (decrease in connectivity).  Backward connections from both STGs to their 

ipsilateral A1 show a trend for connectivity increases, which emulates a top-down 

effect on the lowest areas in the network. 
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Figure 5.5 DCM estimates of states and coupling changes for the grand mean data under the 

winning model (S5i).  (a) Prior locations for the nodes.  Sources of activity, modelled as equivalent 

dipoles (estimated posterior moments and locations), are superimposed in an MRI of a standard brain 

in MNI space. Their prior mean locations are: lA1 [-42, -22, 7], rA1 [46, -14, 8], lSTG [-61, -32, 8], 

rSTG [59, -25, 8], lIFG [-46, 20, 8],  rIFG [46, 20, 8] in mm.  (b) Reconstructed responses to 

deviants and standards at each source.  The mismatch response is expressed in nearly every source.  

There are widespread learning-related changes in most connections, expressed as coupling gains for 

deviants relative to standards.  Mean coupling changes, i.e., averaged across subjects, and p-values lie 

beside the connections in the graph.  Changes in coupling during oddball relative to standards increase 

consistently across subjects for intrinsic connections within A1 and decrease between STG and IFG 

in the right hemisphere. 

 

 

5.3.3 Between-subject consistency 

A consistency test was performed for the best model across subjects.  This was done 

with an ANOVA for repeated measures, using the log-evidence as the dependent 

measure.  There was a main effect of hierarchical complexity, i.e., number of sources 

in the network (F(2.23, 24.56) = 8.109,  p-value < 0.001) but there was no significant 

effect of intrinsic connectivity (F(1.00,11.00) = 0.837, p = 0.380).  When S2 and S2i 

were excluded there was no significant effect of hierarchical complexity or intrinsic 

connectivity.  This suggests that the one-level models are driving the main effect of 



CHAPTER 5.  A PREDICTIVE CODING ACCOUNT OF THE MMN 

 102 

hierarchical complexity and that the MMN generation rests upon a network with 

more than one level. 

 

 

 

5.4 Discussion 
 

In this chapter, the mechanisms underlying the generation of the MMN were 

evaluated in terms of coupling changes in the connections within and between 

cortical sources, which are organized hierarchically.  Mechanistic accounts of the 

MMN posit changes in synaptic efficacy in extrinsic, forward and backward 

connections, or intrinsic modulations.  In this context, the difference waveform (i.e., 

the MMN) arises from changes in coupling within and among cortical sources.  

DCM was used to explain ERPs to standards and deviants and different generative 

models for the MMN were tested.  The model space was based on previous accounts 

of MMN generation, specifically adaptation (Jääskeläinen et al., 2004), and model-

adjustment (Winkler et al., 1996). 

 

Model comparison addressed hierarchical implementations of multiple-level network 

models ranging from one to three levels.  These models allowed for changes in 

extrinsic connections alone; among A1, STG and IFG (i.e., forward and backward 

connections) or combined with changes in intrinsic connections (i.e., confined to 

neural subpopulations within cortical units) at the level of A1; this models local 

adaptation as well as interactions between distant cortical areas, through changes in 

coupling.  Significant coupling changes were found across the group, in intrinsic 

connections within bilateral primary auditory cortices, and extrinsically from right 

secondary auditory cortex to right frontal cortex.  Bayesian model comparison 

revealed that the best model is a five source network, with intrinsic and extrinsic 

connections that change between trials.  This is an important finding because it 

provides direct evidence that the MMN is generated by self-organized dynamics 

within a cortical hierarchy that is mediated by changes in both extrinsic and intrinsic 

coupling. 
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5.4.1 Technical issues 

A crucial feature of DCM, and any hypothesis driven method in general, is that one 

cannot test all possibilities, i.e., one has to constrain the model space to a limited 

number of hypotheses.  This study tested an extensive number of possibilities that 

map onto the major hypotheses concerning the generation of the MMN.  Therefore, 

one can be confident that the winning model is a reasonable approximation to the 

real cortical network.  However, this search on model space does not offer an 

exhaustive exploration of models; it only selects the best model amongst the models 

considered.  This means there might be another plausible and better network models 

that explain the MMN.  For example, it might be interesting to assess the evidence of 

a more complex model allowing for local adaptation at the level of STG and/or IFG.  

This is a question of model comparison, and provided that there is a good motivation 

for extending the space of models, one can use Bayesian model comparison to select 

the best model in the new set.  Secondly, an important feature of DCM comparison is 

that the log-evidence accounts for both model accuracy and complexity; this allows 

one to compare models with different numbers of parameters (Friston et al., 2006b).  

Thirdly, DCM uses a conventional formulation of source localization (cf. ECD 

models; see Kiebel et al., 2006), but represents a departure from conventional inverse 

solutions to the EEG problem by using a full spatiotemporal forward model that 

embodies known constraints on the way EEG sources are generated.  Put simply, 

these constraints are that electrical activity in one part of the brain must be caused by 

activity in another (David et al., 2006).  Conventional methods localise an active 

source associated with a specific peak at a given latency.  In contrast, DCM models 

the activity as it evolves over all peri-stimulus times selected; [0, 250] ms in this 

chapter.  Therefore, the models considered here attempt to explain all the dynamics 

during that interval, including the MMN and any other components peaking under 

the limits of this interval, such as N1 or P3a.  It is often difficult to disentangle the 

MMN and the N1 components (see Jacobsen and Schröger 2001), especially when 

there is a big difference between standards and deviants.  This was the case in the 

two previous chapters where there was 100% difference between standards and 

deviants (Chapters 3 and 4).  In this chapter the conflation of the MMN and the N1 

was minimized by using a frequency oddball paradigm with barely discriminable 

tones.  In these cases, as in this study, the MMN peaks at about 200–300 ms, which 
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is considerably later than the N1, peaking at about 100 ms (Näätänen and Alho, 

1995). 

 

In summary, this study presents the first attempt to map competing theoretical views 

onto specific mechanisms or cortical network models of the MMN; and given these 

models, to select the best in a principled way.  The results presented in this chapter 

show that the MMN cannot be attributed to local adaptation in the primary auditory 

cortices alone; in other words, adaptation restricted to lower-level areas, is not a 

complete account of the MMN.  This is consistent with a vast literature showing that 

there are temporal and frontal cortical sources underlying the MMN (Optiz et al., 

2002; Doeller et al. 2003; Rinne et al., 2000; Jemel et al., 2002; Restuccia et al., 

2005; Molholm et al., 2005).  Accordingly, it has been claimed that the MMN is 

caused by two underlying functional processes, a sensory memory mechanism 

related to temporal generators and an automatic attention-switching process related 

to the frontal generators (Giard et al., 1990) and that the prefrontal cortex is involved 

in a top-down modulation of the deviance detection system in the temporal cortices 

(Escera et al., 2003).  Indeed, the results of this research support the idea that the 

MMN rests upon a more complex architecture involving plastic interactions amongst 

multiple hierarchical levels, as well as local adaptation within the primary auditory 

cortices.  This is in agreement with the model adjustment hypothesis (Winkler et al., 

1996) in conjunction with local adaptation (Jääskeläinen et al., 2004).  In fact, 

adaptation effects (neurons showing decreased activity due to stimulus repetition) as 

an explanation for the MMN had been discussed previously in terms of refractoriness 

(Näätänen, 1992) or stimulus specific adaptation (SSA) in single neurons in cat 

primary auditory cortex (Ulanovsky et al., 2003).  Combined computational 

modelling and M/EEG measurements (May et al., 1999) have also addressed the 

question of MMN generation and discussed mechanisms of local suppressive effects, 

or adaptation, and lateral inhibition, i.e., synaptic changes in horizontal connections 

intrinsic to an area.  They have shown that the MMN can be explained by both 

neuronal adaptation and lateral inhibition.  Although this work suggests that 

mechanisms of adaptation also underlie the MMN, it is distinct from the adaptation 

hypothesis, which claims that the generation of the observed response is due to local 

adaptation alone, that is confined to the auditory cortex, and that there is no separate 

MMN (for a critical assessment see Näätänen et al., 2005). 
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The results obtained in this chapter are consistent with the conjecture that the MMN 

reflects perceptual learning of standards, using predictive coding (Friston, 2003; 

2005; Garrido et al., 2007a), i.e., adaptive changes in connectivity during perceptual 

discrimination of sounds (standards and deviants). These ideas are rooted in 

predictive coding models based on hierarchical Bayes (Rao and Ballard, 1999).  

Predictive coding postulates that our perception of the world, under ambiguous 

sensory information, results from an interaction between our predictions, built from 

previous input, and the actual input from the environment (see also Chapter 1).  In 

this framework, evoked responses correspond to prediction error that is explained 

away (within trial) by self-organising neuronal dynamics during perception and is 

suppressed (between trials) by changes in synaptic efficacy during perceptual 

learning.  Therefore the MMN can be interpreted as a failure to suppress prediction 

error, which can be explained quantitatively in terms of coupling changes among and 

within cortical regions.  The predictive coding framework encompasses the two 

distinct hypotheses, in the sense that it predicts the adjustment of a generative model 

of current stimulus trains (cf. the model-adjustment hypothesis) by using plastic 

changes in synaptic connections (cf. the adaptation hypothesis).  The repeated 

presentation of standards may render suppression of prediction error more efficient; 

leading to a reduction in evoked responses under repetition and the emergence of a 

mismatch response, when an unlearned stimulus is presented. 

 

The results described in this chapter support the hypothesis that the MMN reflects a 

failure to suppress prediction error, which can be framed in terms of predictive 

coding.  Yet, the work described in Summerfield et al. (2006), suggests that this 

principle could presumably be extended to other sensory modalities in general such 

as vision.  The predictive coding framework hypothesises that increases in intrinsic 

coupling encode progressive increases in the estimated precision of top-down 

predictions, which are responsible for suppressing prediction error.  These changes in 

lateral interactions could be mediated by adaptation-like mechanisms within the 

auditory cortex to repeated sounds.  Changes in forward connections may reflect 

changes in sensitivity to prediction error that is conveyed to higher levels.  These 

higher levels form predictions so that backward connections can provide contextual 

guidance to lower levels.  In this view, the MMN represents a failure to predict 
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bottom-up input and consequently a failure to suppress prediction error.  The 

requisite change in architecture, during the implicit learning of standards, is 

expressed in terms of quantifiable coupling changes among and within cortical 

regions. 

