General Linear Model & Classical Inference

Lyon, SPM-M/EEG course April 2012

C. Phillips, Cyclotron Research Centre, ULg, Belgium

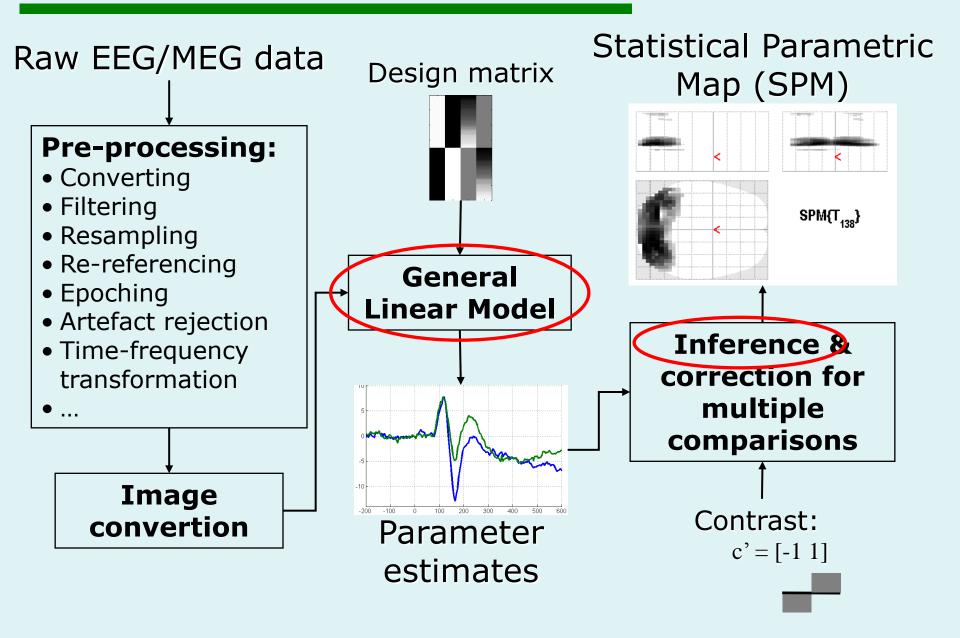
Overview

- Introduction
 - ERP example
- General Linear Model
 - Definition & design matrix
 - Parameter estimation & interpretation
 - Contrast & inference
 - Correlated regressors
- Conclusion

Overview

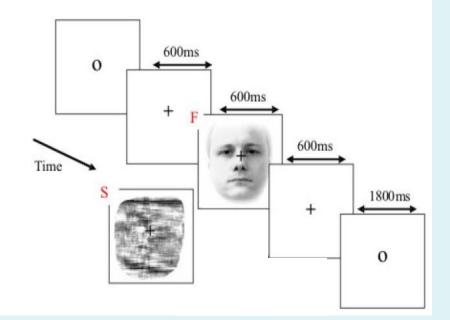
- Introduction
 ERP example
- General Linear Model
 - Definition & design matrix
 - Parameter estimation & interpretation
 - Contrast & inference
 - Correlated regressors
- Conclusion

Overview of SPM



ERP example

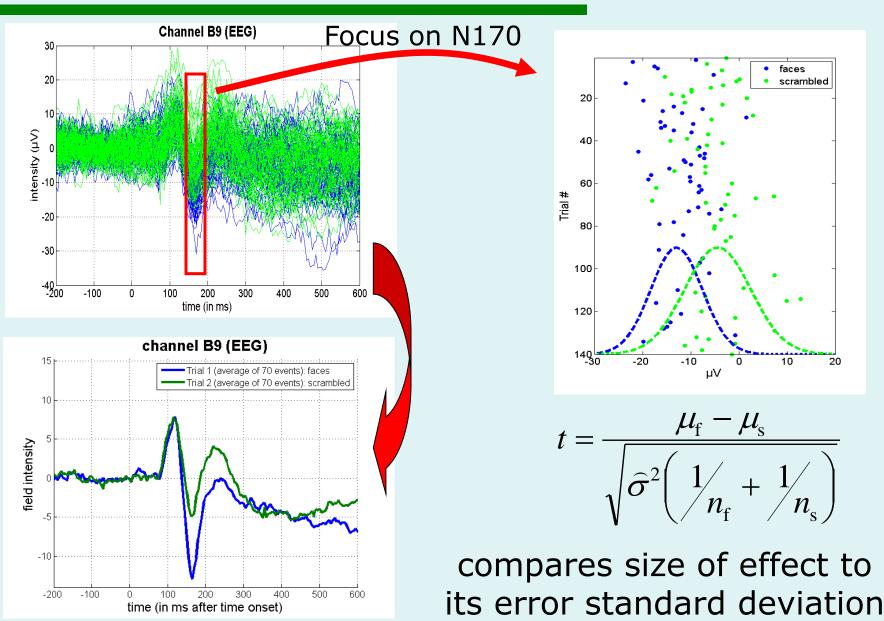
- Random presentation of 'faces' and 'scrambled faces'
- 70 trials of each type
- 128 EEG channels



