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Pre- 
processings 

General 
Linear 
Model 

Statistical 
Inference 

𝑦 = 𝑋        𝛽 + 𝜀 

𝜎 2 =
𝜀 𝑇𝜀 

𝑟𝑎𝑛𝑘(𝑋)
 

Contrast c 

Random 

Field Theory 

𝑆𝑃𝑀{𝑇, 𝐹} 

𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 



Statistical Parametric Maps 
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3D M/EEG source 

reconstruction, 

fMRI, VBM 

2D time-frequency 

2D+t  

scalp-time 

1D time 

time 



Single test 

Null distribution of test statistic T 

𝛼 = 𝑝(𝑡 > 𝑢|𝐻0) 

u 

Decision rule (threshold) u: 

   determines false positive  

   rate α 

Null Hypothesis H0:  

   zero activation 

 Choose u to give acceptable 

 α under H0 



Multiple tests 
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Signal 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable. 

Noise 



Multiple tests 
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11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable. 
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Condition 1 

Condition 2 

time (ms) 

amplitude (μV) 

M/EEG analysis at sensor level 

Conventional approach: Reduce 

evoked response to a few 

variables. 



Family-Wise Null Hypothesis 

FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 

Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 

we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 

The Family-Wise Error rate (FWER), αFWE,  for  a family of N 

tests follows the inequality: 

 

 

 

where α is the test-wise error rate. 

𝛼𝐹𝑊𝐸 ≤ 𝑁𝛼 

𝛼 =
𝛼𝐹𝑊𝐸

𝑁
 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be independent but 

becomes very stringent if dependence. 



Spatial correlations 

100 x 100 independent tests Spatially correlated tests (FWHM=10) 

Bonferroni is too conservative for spatial correlated data. 

Discrete data Spatially extended data 

10,000 voxels  α𝐵𝑂𝑁𝐹 =
0.05

10,000
𝑢𝑐 = 4.42  (uncorrected 𝑢 = 1.64) 



Random Field Theory 

 Consider a statistic image as a discretisation of a 

continuous underlying random field. 

 

 Use results from continuous random field theory. 

lattice 

representation 



Topological inference 

Topological feature: 
Peak height 

space 

significant local maxima non significant local maxima 

u 



Topological inference 

Topological feature: 
Cluster extent 

space 

significant cluster 

non significant clusters 

uclus 

uclus : cluster-forming threshold (arbitrary) 

𝑘α  : α-level extent threshold 

> 𝑘α < 𝑘α 
< 𝑘α 



Topological inference 

Topological feature: 
Number of clusters 

space 

uclus 

uclus : cluster-forming threshold (arbitrary) 

𝑘     : minimum cluster extent 

> 𝑘 < 𝑘 
< 𝑘 

Here, c=1, only one cluster larger than k. 



Euler Characteristic 𝜒 

Euler Characteristic 𝜒𝑢: 

 Topological measure 

    𝜒𝑢  =  # blobs - # holes  

 

 at high threshold u: 

    𝜒𝑢  =  # blobs 

𝐹𝑊𝐸𝑅 = 𝑝 𝐹𝑊𝐸  
              = 𝑝 𝑜𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑏𝑙𝑜𝑏𝑠 𝐻0) 
   

              ≈ 𝑝 𝜒𝑢 ≥ 1|𝐻0  
  

              ≈ 𝐸 𝜒𝑢|𝐻0  

No holes 

Zero or 

one blob ≈ 𝜶𝑭𝑾𝑬 



Expected Euler Characteristic 

       : search region 

 (   : volume 

 ||1/2   : roughness (1 / smoothness) 

𝐸 𝜒𝑢 = 𝜆 Ω Λ 1 2  𝑢 exp (−𝑢2/2)/(2𝜋)3/2 

2D Gaussian Random Field 

100 x 100 Gaussian Random Field 

with FWHM=10 smoothing 

α𝐹𝑊𝐸 = 0.05  𝑢𝑅𝐹𝑇 = 3.8 

(𝑢𝐵𝑂𝑁𝐹 = 4.42, 𝑢𝑢𝑛𝑐𝑜𝑟𝑟 = 1.64) 