 

 

 

5.5 Summary 

 
The MMN, a well characterised response to violations in the regularity of an auditory 

structured sequence, is one of the most widely studied evoked responses.  There have 

been several compelling mechanistic accounts of how the MMN might arise.  It has 

been suggested that the MMN results from a comparison between sensory input and 

a memory trace of previous input – the model adjustment hypothesis – but others 

have argued that local adaptation due to stimulus repetition, is sufficient to explain 

an apparent MMN – the adaptation hypothesis.  Thus, the precise mechanisms 

underlying the generation of the MMN remain unclear.  This chapter tested 

biologically plausible mechanistic models of the MMN, which attempted to map 

onto these competing hypotheses.  Comparison of DCMs revealed that the MMN is 

generated by a multi-level hierarchical network through coupling changes within and 

between cortical areas.  This shows that both hypotheses, adaptation and model 

adjustment, operate in concert, and furnishes evidence that information processing in 

the brain is consistent with predictive coding. 
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Chapter 6 

 

Repetition suppression and cortico-cortical plasticity 

in the human brain 

 
The previous chapter tested different biologically plausible networks that attempt to 

map onto the mechanistic hypothesis pertaining to the MMN, adaptation, model-

adjustment and predictive coding.  It was shown that the MMN is best explained in 

the light of predictive coding, a general and unifying framework that encompasses 

both adaptation (Jääskeläinen et al., 2004) and model-adjustment (Winkler et al., 

1996; Näätänen and Winkler 1999).  The study described in this chapter had two 

aims: (i) to replicate these results with a different data set, elicited by a roving 

oddball paradigm; and (ii) to investigate the mechanisms underlying neuronal 

dynamics elicited by auditory stimulus repetition, particularly with regard to 

learning-related changes in brain connectivity.  In contrast to traditional oddball 

paradigms, the roving paradigm used here is characterised by a continuously 

changing standard stimulus.  This allows one to investigate how a deviant becomes a 

standard, while it retains the same physical properties.  The previous studies 

described in Chapters 3-5 used a categorical approach, modelling only one ERP 

(Chapters 4) or two (Chapters 3 and 5).  In contrast, the modelling approach 

adopted here used weighting functions incorporated into a single DCM, which tried 

to explain multiple ERPs (across repetitions) in a parametric fashion.  This approach 

provides information about the evolution of the connectivity parameters in the 
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cortical network, as a function of repetition or learning.  Moreover, it links auditory 

perceptual learning with repetition-dependent plasticity in the human brain. 

 

 

 

6.1 Introduction 
 

Few studies have explicitly explored the role of stimulus repetition during auditory 

memory-trace formation.  Näätänen and Rinne (2002) found that later negative 

components, in contrast to earlier responses, are elicited only by sound repetition.  

Others found that increasing the number of standard tone repetitions induces 

enhanced activity of both early (30-50 ms) and later components (60-75 ms) (Dyson 

et al., 2005), localised in the primary and secondary auditory areas respectively 

(Liegeois-Chauvel et al., 1994).  Similarly, Baldeweg et al. (2004) and Haenschel et 

al. (2005) found that the MMN increases with increasing number of standards and 

that this MMN is mediated by repetition-dependent enhancement of a slow positive 

wave (50-250 ms) in the standard ERP. 

 

In the predictive coding framework (see also Friston, 2005; Baldeweg, 2006), evoked 

responses, corresponding to prediction error, drive perceptual inference and changes 

in synaptic efficacy (between trials) such that prediction error is suppressed with 

learning.  Here, a roving MMN paradigm is used to test the hypothesis that the 

suppression of the MMN response to repetitive stimuli is due to plastic changes in 

connectivity.  It is shown that learning the acoustic environment, through stimulus 

repetition, reduces effective connectivity, within and between cortical areas.  This 

causes learning-induced decreases in prediction error which manifest as a 

suppression of the MMN as an oddball becomes a standard. 
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6.2 Methods and Statistical analysis 
 

6.2.1 Experimental design 

Twelve healthy volunteers aged 24–34 (4 female), gave signed informed consent 

before the study, which proceeded under local ethical committee guidelines.  

Subjects sat in front of a desk in a dimly illuminated room.  Electroencephalographic 

activity was measured during an auditory roving oddball paradigm (see Figure 6.3a).  

The stimuli comprised a structured sequence of pure sinusoidal tones, with a roving, 

or sporadically changing tone.  This paradigm resulted from few modifications to 

that used in Haenschel et al. (2005), originally designed by Cowan et al. (1993).  

Within each stimulus train, tones were of one frequency and were followed by a train 

of a different frequency.  The first tone of a train was a deviant, which became a 

standard after few repetitions.  This means deviants and standards have exactly the 

same physical properties, differing only in the number of times they have been 

presented.  The number of times the same tone was presented varied pseudo-

randomly between one and eleven.  The frequency of the tones varied from 500 to 

800 Hz in random steps with integer multiples of 50 Hz.  Stimuli were presented 

binaurally via headphones for 15 minutes.  The duration of each tone was 70 ms, 

with 5 ms rise and fall times, and the inter-stimulus interval was 500 ms.  About 250 

deviant trials (first tone presentation) were presented to each subject.  The remaining 

trials included in this analysis had about 250 to 150 occurrences.  Each subject 

adjusted the loudness of the tones to a comfortable level, which was maintained 

throughout the experiment.  The subjects were instructed to ignore the sounds and 

performed the same distracting visual task as described in the previous chapter (see 

Chapter 5). 

 

 

6.2.2 Data acquisition and pre-processing 

Data acquisition and pre-processing procedures were similar to those adopted in the 

previous chapter (see Chapter 5), in terms of filtering, re-referencing, down-

sampling, and artefact rejection procedures.  In this study the data were low pass 

filtered at 30 Hz, which did not affect much the ERP forms, and is somewhat 

irrelevant for the analysis of the components of interest since their frequency is well 
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below this.  Trials were sorted in terms of tone repetition.  In other words, trials one 

to eleven correspond to the responses elicited after one to eleven presentations of the 

same tone, collapsed across the whole range of frequencies.  Trial one is the oddball, 

or the deviant trial.  Averaged responses were obtained using robust averaging (as 

implemented in SPM5).  Two subjects were excluded from the analysis due to 

artefacts and another two due to an undetectable MMN (on visual inspection of the 

scalp data).  Data were transformed into scalp-map images (see Figure 6.4a).  These 

were obtained after linear interpolation and smoothing (at FWHM 6:6:4 mm:mm:ms) 

of the difference wave response between the first presentation and the sixth 

presentation.  For computational expediency, DCMs (see below) were computed on a 

reduced form of data that corresponded to eight channel mixtures or spatial modes.  

These were the eight principal modes of a singular value decomposition (SVD) of the 

channel data between 0 and 250 ms, over trial types of interest.  In the first part of 

this study, where deviants and standards were analysed, the use of eight principal 

eigenvariates explained on average 80% of the variance in the data across the group 

(and more than 69% of the data in every subject; see Figure 6.1).  For the multi-trial 

DCM, where five consecutive trials were analysed, these eight SVD components 

preserved on average 76% of the variance of the data across the group (and more 

than 66% in every subject). 

 
Figure 6.1 Cumulative variance explained by 8 svd components. 
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6.2.3 DCM specification: hypotheses tested 

In the previous chapter, DCM was used to explore connectivity network models for 

explaining what causes the MMN (Chapter 5; Garrido et al., in submission).  The 

research performed in this chapter investigates whether the same model underlies the 

MMN elicited in a roving paradigm and how tone repetition is expressed in terms of 

connectivity changes in the ensuing cortical network.  As mentioned before, DCM 

does not explore all possible models but tests specific mechanistic hypotheses 

defined in terms of specific connectivity models.  Bayesian model selection of DCMs 

can provide evidence in favour of one model relative to others.  The chosen network 

architectures were motivated by the results of previous studies of MMN generators 

(Rinne et al., 2000; Opitz et al., 2002; Doeller et al., 2003; Grau et al., 2007; Garrido 

et al., 2007a).  Figure 6.2 shows the prior locations for nodes in the DCM graphs, 

which include the areas found to be active during an MMN: bilateral A1 and STG 

and right IFG.  See also Table 3.1 in Chapter 3 for the coordinates on these 

locations in MNI space (mm).  The mechanistic models formulated here attempt to 

explain the generation of each individual response (i.e., responses to each tone 

presentation).  These models are similar to those tested in the previous chapter of this 

thesis (see Chapters 5, section 5.2.4 for details on model specification; see also 

Garrido et al., 2007a; in submission).  However, the model search in this chapter 

focused on six models only, which map onto different explanatory mechanisms for 

the MMN.  These models include the major hypotheses discussed in previous 

chapters: the adaptation hypothesis (Jääskeläinen et al., 2004), model adjustment 

(Winkler et al., 1996) and combinations of the two (see Figure 6.5a).  In brief, the 

model search started with the most parsimonious model, S2, (a one-level hierarchical 

model comprising two nodes on the left and on the right A1), and gradually increased 

complexity; in terms of hierarchical levels, number of sources and manipulations of 

intrinsic and extrinsic connectivity changes.  The addition of nodes and connections 

to the initial model culminated in a non-symmetric three-level hierarchical model 

that included bilateral A1 and STG, and right IFG.  All models can therefore be 

considered as a sub-model of the last one, model S5i). 
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Figure 6.2 Prior locations for the nodes in the models.  Sources of activity were modelled as 

equivalent dipoles.  Their prior mean locations: lA1 [-42, -22, 7], rA1 [46, -14, 8], lSTG [-61, -32, 8], 

rSTG [59, -25, 8], lIFG [-46, 20, 8], rIFG [46, 20, 8] in mm are superimposed in an MRI of a 

standard brain in Montreal Neurological Institute (MNI) space. 