Question:

is there a difference between the ERP of 'faces' and 'scrambled faces'?

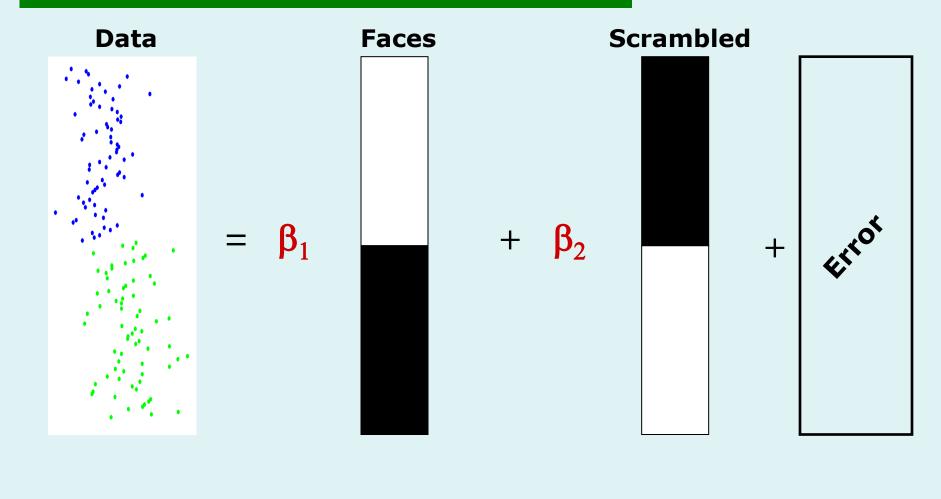
ERP example: channel B9



Overview

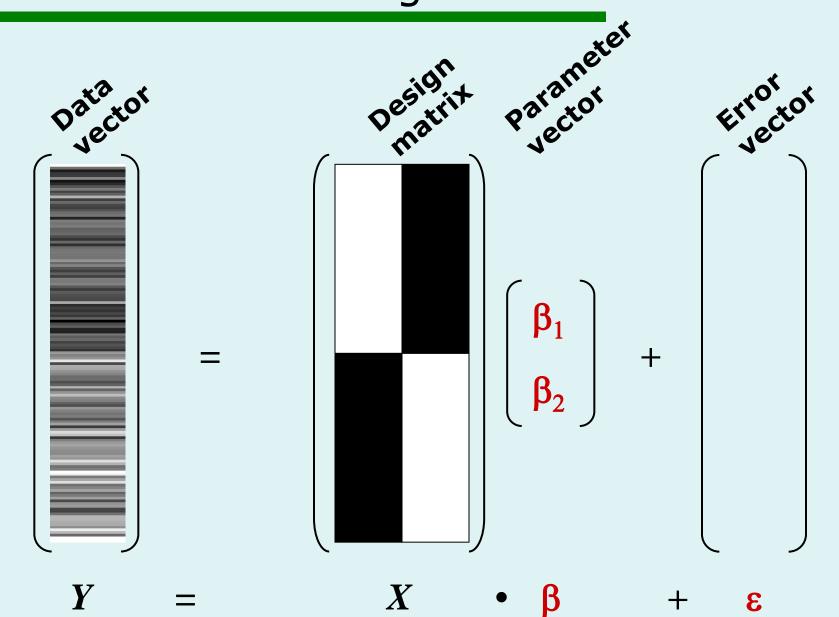
- Introduction
 ERP example
- General Linear Model
 - Definition & design matrix
 - Parameter estimation & interpretation
 - Contrast & inference
 - Correlated regressors
- Conclusion