Smoothness 

Smoothness parameterised in terms of FWHM: 
Size of Gaussian kernel required to smooth i.i.d. noise to have 

same smoothness as observed null (standardized) data.  
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parameters errors + ? =  ? 
voxels 

scans 

 estimate 

 
^ 

 residuals 

estimated 

component 

fields 

parameter 

estimates 

variance s2 

estimated variance 

 

 
= 

FWHM 

1 2 3 4 

2 4 6 8 10 1 3 5 7 9 

RESELS (Resolution Elements): 
1 RESEL = 𝐹𝑊𝐻𝑀𝑥𝐹𝑊𝐻𝑀𝑦𝐹𝑊𝐻𝑀𝑧  

RESEL Count R = volume of search region in units of smoothness 

Eg: 10 voxels, 2.5 FWHM, 4 RESELS 

The number of resels is similar, but not identical 

to the number independent observations. 

Smoothness estimated from spatial 

derivatives of standardised residuals: 
Yields an RPV image containing local roughness 

estimation. 



Random Field intuition 

 Corrected p-value for statistic value t  

  Statistic value t increases ? 

– 𝑝𝑐  decreases (better signal) 

 Search volume increases ( () ↑ ) ? 

– 𝑝𝑐  increases (more severe correction) 

 Smoothness increases ( ||1/2 ↓ ) ? 

– 𝑝𝑐  decreases (less severe correction) 

𝑝𝑐 = 𝑝 max 𝑇 > 𝑡  

      ≈  𝐸 𝜒𝑡  
      ∝  𝜆 Ω Λ 1 2  𝑡 exp (−𝑡2/2) 



Random Field: Unified Theory 

General form for expected Euler characteristic 
 •  t, F & 2 fields • restricted search regions • D dimensions • 

       Rd (): d-dimensional Lipschitz-Killing 

curvatures of  (≈ intrinsic volumes): 
 – function of dimension, 

     space  and smoothness: 

 

       R0() = () Euler characteristic of  

       R1() = resel diameter 

       R2() = resel surface area 

       R3() = resel volume 

 

rd (u) : d-dimensional EC density of the field 
 – function of dimension and threshold, 

    specific for RF type: 

E.g. Gaussian RF:  

 r0(u) = 1- (u)  

 r1(u) = (4 ln2)1/2  exp(-u2/2) / (2p) 

 r2(u) = (4 ln2)     u     exp(-u2/2) / (2p)3/2 

 r3(u) = (4 ln2)3/2  (u2 -1)    exp(-u2/2) / (2p)2 

 r4(u) = (4 ln2)2     (u3 -3u)  exp(-u2/2) / 

(2p)5/2 

 

  

𝐸 𝜒𝑢(Ω) =  𝑅𝑑(Ω)ρ𝑑(𝑢)

𝐷

𝑑=0

 



Peak, cluster and set level inference 

Peak level test: 

height of local maxima 

Cluster level test: 

spatial extent above u 

Set level test: 

number of clusters 

above u 

 

Sensitivity 

 

Regional 

specificity 

 

: significant at the set level 

: significant at the cluster level 

: significant at the peak level 

  L1 > spatial extent threshold 

  L2 < spatial extent threshold 



Random Field Theory 

 The statistic image is assumed to be a good lattice  

representation of an underlying continuous stationary  

random field. 

Typically, FWHM > 3 voxels 

(combination of intrinsic and extrinsic smoothing) 

 

 

 RFT conservative for low degrees of freedom 

(always compare with Bonferroni correction). 
Afford littles power for group studies with small sample size.  

 

 

 A priori hypothesis about where an activation should be,  

reduce search volume  Small Volume Correction: 

• mask defined  by (probabilistic) anatomical atlases 

• mask defined by separate "functional localisers" 

• mask defined by orthogonal contrasts 

• (spherical) search volume around previously reported coordinates 



Conclusion 

 There is a multiple testing problem and corrections have 

to be applied on p-values (for the volume of interest only 

(see SVC)). 

 

 Inference is made about topological features (peak height, 

spatial extent, number of clusters). 

Use results from the Random Field Theory. 

 

 Control of FWER (probability of a false positive anywhere 

in the image): very specific, not so sensitive. 

 

 Control of FDR (expected proportion of false positives 

amongst those features declared positive (the discoveries)): 

less specific, more sensitive. 
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