 

 

6.2.4 Statistical analysis: Bayesian Model Comparison 

The statistical analysis in this chapter uses the procedures described in Chapter 2, 

for Bayesian model comparison at both single-subject and group levels.  See section 

2.2 for further details.  The next subsection describes the inference made on the 

parameters of the best model pooled over subjects, i.e., at the group level. 

 

 

 

6.3 Results 

 
The results of this chapter show that learning the acoustic environment through 

stimulus repetition reduced connectivity, within and between hierarchically 

organised cortical areas.  This analysis comprised three parts: (i) confirmation that 

there is a significant difference response (MMN) between the first and sixth tone 

presentation; (ii) hypotheses or model testing to establish the best DCM; and (iii) 

analyses of plasticity, in terms of connectivity strengths that change as a function of 

tone repetition. 
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6.3.1 Mismatch responses due to repetition effects 

An initial analysis confirmed the presence of a MMN response in this roving 

paradigm.  Data were recorded from 128 EEG sensors while subjects listened to 

trains of pure tones.  Each stimulus train comprised a sequence of tones, presented 

every 500ms.  This inter-stimulus interval was chosen in order to ensure that simple 

pre-synaptic facilitation could not explain any short-term plasticity observed. Each 

tone was presented between one and eleven times before changing in frequency.   

The first presentation of a tone with a different frequency from the preceding tone 

was defined as a deviant (see Methods and Statistical analysis and Figure 6.3a for 

details on experimental design).  Figure 6.3b shows the grand mean responses (over 

subjects) to first tone presentation; the deviant or oddball trial (gray), and responses 

to the sixth presentation (black), when it is assumed that a standard response has 

been attained.  This assumption is based on the ERP waveforms shown in Figure 

6.3c for the first five presentations.  These data came from a fronto-central electrode 

(C21), where the MMN was most evident.  This MMN response was found over 

frontal and temporal electrodes, peaking at about 180 ms from change onset, which is 

consistent with previous studies (Cowan et al., 1993; Baldeweg et al., 2004). 
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Figure 6.3 Design and responses elicited in a roving paradigm. (a) Stimulus design is characterised 

by a sporadically changing standard stimulus. The first presentation of a novel tone is a deviant 

1
tD =  that becomes a standard, through repetition ),,( 2 end

tt K .  However, in this paradigm, 

deviants and standards have exactly the same physical properties.  (b) Grand mean (averaged over 

subjects) ERP responses to the sixth tone presentation, the established “standard” (
6
t  in black) and 

deviant tone (
1
t , in gray) overlaid on a scalp-map of 128 EEG electrodes. (c) enlarged ERP responses 

to the standard and deviant tones at channel C21 (fronto-central) where the MMN response peaks at 

about 180 ms from change onset. 

 

Figure 6.4 shows a 3D spatiotemporal characterisation of the grand mean difference 

wave response, using conventional statistical parametric mapping to compare the 

first and the sixth presentations, the deviant and the standard, respectively.  This 

analysis searched for differences over 2D sensor-space and all peri-stimulus time [-

100, 400].  The scalp topography at any time-bin was interpolated from 128 channels 
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and smoothed.  Figure 6.4a shows the intensity of the differential response and that 

its negative peak occurs at about 180 ms, over the frontal and central areas.  Figure 

6.4b shows the corresponding statistical parametric map (SPM) where, over subjects, 

there is a significant negative difference across subjects (p<0.001 uncorrected).  This 

SPM showed a significant MMN over temporal and frontal areas between 110-

200ms, with a maximum at 180 ms. 

 

 
Figure 6.4 3D-spatiotemporal SPM analysis of the grand mean difference between the first 

presentation and the sixth presentation at the between-subject level.  The measurement space 

corresponds to a 2D-scalp topography (interpolated from the 128 channels) and peri-stimulus time (-

100 to 400).  (a) Differential response with a negative peak at about 180 ms.  (b) SPM showing areas 

where there is a significant negative difference across subjects (p<0.001 uncorrected).  Significant 

effects were found over temporal and frontal areas in the range of 110 to 200 ms peaking at 180 ms 

(see marker).  Significant positive effects (not shown) were found in the time window of 250-350 ms, 

which correlate with P300. 
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6.3.2 Hypotheses testing –underlying connectivity models of the MMN 

Next, six different hierarchical models were tested.  These models represent specific 

mechanistic hypotheses about MMN generation: adaptation (mapped onto S2i- 

model), model-adjustment (S4- and S5-models) and predictive coding (S4i- and S5i- 

models).  Model S4i can also be regarded as an adaptation model, if the differences 

in the ERPs to standards and deviants are driven by modulations in the intrinsic 

connections.  Both responses, ERPs to standards and deviants, were explained by the 

same model in these analyses.  The differences in the ERPs, i.e., the MMN, are 

explained in terms of coupling changes within and among the cortical areas of the 

underlying network model.  The aim of these analyses was to assess whether it was 

possible to replicate the results using classical oddball paradigms described in 

Chapter 5 (Garrido et al., 2007a; in submission).  Indeed, the best model was the 

same for the two independent experiments, model S5i (see below).  The models 

illustrated in Figure 6.5a differed in terms of their nodes and in the connections 

which could show putative learning-related changes, i.e., differences between 

listening to standard or deviant tones.  Models S2, S4 and S5 allowed for changes in 

extrinsic, forward and backward connections, which map to hypotheses that 

differences in ERPs to standards and deviants are due to plasticity in extrinsic 

connections; and models S2i, S4i, and S5i allowed for changes in the same extrinsic 

connections plus changes in intrinsic connections within left and right A1.  These 

models map to hypotheses that differences in ERPs are due to conjoint coupling 

changes in extrinsic and intrinsic connections.  An ANOVA of repeated measures on 

the free-energy (i.e., an approximation to each model’s log-evidence) revealed a 

main effect of source number (p<0.04) and a main effect of intrinsic connectivity 

(p<0.001).  Bayesian model comparison revealed that the model that best explained 

the data is model S5i, a three-level network composed of bilateral A1 and STG and 

right IFG (see Figure 6.5b).  This replicates the result obtained in Chapter 5 (see 

also Garrido et al., in submission).  For the winning model S5i, a post hoc t-test 

confirmed a significant coupling decrease (p<0.003) for the backward connection 

linking rIFG to rSTG and a trend increase (p<0.1) for the intrinsic connection 

within rA1 and the forward connection linking lA1 to lSTG. 
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Figure 6.5 Model specification and Bayesian model comparison for the six networks tested.  (a) 

The sources comprising the networks: A1: primary auditory cortex, STG: superior temporal gyrus and 

IFG: inferior temporal gyrus are connected with forward (dark grey), backward (grey) and intrinsic 

(light grey) connections.  The first row of models, [S2, S4, S5], allowed for learning-related changes 

in only extrinsic (forward and backward), while the second row [S2i, S4i, S5i] allowed for conjoint 

changes in extrinsic and intrinsic connections.  Each column is filled with two similar network 

models, which differ only in allowing for modulations of intrinsic connectivity within A1.  The 

columns differ in the number of active sources, which were reciprocally connected (with forward and 

backward connections).  (b) The graph shows the free-energy approximation to the log-evidence at the 

group level, i.e., pooled over subjects, for the six models. The best model is a 3-level hierarchical 

network, comprising five interconnected cortical areas allowing for local adaptation within primary 

auditory cortices and plastic changes in extrinsic connections (model- S5i). 
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Having identified the most likely network, the search of model-space was then 

finessed by investigating where plasticity was most likely to be expressed; within the 

network architecture of winning model S5i.  Six models were tested, encoding the 

hypotheses that differences in the evoked responses (deviants vs. standards) were 

caused by connectivity changes in forward (F-model), conjoint forward and intrinsic 

connections (Fi-model), backward (B-model) and conjoint backward and intrinsic 

connections (Bi-model), conjoint forward and backward connections, (FB-model), 

and conjoint forward, backward and intrinsic connections (FBi-model) (see Figure 

6.6a for details of model specification).  Model FBi is identical to model S5i, the 

winning model in the first model search (see Figure 6.6).  As expected, and in 

agreement with previous findings (see Chapter 3 and Garrido et al., 2007a) the 

winning model was FBi (see Figure 6.6b).  An ANOVA of repeated measures 

revealed a trend effect of extrinsic connectivity (forward, backward or both) (p<0.1) 

and a significant effect of intrinsic connectivity (p<0.02). 
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Figure 6.6 Model specification and Bayesian model comparison for the six variants of model S5i.  

(a) Six models comprising three hierarchical cortical levels.  Bilateral A1 are reciprocally connected 

with bilateral STG, and right STG is reciprocally connected with right IFG.  The first row of models, 

[F, B, FB], allowed for learning-related changes in only extrinsic connections: forward, backward and 

conjoint forward and backward connections, respectively.  The second row [Fi, Bi, FBi] allowed for 

conjoint extrinsic and intrinsic (within A1) connections.  Each column shows similar network models, 

which differ only in allowing for changes of intrinsic connectivity within A1.  (b) The graph shows 

the free energy approximation to the log-evidence at the group level, i.e., pooled over subjects, for the 

six models.  The best model is FBi which allows for modulations of all extrinsic and intrinsic 

connections.  This is in fact exactly the same as the parent model S5i in which all connections could 

change.  Models Fi and FBi are better than Bi. 
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6.3.3 Repetition-dependent plasticity – a parametric DCM 

The second aim of this study was to investigate the plasticity or dynamics of 

connectivity, as a function of tone repetition that explains the MMN above.  A 

dynamic causal model (DCM; see Figure 6.7) was used to explain differences 

among ERPs in terms of parametric changes in coupling.  Here, putative frontal 

sources have been ignored, in order to focus on plasticity in symmetrically deployed 

auditory and temporal sources.  Two alternative parametric functions were evaluated.  