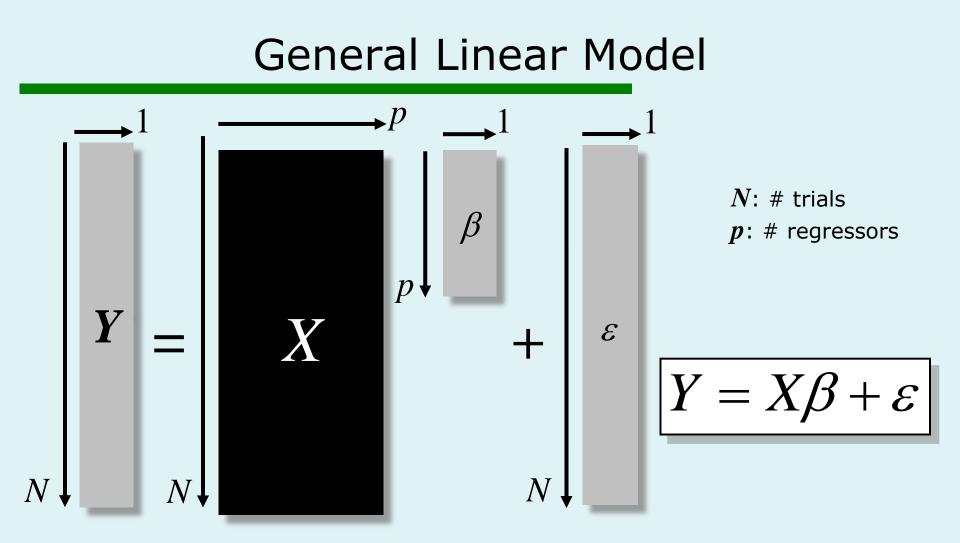
Data modeling



 $Y = \beta_1 \bullet X_1 + \beta_2 \bullet X_2 + \varepsilon$

Design matrix



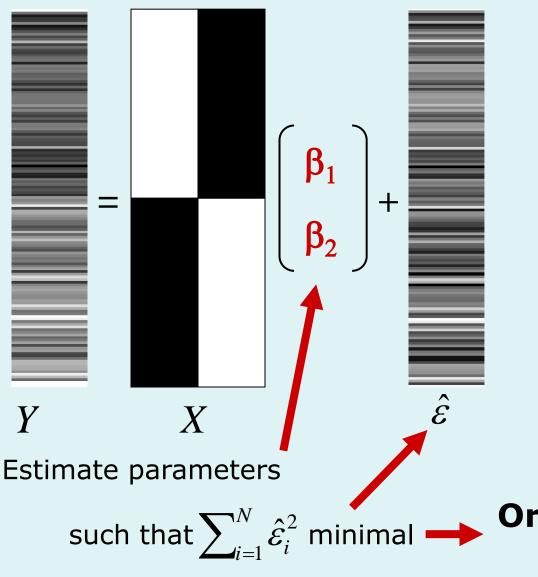


GLM defined by $\begin{cases} \text{design matrix } X \\ \text{error distribution } \varepsilon \sim N(0, \sigma^2 I) \end{cases}$

General Linear Model

- The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.
- Applied to all channels & time points
- Mass-univariate parametric analysis
 - one sample t-test
 - two sample *t*-test
 - paired *t*-test
 - Analysis of Variance (ANOVA)
 - factorial designs
 - correlation
 - linear regression
 - multiple regression

Parameter estimation



 $Y = X\beta + \varepsilon$

Residuals: $\hat{\varepsilon} = Y - X\hat{\beta}$

Assume iid. error: $\mathcal{E} \sim N(0, \sigma^2 I)$ $\hat{\beta} = (X^T X)^{-1} X^T Y$ **Ordinary Least Squares** parameter estimate

Hypothesis Testing

The Null Hypothesis H₀

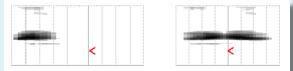
- Typically what we want to disprove (i.e. no effect).
- \Rightarrow Alternative Hypothesis H_A = outcome of interest.