The first modelled the evolution of connectivity strength as a decaying exponential 

function of tone repetition (E).  The second was a gamma function of repetition (G), 

which peaked after the first tone.  Using these parametric forms, two DCMs were 

inverted, corresponding to two competing hypotheses: (i) that tone repetition causes 

a monotonic decrease in connection strengths (E), and (ii) that tone repetition causes 

‘one-shot’ or biphasic changes in coupling.  This more flexible model used a mixture 

of both parametric effects (EG) (see Figure 6.7; upper panels).  The two DCMs 

were tested against a naïve or null model that precluded connectivity changes.  The 

network used for these analyses is shown in Figure 6.7 and comprised two low-level 

(auditory) sources in each hemisphere and two high-level (temporal) sources.  

Repetition-dependent changes were modelled in forward connections (from the 

auditory sources) and intrinsic connections (within the auditory sources), allowing 

for separate repetition-dependent modulation of extrinsic and intrinsic connections. 

The adaptation hypothesis (Jääskeläinen et al., 2004)  postulates that the MMN arises 

predominantly from synaptic adaptation (c.f., May et al., 1999).  Here, these effects 

were modelled through changes in intrinsic connectivity, described by source-

specific post-synaptic density parameters (see Kiebel et al., 2007 for details).  These 

effects could be mediated by adaptation (e.g., due to increase in calcium-dependent 

potassium conductances, leading to after-hyperpolarizing currents; Powers et al., 

1999) or subsequent calcium-dependent intracellular mechanisms that underlie 

phenomena like paired-pulse depression (e.g., Davies et al., 1990).  Putative short-

term changes in the synaptic efficacy of intrinsic afferents modify lateral interactions 

within primary auditory cortex.  In the predictive coding framework, these encode 

the uncertainty of predictions.  Similar changes in extrinsic (forward connections) 

correspond to perceptual learning or model adjustment (see Winkler et al., 1996; 
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Näätänen and Winkler, 1999; Friston, 2005).  This DCM has been validated 

extensively in previous studies (Garrido et al., 2007a; b). 

 
Figure 6.7 Model specification.  (right) The sources comprising the networks: A1: primary auditory 

cortex, and STG: superior temporal gyrus are connected with forward (red), backward (black) and 

intrinsic (red) connections.  (left)  The locations of the sources in the models.  Sources of activity were 

modelled as a mixture of eight local cortical basis functions over all dipoles within 16 mm of the 

source locations.  Their prior mean locations: lA1 [-42, -22, 7], rA1 [46, -14, 8], lSTG [-61, -32, 8], 

rSTG [59, -25, 8], in mm are superimposed in an MRI of a standard brain in Montreal Neurological 

Institute (MNI) space.  The DCM receives (parameterised) subcortical input at the A1 sources, which 

elicit transient perturbations in the remaining sources.  Repetition effects are modelled by changes in 

intrinsic and forward connections (red) that are a mixture of monotonic (upper left) and phasic 

(upper right) repetition-specific effects. 

 

Bayesian model comparison revealed that the EG model supervened over the simple 

monotonic model E, in all but one subject; and in all subjects both parametric models 

were substantially better than the null model that precluded plasticity.  This means 

that there is consistent evidence for changes in connectivity, above and beyond a 

simple exponential decay, in one or more connections (see Figure 6.8A).  Figure 4B 

shows the equivalent results for accuracy expressed as the proportion of variance 
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explained over channels and trials by each of the three models assessed (The EG 

model explained 80% of variance on average and at least 68% in each subject). 

Figure 6.8 Model comparisons and conditional expectations for repetition-dependent 

connectivity changes as a function of learning.  (a) Bayesian model comparison shows that model 

EG supervenes over model E in 7 out of 8 subjects; data from the first subject were best explained by 

the exponential (monotonic) model but this effect was trivial in relation to the log-evidence with 

respect to the null model.  (b) Corresponding results for accuracy, expressed in terms of the 

proportion of variance explained by the model (i.e., the coefficient of determination). (c) Connectivity 

reductions with repetition.  This shows the temporal evolution of connectivity as a function of time, or 

repetition for the intrinsic connections within A1, expressed as the average conditional expectation 

over subjects (bars) and for each subject separately (circles).  By design these repetition effects are 

normalised so that the connection strength is a percentage of strength after learning. There is a very 

consistent and marked decrease in coupling after the first presentation that appears to rebound slightly 

on subsequent presentations.  (d) The same results for the extrinsic connections.  Here the changes are 

expressed more slowly as a function of repetition, exhibiting a monotonic decrease over time. 
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Figure 6.8 also shows the changes in coupling strengths of the intrinsic (Figure 

6.8c) and extrinsic (Figure 6.8d) connections.  Here, the evolution of connectivity is 

shown as a function of repetition in terms of conditional expectations from the DCM 

analyses.  These results suggest that auditory learning involves a rapid decrease in 

intrinsic connections and a slower monotonic decrease in extrinsic connections.  The 

bars represent the average (across subjects) of the estimated intrinsic coupling 

parameters within A1 (Figure 6.8c) and the extrinsic forward connections linking A1 

with the ipsilateral STG (Figure 6.8d).  Intrinsic connections show a large (~40%) 

decrease after the first presentation; this is seen in all but two subjects. Critically, in 

all but two subjects, there is a slight rebound in intrinsic connectivity on the third 

presentation. This biphasic plasticity was modelled by a large positive exponential 

component and a large negative gamma component.  These two parametric effects 

were very significant over subjects (t =3.49, df = 7; p = 0.0051 and t = 2.08, df = 7; p 

= 0.0379 respectively). On the other hand, forward connections showed a slower 

decay with stimulus repetition but with similar quantitative changes in connectivity. 

In this instance, only the exponential component was significant over subjects (t = 

2.01, df = 7; p = 0.0422), whereas the biphasic gamma component showed no 

consistent contribution (t = 0.04, df = 7; p = 0.4832). 

 

Figure 6.9 shows the observed and predicted responses elicited by the first five tones 

(the oddball trial and subsequent repetitions).  These are shown over channels and 

peri-stimulus time in image format (left and middle columns) and for a representative 

electrode (right columns).  These data are the summed responses over all subjects 

(after applying a Hanning window).  The response to the first presentation or oddball 

shows a peak after 100ms (that subtends the N1 component) and an enhanced 

response with its maximum at about 180ms.  Visual inspection of the scalp data (not 

shown) suggested that the later peak conforms to the spatial deployment of the 

MMN.  The second and subsequent presentations elicit a response with a similar 

temporal profile, but the MMN component is greatly attenuated.  This suggests that, 

after one presentation of a new tone, the brain has re-learned the auditory context; in 

other words, the “standard” is largely learned (c.f., Baldeweg et al., 2004; Haenschel 

et al., 2005; Dyson et al., 2005). 
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Figure 6.9 Predicted and observed responses in channel space, averaged over all subjects. 

(Hanning window from -100ms to 400ms): (left) image format responses over peri-stimulus time and 

channels for each of the five repetitions of a tone.  Profound mismatch negativity is seen in the upper 

panels (first presentation) that disappear quickly to produce the standard response by the fifth 

presentation (right column).  The predicted (red) and observed (black) responses for channel 72 are 

shown on the right for illustration.  The agreement is self-evident.  Responses to repeating tones show 

a decrease in the N1 component (peaking at about 100ms) and later in the MMN, which vanishes after 

two repetitions. 

 

Figure 6.10 shows the reconstructed responses (summed over subjects) at the source 

level for bilateral A1 and bilateral STG.  The generators for the N1 component lie in 

A1 but not at the level of STG.  Activity peaking between 100 and 200ms is seen in 

STG that might underlie the MMN.  This spatiotemporal dissociation of N1 and 

MMN generators is very reminiscent of the findings of Jääskeläinen et al. (2004).  
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These source-level responses show the complicated hierarchical changes in the ERP 

with repetition; in low-level auditory sources, the first presentation evokes a greater 

response during the N1, which is suppressed profoundly on the first repetition.  It 

then recovers to the level of the oddball response with subsequent presentations.  

Conversely, in higher (superior temporal) sources, the first repetition produces a later 

response (that shapes later AI activity through backward connections).  This again is 

suppressed on repetition, but with no rebound. All these effects are explained by a 

rapid biphasic change in intrinsic connectivity and more persistent monotonic 

changes in extrinsic connectivity. 