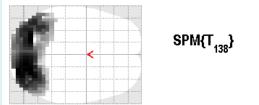
Contrast & t-test

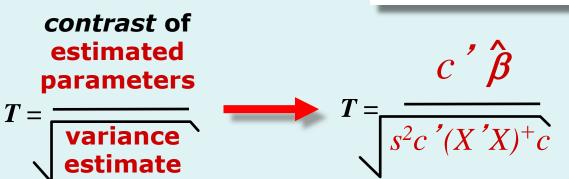
Contrast : specifies linear combination of parameter vector: c^{β}

c' = -1 + 1

ERP: faces < scrambled ? = $\hat{\beta}_1 < \hat{\beta}_2$? ($\hat{\beta}_1$: estimation of β_1) = $-1x\hat{\beta}_1 + 1x\hat{\beta}_2 > 0$? = test H_0 : $c \quad \hat{\beta} > 0$? SPM-t over time & space







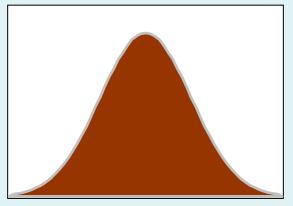
Hypothesis Testing

The Null Hypothesis H₀

- Typically what we want to disprove (i.e. no effect).
- \Rightarrow Alternative Hypothesis H_A = outcome of interest.

The Test Statistic T

- summarises evidence about H_0 .
- (typically) small in magnitude when H_0 is true and large when false.
- \Rightarrow know the distribution of T under the null hypothesis.



Null Distribution of T

Hypothesis Testing

Significance level a:

Acceptable false positive rate a.

⇒ threshold u_a , controls the false positive rate $\alpha = p(T > u_a | H_0)$

Observation of test statistic t, a realisation of T

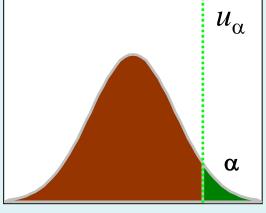
⇒ Conclusion about the hypothesis: reject H_0 in favour of H_a if $t > u_a$

 \Rightarrow *P*-value:

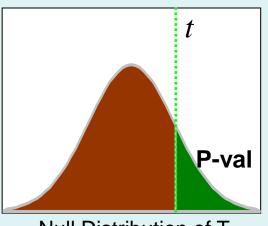
summarises evidence against H_0 .

= chance of observing value more extreme than t under H_o.

$$p(T > t \mid H_0)$$



Null Distribution of T



Null Distribution of T

Contrast & T-test, a few remarks

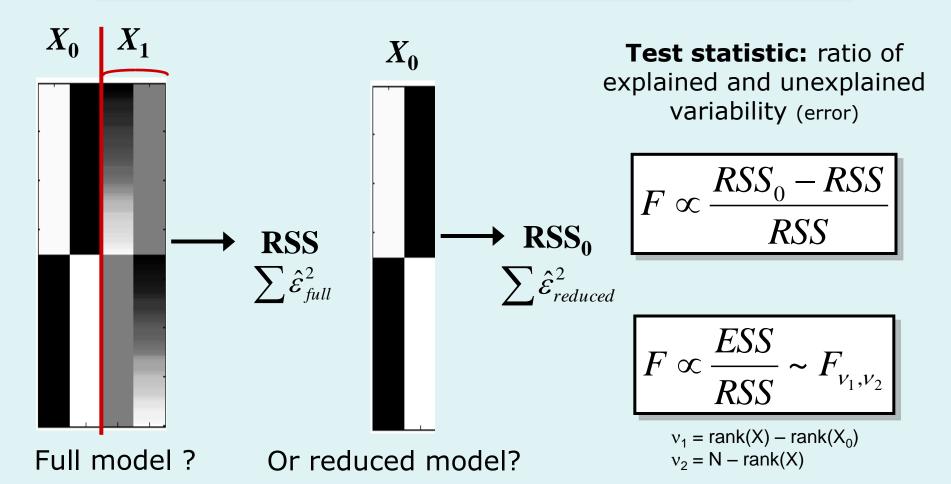
- Contrasts = simple linear combinations of the betas
- T-test = signal-to-noise measure (ratio of estimate to standard deviation of estimate).
- *T*-statistic, NO dependency on scaling of the regressors or contrast
- Unilateral test:

 $H_0: c^T \beta = 0$ vs. $H_A: c^T \beta > 0$

Extra-sum-of-squares & F-test

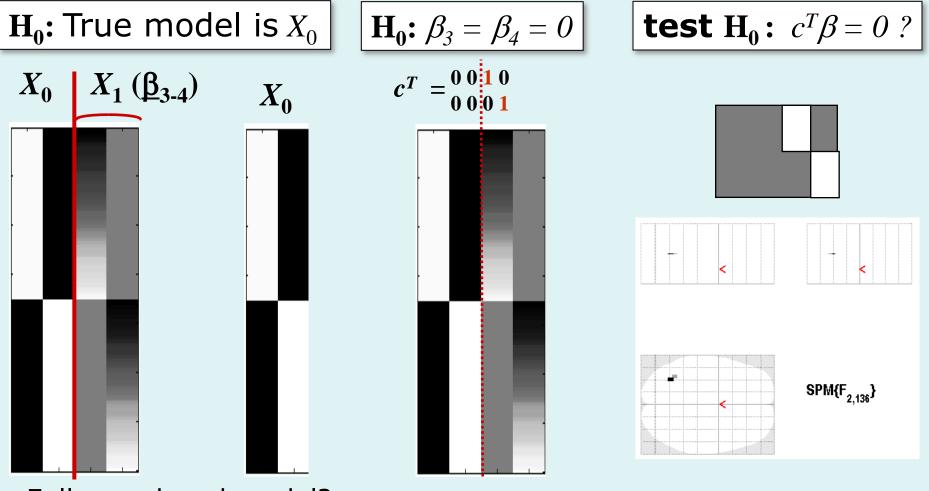
Model comparison: *Full vs. Reduced model?*

Null Hypothesis H_0 : True model is X_0 (reduced model)



F-test & multidimensional contrasts

Tests multiple linear hypotheses:



Full or reduced model?

Correlated and orthogonal regressors

$$x_{2} \xrightarrow{\mathbf{x}_{2}} x_{1} \xrightarrow{\mathbf{x}_{2}} x_{1}$$

$$y = x_{1}\beta_{1} + x_{2}\beta_{2} + e$$

$$\beta_{1} = \beta_{2} = 1$$

$$y = x_{1}\beta_{1} + x_{2}^{*}\beta_{2}^{*} + e$$

$$\beta_{1} > 1; \beta_{2}^{*} = 1$$

Correlated regressors ⇒ explained variance shared between regressors x_2 orthogonalized w.r.t. x_1 \Rightarrow only the parameter estimate for x_1 changes, not that for $x_2!$

Inference & correlated regressors

- implicitly test for an *additional* effect only
 - -be careful if there is correlation
 - -orthogonalisation = decorrelation (not generally needed)
 - \Rightarrow parameters and test on the non modified regressor change
- always simpler to have orthogonal regressors and therefore designs.
- use F-tests in case of correlation, to see the overall significance. There is generally no way to decide to which regressor the « common » part should be attributed to.
- original regressors may not matter: it's the contrast you are testing which should be as decorrelated as possible from the rest of the design matrix

Overview

- Introduction
 - ERP example
- General Linear Model
 - Definition & design matrix
 - Parameter estimation & interpretation
 - Contrast & inference
 - Correlated regressors
- Conclusion

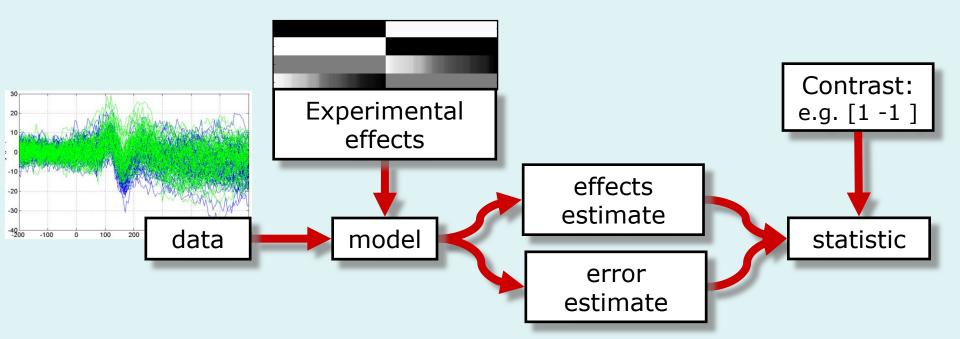
Modelling?

Why? Make *inferences* about effects of interest

- 1. Decompose data into effects and error
 - 2. Form *statistic* using estimates of effects (of interest) and error

Model? Use any available knowledge

How?



Thank you for your attention!

Any question?

Thanks to Klaas, Guillaume, Rik, Will, Stefan, Andrew & Karl for the borrowed slides!