 
Figure 6.10 Reconstructed responses at the source level for bilateral primary auditory cortex 

(upper panels) and bilateral superior temporal gyrus (lower panels).  These are the averages over 

all subjects. Right and left A1 show peak activity at about 80ms that is suppressed to about half its 

amplitude after the first presentation; indeed it is suppressed so much that it recovers slightly on 

subsequent presentations.  In bilateral STG peak activity is observed at about 140ms, which has the 

greatest amplitude on the first presentations. There is also a slight negative wave at about 50ms that 

may correspond to the response positivity in scalp space. 
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6.4 Discussion 
 

6.4.1 Summary of findings 

In summary, this study presents the first attempt to quantify plasticity underlying 

sensory-memory formation, caused by stimulus repetition with a network of 

interacting cortical areas using EEG.  In this chapter, the effect of stimulus repetition 

on scalp electroencephalographic responses was investigated.  Moreover, the 

underlying dynamics of the cortical network that generates these responses was 

explored.  Subjects were presented with a roving paradigm, a modified auditory 

oddball paradigm with standard tones that changed sporadically to another 

frequency.  Deviant tones elicited an MMN response peaking at about 180 ms over 

temporofrontal channels (see Figure 6.3b, c and Figure 6.4).  The difference wave 

between responses to deviants and responses to standards (here assumed to be 

established after the fifth repetition) revealed a statistical significant negativity over 

temporofrontal areas between 110 and 200 ms (Figure 6.4b).  This result is 

consistent with previous findings (Sams et al., 1985; Näätänen and Rinne, 2002; 

Baldeweg et al., 2004).  Note that standards and deviants, as defined here, are 

physically identical; therefore, the MMN cannot be due to different responses in 

frequency-specific auditory neurons but to experience-dependent changes in the 

same neuronal subpopulations.  The MMN was explained by changes in the strength 

of the connectivity within and between the cortical sources of the underlying network 

(see Figure 6.7 and 6.8).  Changes in the connectivity within and between areas as a 

function of repetition or learning were modelled with mixtures of parametric basis 

functions.  This is the first analysis of ERPs, within the DCM framework, that uses 

parametric effects, instead of categorical comparisons.  All responses from the first 

to the fifth presentation were modelled simultaneously, using parameterised 

connectivity changes.  Bayesian model comparison revealed that as the plasticity of 

the underlying cortical network unfolds, connection strengths show a progressive 

decrease with some connections exhibiting fast or biphasic changes (model EG, see 

Figure 6.8).  Specifically, intrinsic connections within bilateral A1 show a fast 

depression, followed by a slight rebound, whereas forward connections show a 

slower decay.  These results suggest that perceptual learning, caused by stimulus 

repetition, can be explained by plasticity in intrinsic (adaptation) and extrinsic 
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(model learning) brain connections.  An interesting finding is that the MMN vanishes 

after one or two repetitions (see Figure 6.9), suggesting that the brain learns the 

context established by auditory trains within a second.  These findings accord with 

Liegeois-Chauvel et al. (1994), who found that the generators of early components 

are distributed along A1 and support the propagation hypothesis (Baldeweg, 2006): 

that a sensory memory trace can be detected earlier and earlier, at the level of A1, 

with an increasing number of repetitions.  This is also consistent with the idea that 

stimulus-specific adaptation in A1 contributes to the emergence of the MMN 

(Ulanovsky et al., 2003); although this modelling suggests that the adaptation effect 

is expressed vicariously through later responses in secondary or higher temporal 

sources.  The decrease in inter-regional connection strengths over repetitions is 

consistent with predictive coding theories (Rao and Ballard, 1999; Friston, 2005).  

From this perspective, perceptual learning of the auditory context may be understood 

as a process of (between-trial) prediction error suppression, implemented 

neurophysiologically through changes in connection strengths within a hierarchical 

cortical network (Friston, 2005; Baldeweg, 2006). 

 

 

6.4.2 Implications 

The work described in this chapter tests the hypothesis that the MMN could be 

explained by repetition suppression of the sort that has been studied extensively in 

the visual system (Desimone, 1998).  The relative contribution of plasticity in 

intrinsic (i.e., adaptation) and extrinsic (i.e., hierarchical learning) connectivity was 

assessed.  It was found that, as anticipated, both exhibited repetition-dependent 

changes; however, the time-courses of these changes were surprisingly distinct.  This 

speaks to distinct pre or post-synaptic mechanisms. This is important, both from the 

perspective of computational theories of sensory or perpetual learning and how these 

computations are implemented physiologically. The connection with paired-pulse 

paradigms used to study synaptic facilitation and depression (Davies et al., 1990) is 

self-evident and suggests that the relative time-scales of intrinsic and extrinsic 

plasticity could be characterised by varying the inter-stimulus interval in roving 

paradigms. Furthermore, combining this with pharmacological interventions is 

motivated easily by existing psycho-pharmacological studies of the MMN; see 
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Baldeweg et al. (2004) for a discussion of these studies, in relation to schizophrenia 

research. 

 

 

6.4.3 Technical issues 

A feature of DCM, and hypothesis driven methods in general, is that one cannot test 

all possibilities; i.e., one has to constrain the model-space in order to reduce it to a 

limited number of testable hypotheses.  Two alternative models for the connectivity 

changes due to stimulus repetition were tested here.  For simplicity, these hypotheses 

were tested under a symmetric network comprising bilateral primary and secondary 

auditory cortex (c.f., model 4Si, see Figure 6.5).  The true underlying network is 

probably more complex than this, and in fact, Bayesian model comparison revealed 

that the model that best explains these data rests upon a more complex architecture 

(see Figures 6.5b and 6.6b).  The model chosen for this analysis is not the best 

amongst all possible, and yet, it still explains on average 76% of the variance of the 

data across the group (and a least 66% for every subject).  Although a simple model, 

it was sufficient to make inferences on the connectivity changes and to recover 

consistent effects at the between-subject level.  A similar result would be expected 

under model S5i.  The search in model space does not offer an exhaustive 

exploration and selection of models; it only selects the best model amongst the 

models considered.  Hence, there might be other models that explain connectivity 

changes during stimulus repetition or learning.  This is a question of model 

comparison, and provided that there is good motivation for adding another model to 

the space of models, one can use Bayesian model comparison to evaluate any new 

model.  This applies to alternative networks and alternative basis sets for the 

parametric effects of repetitions.  An important consideration, when comparing 

DCMs, is that the free-energy takes into account both model accuracy and 

complexity.  This allows for comparison of models with different numbers of 

parameters (Friston et al., 2006b). 

 

Finally, as mentioned previously, the models considered here attempt to explain the 

dynamics during 0 to 250 ms, which includes the MMN and any other component 

peaking under these time limits, such as repetition positivity (RP), N1 or P3a.  In 
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addition, the parametric multi-trial DCM analysis attempts to explain the dynamics 

caused by five successive tone presentations.  Hence, the Bayes factor, a measure of 

the goodness of one model relative to another, pertains to the dynamics evoked over 

multiple stimulus conditions. 

 

 

6.4.4 Mechanisms of MMN generation 

Mechanistic accounts of MMN generation posit changes in plasticity in extrinsic, 

forward and backward connections, or intrinsic (local) connections between and 

within hierarchical sources (Friston, 2005).  In this context, the difference waveform 

(and the MMN) arises from changes in coupling within and among cortical sources.  

In previous chapters (Chapters 3 and 5; see also Garrido et al., in submission), 

DCMs were used to explain ERPs to standards and deviants, which tested alternative 

mechanisms or generative models for the MMN.  For internal consistency, the same 

models were tested here, given new data.  The choice of models was based on 

previous theoretical formulations of MMN generation, specifically adaptation 

(Jääskeläinen et al., 2004), model-adjustment (Winkler et al., 1996), and 

conjugations of the two, required by predictive coding.  The predictive coding 

framework encompasses the two distinct hypotheses, in the sense that it predicts the 

adjustment of a generative model of current stimulus trains (cf. the model-adjustment 

hypothesis) combined with local changes in post-synaptic sensitivity (cf. the 

adaptation hypothesis).  In agreement with the studies previously described 

(Chapters 3 and 5), the best model comprised five reciprocally connected sources 

(bilateral A1 and STG, and right IFG).  This is an important finding because it offers 

a comprehensive framework to explain the MMN; and furnishes direct evidence that 

the MMN is caused by self-organized changes in a cortical network with multiple 

hierarchical levels. 

 

 

6.4.5 The MMN, a marker for auditory perceptual learning 

Functionally, the MMN reflects error detection caused by an unexpected or 

unlearned event that follows the perceptual learning of standards.  This has been 

formulated under hierarchical models of learning (Rao and Ballard, 1999; Friston 
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2003, 2005; Garrido et al., 2007a).  In this framework, evoked responses correspond 

to prediction error that is explained away (within-trial) by neuronal dynamics during 

perception and is suppressed (between trials) by changes in connectivity during 

learning.  Therefore, the MMN can be interpreted as a failure to suppress prediction 

error, which can be explained quantitatively in terms of coupling changes among and 

within cortical regions.  The repeated presentation of tones leads to learning or 

establishing a representation of a standard that is accessed more efficiently.  This 

renders suppression of prediction error more efficient, leading to a reduction in 

evoked responses and the emergence of a mismatch response, when novel and 

therefore unlearned stimuli are presented.  The suppression of evoked responses, due 

to a repeated event, is a ubiquitous phenomenon in neuroscience.  It is seen at the 

level of single-unit responses (where it is referred to as repetition suppression; 

Desimone, 1996) and is a long-standing observation in human neuroimaging (where 

it is often referred to as adaptation e.g., cerebellar adaptation during motor 

repetitions; Friston et al., 1992 or repetition effects in visual studies; Henson et al., 

2003).  From an empirical Bayesian perspective (c.f., predictive coding), modulations 

in intrinsic connectivity may encode changes in the precision of top-down 

predictions, responsible for suppressing prediction error.  Changes in forward 

connections may reflect changes in prediction error that is conveyed to higher levels.  

These higher levels form predictions so that backward connections can provide 

contextual guidance to lower levels.  In this view, the MMN represents a failure to 

predict sensory input and consequently a failure to suppress prediction error. The 

repetition-suppression of the MMN can be explained quantitatively in terms of 

coupling changes among and within cortical regions. 

 

 

 

6.5 Conclusion 
 

The key contribution of this work is to show that the plasticity underlying perceptual 

learning can occur very quickly and is effectively complete after a few presentations 

of a stimulus.  Furthermore, the putative experience-dependent plasticity that 

underlies this learning (as observed electrophysiologically) involves distinct changes 
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in intrinsic and extrinsic connections and, implicitly, distributed interactions among 

multiple sources. 

 

 

 

6.6 Summary 

 
The aim of this study was to investigate the mechanisms underlying neuronal 

responses elicited by repeated auditory stimuli, particularly with regard to 

experience-dependent changes in connectivity.  Subjects were exposed to a roving 

oddball paradigm characterized by sporadic stimulus changes, while ERPs where 

recorded.  A significant MMN response was found between the first (oddball) and 

the sixth presentation (standard), distributed over frontal electrodes across subjects 

and peaking at about 180 ms after change onset.  Bayesian inversion of DCMs 

revealed systematic changes in both intrinsic and extrinsic connections, within a 

hierarchical cortical network, as a function of repetition.  Intrinsic (within-source) 

connections showed biphasic changes that were much faster than changes in extrinsic 

(between-source) connections, which decreased monotonically with repetition.  This 

study shows that auditory perceptual learning is associated with repetition-dependent 

plasticity in human brain connectivity. 
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Chapter 7 

 

General Discussion and Conclusion 

 
The previous four chapters described the empirical work pursued in this thesis.  This 

chapter presents a summary of the work performed and discusses its general 

implications for perception.  Predictive coding is proposed as a theoretical 

framework that explains perceptual learning and inference, in the particular context 

of the MMN paradigm.  A critical assessment on the limitations of methodology used 

(DCM) is presented.  Finally, directions for future research are considered. 

 

 

 

7.1 Short synopsis 

 
The work reported in this thesis attempted to test mechanistic hypotheses, framed in 

terms of connectivity models that explain the generation of evoked brain responses.  

These models were inspired by predictive coding and Bayesian inference, which 

state that perception involves processing current input from the environment, and 

predictions of this input.  The working hypothesis of this thesis was that bottom-up 

flow of sensory input and top-down predictions have a biological substrate, which is 

mediated by synaptic efficacy or coupling strength.  Therefore, perceptual learning 

should be associated with changes in forward and backward connections that link 

cortical areas and form a cortical hierarchy.  This hypothesis was tested using 

responses to oddballs or unpredictable events, the MMN.  DCM was employed to 



CHAPTER 7.  GENERAL DISCUSSION AND CONCLUSION 

 133 

model the data, after establishing its reproducibility, using group analyses (Chapter 

3).  Bayesian model comparison was used to make inferences on model space and the 

connectivity parameters.  The connectivity model that best explained the MMN 

responses, elicited in the diverse paradigms used, was consistent across subjects and 

studies (Chapters 3-6).  This connectivity model is a multi-level hierarchical 

network that embodies coupling changes in forward, backward and intrinsic 

connections.  Backward connections, that are associated with top-down effects, have 

been found to play a fundamental role in the expression of ERP and source activity, 

especially at long latencies (Chapter 4).  Forward, backward and intrinsic 

connections were found to decrease in their strength as a function of stimulus 

repetition, reflecting successful encoding of a sensory regularity (Chapter 6). 

 

 

 

7.2 Implications of this work: discussion 

 
The aim of the work described in the first result chapter, Chapter 3, was to establish 

the validity of DCM by assessing its reproducibility across subjects.  An oddball 

paradigm was used to elicit mismatch responses.  Different connectivity models were 

specified to evaluate three different hypotheses: differences in the ERPs to deviant 

and standard events are mediated by changes in forward connections (F-model), 

backward connections (B-model) or both (FB-model).  Bayesian inversion provided 

estimates of changes in coupling among sources and the marginal likelihood of each 

model.  In all but one subject, the forward model (F-model) was better than the 

backward model (B-model).  Furthermore, the FB-model was significantly better 

than both, in seven out of eleven subjects.  At the group level the FB-model 

supervened.  These findings are important because they establish the validity and 

usefulness of DCM in characterising EEG/MEG data and its ability to model ERPs in 

a mechanistic fashion (see also Garrido et al., 2007a).  Moreover, this work offers a 

methodological approach to infer on models and their parameters, at the group level.  

However, DCM is not limited to answering questions related to the mechanisms 

underlying the MMN.  DCM is a robust and powerful tool that can be used, in 

principle, to test mechanistic hypotheses underlying any physiologic processes in any 
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sensory modality, such as face processing (David et al., 2006) and somatosensory 

evoked potentials (Kiebel et al., 2006).  An interesting application would be to use it 

in the context of cross modal integration or in higher-level cognitive processes.  

 

Chapter 4 presents the work performed on the investigation of the role of backward 

connections on the generation of late ERP components.  DCMs of responses to 

deviants, elicited in an oddball paradigm were modelled with and without backward 

connections.  Bayesian model comparison revealed that the model with backward 

connections explains the data better than the model without backward connections, 

especially at long latencies.  Hence, this result supports the hypothesis that evoked 

brain responses are generated by recurrent dynamics among levels of cortical 

hierarchies.  In addition, it was demonstrated that backward connections play a 

fundamental role in ERP generation, especially for later components, which are 

expressed at both the cortical and scalp level (see also Garrido et al., 2007b).  This is 

consistent with top-down processing in perception and cognition.  Importantly, it 

supports the working hypothesis of this thesis; i.e., that perception can be framed in 

terms of predictive coding.  Moreover, the results prove that connection strength is a 

physical substrate or parameter that can be associated with learning and inference in 

the brain.  A point of controversy though, is the inductive logic that any late ERP 

component involves backward connections.  The rationale here is based on an 

exemplar response, an ERP to an auditory oddball.  Ideally, one would corroborate 

this conclusion with ERPs elicited within different paradigms and in other sensory 

modalities.  Yet, there is evidence from vision research that not every process in the 

brain engages backward connections.  A possible explanation is that only forward 

connections are engaged in the context of explicit information, i.e., when bottom-up 

cues are sufficiently clear and unambiguous (Yuille and Kersten 2006).  A similar 

conjecture has been proposed for the role of LGN (lateral geniculate nucleus) 

neurons in the context of thalamo-cortical feedback (Mumford, 1991). 

 

Chapter 5 tested and compared different accounts of the mechanisms underlying the 

MMN using dynamic causal models (see also Garrido et al., in submission).  The 

range of models tested covered (i) the adaptation hypothesis, which proposes that the 

MMN is best explained by a deviant-induced interruption of neuronal adaptation that 

is confined to lower-order auditory areas (cf. Jääskeläinen et al., 2004); (ii) the 
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model-adjustment hypothesis (Winkler et al., 1996, Doeller et al., 2003), which 

assumes that the MMN results from deviant-induced changes in temporo-frontal 

connections, i.e., short-term synaptic plasticity; and (iii) combinations of these two 

hypotheses, which accommodate intra-areal adaptation combined with plasticity of 

inter-areal connections.  The latter group of models are consistent with the predictive 

coding formulation (Friston, 2005; Baldeweg, 2006).  These biologically plausible 

hypotheses for the MMN generation were mapped onto mechanistic models or 

DCMs that attempted to model responses to standards and deviants elicited in a 

classical auditory oddball paradigm.  Bayesian model comparison revealed that the 

MMN is generated by a multi-level hierarchical network, through coupling changes 

within and between cortical areas.  This shows that both mechanisms, adaptation and 

model adjustment, operate in concert, and furnishes evidence that information 

processing in the brain is consistent with predictive coding.  The results of model 

comparison support the idea that the MMN cannot be attributed to a mechanism of 

local adaptation in the primary auditory cortex alone.  In other words, neuronal 

adaptation per se is not sufficient to explain the MMN.  If our results indicate that the 

adaptation hypothesis is not sufficient to explain MMN generation, nor do they 

favour model adjustment alone.  In other words, the MMN can not be explained by 

connectivity changes in intrinsic connections, only, nor can it be explained by 

changes in extrinsic connections, only.  The results reported in this thesis support the 

idea that the MMN rests upon a more complex mechanism.  The mechanisms of 

MMN generation involve plasticity of inter-areal connections amongst multiple 

hierarchical levels, as well as local adaptation within the primary auditory cortices.  

This result is important because it combines both the model adjustment hypothesis 

(Winkler et al., 1996) and the local adaptation hypothesis (Jääskeläinen et al., 2004) 

into the unified and more general framework of predictive coding.  Moreover it can 

accommodate the findings of a multitude of studies showing that there are temporal 

and frontal cortical sources underlying the MMN generation (Rinne et al., 2000; 

Jemel et al., 2002; Opitz et al., 2002; Doeller et al., 2003; Liebenthal et al., 2003; 

Molholm et al., 2005; Restuccia et al., 2005).  Crucially, this result promotes a better 

understanding of the mechanisms that subtend the MMN, which have been a topic of 

great interest and debate for many years. 
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Chapter 6 investigated the mechanisms underlying neuronal dynamics elicited by 

auditory stimulus repetition, particularly with regard to learning-related changes in 

brain connectivity.  This experiment used a roving paradigm, characterized by 

continuously changing standard stimuli, which enabled memory formation to be 

tracked (Cowan et al., 1993; Baldeweg et al., 2004; Haenschel et al., 2005).  The 

results show that repeated stimuli, that share exactly the same physical properties, 

give rise to different brain responses.  This suggests that only perception or the 

internal representations change, which is likely to be caused by learning.  As in the 

previous experiment (Chapter 5), a set of mechanistic models were tested.  These 

DCMs mapped onto different accounts of the mechanisms underlying the MMN 

generation: adaptation, model-adjustment and predictive coding.  The results of this 

experiment lead to similar conclusions; namely, the mechanisms underlying the 

MMN involve plasticity of inter-areal connections amongst multiple hierarchical 

levels, as well as local adaptation within the primary auditory cortices. Bayesian 

inversion of a parametric multi-trial DCM revealed modulations of connections 

within a temporo-frontal cortical network.  Over tone repetition these connections 

showed a bi-exponential decrease of plasticity.  This study shows that perceptual 

learning is associated with connectivity changes in the brain.  The suppression of 

evoked responses, to a repeated event, is a ubiquitous phenomenon in neuroscience.  

It is seen at the level of single-unit responses (where it is referred to as repetition 

suppression; Desimone, 1996) and is a long-standing observation in human 

neuroimaging (where it is often referred to as adaptation e.g., cerebellar adaptation 

during motor repetitions; Friston et al., 1992 or repetition effects in visual studies; 

Henson et al., 2003). 

 

 

 

7.3 Predictive Coding: the proposed model 
 

Perception arises from the product of sensations and predictions of these sensations.  

It has been suggested that perception involves adapting an internal model of the 

world (our predictions) to match what the world seems to be, given the sensory input 

(our sensations) (Mumford, 1992).  Similarly, predictive coding formulations 
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propose that what we register is the difference between predictions and actual 

sensory input, i.e., prediction error (Rao and Ballard, 1999).  These ideas have been 

combined with empirical Bayes for describing perceptual learning and inference 

(Friston, 2003; 2005).  In this view, ERPs are elicited by prediction error; in other 

words, ERPs are an expression of unpredictable events.  In this view, prediction error 

is conveyed to higher cortical areas via forward connections, where predictions are 

updated in the light of new data.  These predictions (posteriors or empirical priors in 

the subsequent loop) are then sent back to the lower cortical areas.  This is a 

recurrent process that ceases when reconciliation between predictions and sensory 

input is reached.  The research performed in this thesis provides experimental 

evidence that the MMN is an ER that can be interpreted in the light of predictive 

coding (Friston, 2005).  In summary, the predictive coding framework postulates that 

evoked responses correspond to prediction error that is explained away during 

perception and is suppressed by changes in synaptic efficacy during perceptual 

learning.  In this context, the MMN would be the result of prediction error, which is 

due to an unexpected deviant, or oddball, embeded in learnt a sequence of standard 

events.  The MMN would arise when there is a mismatch between current stimulus 

input (unpredictable deviants) and a memory trace of previous input (predictable 

standards).  Crucially, the predictive coding framework encompasses the two distinct 

hypotheses, model-adjustment hypothesis (cf. Winkler et al., 1996; Näätänen and 

Winkler, 1999) and adaptation (cf. May et al., 1999; Ulanovsky et al., 2003; 

Jääskeläinen et al., 2004), proposed in the literature to explain the mechanisms 

underlying the MMN.  Moreover it can accommodate the findings of a multitude of 

studies showing that there are temporal and frontal cortical sources underlying the 

MMN generation (Rinne et al., 2000; Jemel et al., 2002; Opitz et al., 2002; Doeller et 

al., 2003; Liebenthal et al., 2003; Molholm et al., 2005; Restuccia et al., 2005).  

According to predictive coding, increases in intrinsic connectivity may encode 

progressive increases in the estimated precision of top-down predictions, responsible 

for suppressing prediction error.  Changes in forward connections may reflect 

changes in sensitivity to prediction error that is conveyed to higher levels.  These 

higher levels form predictions so that backward connections can provide contextual 

guidance to lower levels.  In this view, the MMN represents a failure to predict 

bottom-up input and consequently a failure to suppress prediction error.  The work 
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described in this thesis supports this idea by showing that both neuronal adaptation 

within areas and short-term synaptic plasticity of inter-areal connections coexist. 

 

An example of experimental evidence that can be interpreted in terms of predictive 

coding is that dipole intensity is stronger for large deviants (100%) compared with 

medium deviants (30%) at the temporal sources (Opitz et al., 2002).  On the other 

hand, a reversed pattern was observed in the right frontal cortex; i.e., a bigger dipole 

strength with smaller deviances.  The authors discuss these findings in terms of 

alternative explanations and suggest that the prefrontal cortex (IFG) contributes to a 

top-down process that modulates the deviance detection system in the temporal 

cortex (STG) (see also Doeller et al., 2003).  Under Bayesian models of perception 

(Yuille & Kersten, 2006) this dissociation can be interpreted easily as greater 

prediction error in low-level sources for large deviants.  Conversely, in higher levels, 

ambiguous bottom-up cues may induce prediction errors that cannot be explained 

away by supraordinate levels.  Very similar dissociations between high and low-level 

responses to predictable and unpredictable stimuli have been reported in the visual 

cortex (e.g., Murray et al, 2004; Harrison et al, 2007). 

 

 

 

7.4 DCM: methodological and theoretical considerations 
 

DCM is a spatiotemporal model that explains ER on the basis of an underlying 

cortical network.  Differences in ER wave forms are explained by means of changes 

in effective connectivity.  This is motivated by theoretical considerations that 

perceptual learning involves changes in synaptic strength.  The work described in 

this thesis involved validation and applications of DCM to ERP data. 

 

DCM as a hypothesis driven method 

DCM is a hypothesis driven or model-based method; not an explorative technique.  

DCM does not make a full search on all possible hypotheses or models underlying a 

certain brain response.  Instead, DCM tests specific and well-formulated hypotheses.  

Therefore, there is no point in performing a DCM if one does not have a testable 
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hypothesis about the underlying model, or connectivity graph.  Critically, with DCM 

one can test specific models constrained by biologically plausible hypotheses.  The 

danger is, though, that the model is far from the true architecture.  Questions might 

arise as to whether a model is specified correctly in terms of sources included or 

excluded and how these sources are connected.  However, there is no such thing as a 

right or wrong model, only better or worse approximations to reality, which can be 

evaluated objectively with Bayesian model comparison.  Comparison of DCMs has 

proved to be useful for disambiguating between strong competing hypotheses.  The 

log-evidence, estimated for each model affords an objective measure for selection of 

the best model amongst competing alternatives.  Inference based on the log-evidence 

of a model is meaningless unless compared to log-evidence of a competing model.  

Hence, although DCM does not make an exhaustive search over all possible models, 

it provides a framework that can accommodate comparisons for alternative 

mechanistic hypothesis or network models; as many as one likes. 

 

DCM and source localisation 

Source localisation refers to inversion of a forward electromagnetic model, which is 

implicit in the implementation of DCM as used in the previous chapters.  DCM 

embeds the same formalism of ECD solutions with the additional constraint that the 

activity in each source is caused by the activity in its adjacent sources.  In Chapters 

3-6, DCM has been furnished with soft spatial priors (relatively informative priors; 

16-32 mm2 Gaussian dispersion) on source locations based on the relevant literature.  

The orientations were estimated by DCM under uninformative or flat priors.  When 

possible, the best practice would be to choose priors on source locations based on the 

actual data set in question.  However, evaluations of DCM with somatosensory 

evoked potentials revealed that precision on the orientation is substantially greater 

than the precision on location (Kiebel et al., 2006).  Therefore, informed priors on 

location can be derived from conventional source reconstruction techniques such as 

distributed sources (David et al., 2006), classical ECDs, from fMRI analysis, or from 

the literature, as performed here. 

 

DCM and priors 

A critical point in DCM is the use of a considerable amount of prior information.  

This is also the case in other domains where one needs to make certain assumptions 
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to solve an ill-posed problem.  This can be done explicitly as in DCM, or implicitly 

in the choice of electrodes for further analysis.  DCM requires certain assumptions or 

priors on the model parameters.  The choice of priors can be a delicate issue and 

while some might call it prejudice, others would call it scientific judgement.  Indeed, 

there is a vast space for debate on whether one should use priors; what a sensible 

prior is; and where do the priors come from.  For instance, how does one choose the 

prior means on the connectivity parameters, and the areas or the connections to 

include in the DCM graph?  Ideally, this information should come from established 

knowledge in the literature, or from the data itself, which lives on the lowest level of 

this hierarchical framework.  It should be noted that Bayesian model comparison can 

be used to compare priors because the priors are part of the model. This means, in 

principle, it is possible to optimise the priors per se. 

 

The use of eigenmodes (SVD) in DCM 

In this thesis three or eight eigenmodes were used to invert the DCM.  Does DCM 

deal only with few channel data?  No, DCM will fit any number of channels or 

modes.  For computational reasons, the channel data are projected onto their 

principal eigenmodes to reduce the size of the matrices the inversion scheme has to 

handle.  Generally, one would use the same number of modes as there are sources.  

This is because data generated by an n-source model can only span an n-dimensional 

subspace of sensor space.  Provided the signal is large, relative to noise, the first n 

principal eigenvariates should capture the majority of signal. 

 

DCM does not model subcortical activity 

The activity at the level of the thalamus or in any other subcortical structures is not 

modelled in DCM.  Inputs are directly fed into the cortical areas.  The assumption 

here is that the activity arising from the thalamus is the same, regardless of whether 

standard or deviant tones are presented (David et al., 2006).  However, differences in 

the responsiveness of the thalamus could be modelled by simply adding an extra 

source to the DCM.  Another assumption in DCM is that all extrinsic, or long-range 

connections, are excitatory (Felleman and Van Essen, 1991).  In principle this is a 

fair assumption for modelling cortico-cortical networks, yet this is not the case if one 

were to model networks involving basal ganglia, which are known to use inhibitory 
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connections (Mumford, 1991).  Incorporating this into the model would, however, 

require additional technical developments. 

 

Modelling evoked responses vs. labelling components 

A well established procedure in ERP research is to associate a specific component to 

a specific physiologic or cognitive process.  Deviations from the usual wave form 

seen at a given electrode are useful for tracing a cognitive deficit or disorder.  Yet, 

DCM does not attempt to model individual components but all components in one 

go.  Hence, all peaks or components are seen as manifestations of an underlying 

dynamic process, which involves multiple hierarchical processing levels. 

 

 

 

7.5 Directions for future research 
 

This section puts forward some ideas for potential future research to further explore 

the mechanisms of MMN generation.  Ideas of predictive coding are extrapolated for 

other domains of cognitive neuroscience and suggestions for methodological 

advances are proposed. 

 

Bayesian random effects analysis 

The experimental results described in the previous chapters (Chapters 3-6) relied 

mainly on Bayesian model comparison of different DCMs.  Selection of the best 

model is based on the log Bayes factor for the group, which is obtained by adding  

individual log Bayes factor from each subject.  Adopting this approach assumes 

correctly that the data from each subject are independent.  However, this does not 

take into account the random effects from subject to subject, in terms of which model 

was actually engaged.  Critically, one outlier subject may bias the result, at the group 

level, towards one model, whereas most of the other subjects show preference for a 

different model.  One way of addressing this issue would involve a full hierarchical 

Bayesian model that includes random effects from each subject, this relaxes the 

assumption that all subjects use the same underlying perceptual mechanism.  One 

could argue that this is not the case; in that different subjects may use different 
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mechanisms or information processing strategies and therefore engage different 

cortical networks.  For these reasons, the research performed in this thesis did not 

rely on the sum of the Bf only, but also on supporting information from classical 

statistics on the models and on the parameters at the second (between-subject) level. 

 

Time specificity of backward modulations in the MMN 

The work presented in Chapters 5 and 6 is important because it provides a direct 

statistical measure for the likelihood of the competing hypotheses concerning the 

generation of the mismatch negativity, namely adaptation, model adjustment and 

predictive coding.  The results suggest that the underlying mechanisms for the MMN 

rest on a multi-level cortical network involving connectivity changes in forward, 

backward and intrinsic connections.  It would be interesting however, to examine 

whether the results obtained in Chapter 4 still hold for the different data analysed in 

Chapters 5 and 6.  In other words, one could ask the question: When in time do 

modulations in backward connections become important for explaining the MMN?  

This could be addressed easily with a similar type of analysis as described in 

Chapter 4, i.e., by testing a FBi-model against a Fi-model, as a function of peri-

stimulus time.  In this analysis, however, data of the two trial types would be used.  

These data, elicited within a finer oddball paradigm, would have the advantage of 

being free of overlapping components such as N1 and P300, as encountered in the 

data used in Chapters 3 and 4. 

 

The role of attention in the MMN 

There has been some speculation about whether and how attention influences the 

MMN.  Some studies report that the MMN is independent or seldom affected by 

attention, whereas other studies suggest that the MMN is attenuated when the 

subject’s attention is outside the focus of the auditory stimulus (Arnott and Alain, 

2002; Müller et al., 2002).  On the other hand, the degree to which attention is paid to 

the visual stimulus does not seem to influence the MMN (Otten et al., 2000).  It 

would be interesting to investigate the role of attention in the MMN and how it 

relates to changes in backward connections.  One would expect that top-down 

attention would be expressed in changes in backward connections.  A possible study 

would have a 2x2 design with attention vs. no-attention and visual vs. auditory 

stimulus.  In this way one could ask two specific questions: Does attention have an 
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effect on the MMN, as well as backward connections?  If yes, is that dependency 

specific to stimulus’ modality? 

 

MMN in schizophrenia 

There have been several studies showing significant reductions in MMN amplitude 

in schizophrenia (Umbricht & Krljes, 2005).  Moreover, individual MMN amplitudes 

correlate with disease severity and cognitive dysfunction (Baldeweg et al., 2004).  It 

has also been suggested that schizophrenia is a disconnection syndrome (Friston and 

Frith, 1995; Javitt, 2004; Harrison & Weinberger, 2005; Stephan et al., 2006).  From 

a predictive coding perspective, the fact that schizophrenic patients have 

hallucinations suggest that they do not make very good predictions of their sensory 

input.  Is this due to a failure in the flow of information from the environment 

upstream to higher cortical areas, to where predictions are processed?  Is it a failure 

to update predictions given new (contradictory) information?  Or can we not 

dissociate these two processes of learning and inference?  In brief, if this is a 

disconnection syndrome, one could ask: Where is the disruption in the loop, in the 

forward connections, in the backwards or in both?  This could be addressed with the 

sort of connectivity models proposed in this thesis, using MMN data from 

schizophrenics and controls.  Presumably, if the disruption occurred at the level of 

the forward or backward connections, these connections would show aberrant 

learning-dependent changes.  A potentially useful approach would be to identify 

relevant conditional parameters estimated with DCM (e.g. the connectivity 

parameters, or the conduction delays) that correlate with cognitive dysfunction or 

symptoms.  This might lead to important improvements in the diagnosis and 

classification of schizophrenic patients into different subgroups. 

 

MMN and pharmacological manipulations 

Neuromodulators, such as acetylcholine and dopamine, modify the spatio-temporal 

pattern of the neuronal circuitry by acting on excitatory and inhibitory synaptic 

transmission (Hasselmo, 1995).  Pharmacologically induced changes in the MMN 

have been investigated in numerous studies, using a variety of drugs affecting 

different neurotransmitter systems.  The most robust, and perhaps also the most 

important neuropharmacological effect, given its importance for relating the MMN to 

schizophrenia, is exerted through NMDA receptors: several studies have found 
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strong reductions of MMN amplitude under the NMDA antagonist ketamine (Javitt 

et al., 1996; Kreitschmann-Andermahr et al., 2001; Umbricht et al., 2000; 2002), 

with only a single study failing to find an effect of ketamine (Oranje et al., 2002).  In 

contrast to NMDA receptors, the roles of dopamine, serotonin, nicotinic, muscarinic 

and GABA receptors for MMN generation are more controversial.  Concerning 

nicotinic receptors, for example, whereas most studies reported an increase in the 

MMN amplitude by nicotinic receptor stimulation (Baldeweg et al., 2006; Dunbar et 

al., 2007; Engeland et al., 2002), other studies found different effects (Harkrider and 

Hedrick, 2005; Inami et al. 2005), and one study did not find any effect at all (Knott 

et al., 2006).  The only two available studies of the role of muscarinic receptors in the 

MMN, performed by the same authors, gave contradictory results (Pekkonen et al., 

2001; 2005).  Finally, inconsistent results have also been obtained in studies 

manipulating GABAA receptor function, with some studies reporting a significant 

reduction of MMN amplitude by benzodiazepines (Nakagome et al., 1998; Rosburg 

et al., 2004), whereas other studies failed to observe a significant modulation of the 

MMN (Kasai et al., 2002; Murakami et al., 2002; Smolnik et al., 1998).   

 

Overall, one might conclude that the roles of dopaminergic, serotoninergic, nicotinic, 

muscarinic and GABA receptors in MMN generation are currently not well 

established and require further research.  In contrast, there is broad agreement 

amongst studies that blockage of NMDA receptors leads to significant reductions in 

MMN amplitude.  It would be interesting to evaluate the action of classical 

neuromodulators on changes in cortical activity and their expression in DCM 

parameters.  In other words, if neuromodulators modify synaptic plasticity and 

cortical excitability, this should have an effect on the connectivity parameters of a 

DCM. 

 

DCM and induced responses 

It is important to mention that evoked responses convey only part of the information 

contained in EEG and MEG measurements.  Induced or spectral responses might also 

contribute for the MMN in which case it would be interesting to study the dynamics 

of the underlying network in terms of linear and non-linear coupling.  See Chen et al. 

(2008) for a recent development of a DCM for induced responses and its application 

in the context of a face-perception experiment. 
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7.6 Concluding remarks 
 

The work presented in this thesis explored mechanistic hypotheses that map onto 

connectivity models or DCMs that underlie a specific evoked response, the MMN.  

This work has been performed under the premises of predictive coding and empirical 

Bayes as a general framework for understanding perception.  In other words, 

perception arises from an interplay between inputs from the environment and 

predictions of these inputs.  Inputs, predictions and prediction errors (difference 

between input and predictions) travel across the different hierarchical levels of an 

interconnected cortical network.  The research described in this thesis provides 

experimental evidence that perception can be framed within predictive coding.  

Moreover it demonstrates the usefulness of DCM in addressing core problems in 

neuroscience such as connectivity, inference, and learning in the brain. 

 

This thesis is based on the following publications numbered from I-VII (see below).  

These publications comprise original research described in the previous chapters of 

this thesis (Chapters 3-6) and a review of the literature on the underlying 

mechanisms of the MMN (related to Section 1.2). 

 

 

7.6.1 Summary of original contributions 

The original contributions of this thesis are summarised as follows: 

 

• Predictive validity of DCM for ERPs was established.  A 

methodological procedure for inferences on model and connectivity 

parameters at the group level is proposed.  (Chapter 3, Publication 

I) 

• Backward connections are necessary to explain late ERP 

components.  (Chapter 4, Publication III) 

• The generation of the MMN can be explained with a connectivity 

model comprising multiple hierarchical cortical levels.  This model 

entails both adaptation and model-adjustment which is in line with 

predictive coding.  (Chapter 5, see also Publication II for 
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methodological advances and Publications IV and V for description 

of the studies) 

• Learning by repetition suppresses intrinsic and extrinsic connectivity 

in the brain.  (Chapter 6, Publication VI) 

 

 

7.6.2 Publications arising from work in this thesis 

 

Published: 

 

I. M.I. Garrido, J.M. Kilner, S.J. Kiebel, K.E. Stephan, K.J. Friston (2007) 

Dynamic Causal Modelling of evoked potentials: A reproducibility study.  

NeuroImage 36: 571-580. 

II. S. J. Kiebel, M. I. Garrido, K. J. Friston (2007) Dynamical causal modelling 

of evoked responses: The role of intrinsic connections. NeuroImage 36: 332-

345. 

III. M.I. Garrido, J.M. Kilner, S.J. Kiebel, K.J. Friston (2007) Evoked brain 

responses are generated by feedback loops. Proc Natl Acad Sci U S A 104: 

20961-20966. 

 

 

In submission: 

 

IV. M.I. Garrido, J.M. Kilner, S.J. Kiebel, K.J. Friston.  A predictive coding 

account of the mismatch negativity. 

V. M.I. Garrido, K.J. Friston, S.J. Kiebel, K.E. Stephan, T. Baldeweg, J.M. 

Kilner.  The functional anatomy of the MMN: a DCM study of the roving 

paradigm. 

VI.  M.I. Garrido, K.J. Friston, S.J. Kiebel, K.E. Stephan, T. Baldeweg, J.M. 

Kilner.  Repetition suppression and cortico-cortical plasticity in the human 

brain 

VII. M.I. Garrido, J.M. Kilner, K.E. Stephan, K.J. Friston.  The mismatch 

negativity: a review of underlying mechanisms. 
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