Dynamic Causal Modelling for EEG/MEG: principles

J. Daunizeau

Motivation, Brain and Behaviour group, ICM, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Overview

1 DCM: introduction

- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

structural, functional and effective connectivity

O. Sporns 2007, Scholarpedia

- *structural* connectivity
 - = presence of axonal connections
- *functional* connectivity
 - = statistical dependencies between regional time series
- *effective* connectivity
 - = causal (directed) influences between neuronal populations

! connections are recruited in a *context-dependent* fashion

from functional segregation to functional integration

localizing brain activity: functional segregation effective connectivity analysis: functional integration

 \mathcal{U}_{1}

В В \mathcal{U}_1 u_1 u_2 u_2

« Where, in the brain, did my experimental manipulation have an effect? »

« How did my experimental manipulation propagate through the network? »

DCM: evolution and observation mappings

DCM: a parametric statistical approach

• DCM: model structure

$$\begin{cases} y = g(x, \varphi) + \varepsilon \\ \dot{x} = f(x, u, \theta) \end{cases}$$

likelihood
$$\Rightarrow p(y| heta, arphi, m)$$

• DCM: Bayesian inference

parameter estimate:

$$\hat{\theta} = E\left[\theta \,\middle| \, y, m\right]$$

model evidence:

priors on parameters

$$p(y|m) = \int p(y|\theta, \varphi, m) p(\theta|m) p(\varphi|m) d\varphi d\theta$$

DCM for EEG-MEG: auditory mismatch negativity

DCM for fMRI: audio-visual associative learning

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Dynamical systems theory motivation

Dynamical systems theory exponentials

We use the following shorthand for a time derivative

$$\dot{x} = \frac{dx}{dt}$$

The exponential function $x = \exp(t)$ is invariant to differentiation. Hence

$$\dot{x} = \exp(t)$$

and

$$\dot{X} = X$$

Hence exp(t) is the solution of the above differential equation.

Dynamical systems theory initial values and fixed points

An exponential increase (a > 0) or decrease (a < 0) from initial condition x_0

 $x = x_0 \exp(at)$

has derivative

 $\dot{x} = ax_0 \exp(at)$

The top equation is therefore the solution of the differential equation

$$\dot{x} = ax$$

with initial condition x_0 .

The values of x for which $\dot{x} = 0$ are referred to as Fixed Points (FPs). For the above the only fixed point is at x = 0.

Dynamical systems theory time constants

The figure shows

$$\dot{x} = ax$$

with a = -1.2 and initial value $x_0 = 2$.

The time constant is $\tau = -1/a$.

The time at which x decays to half its initial value is

$$\tau_h = \frac{1}{a} \log(1/2)$$

which equals $\tau_h = 0.58$.

Dynamical systems theory matrix exponential

If x is a vector whose evolution is governed by a system of linear differential equations we can write

$$\dot{x} = Ax$$

where A describes the linear dependencies.

The only fixed point is at x = 0.

For initial conditions x_0 the above system has solution

$$x_t = \exp(At)x_0$$

where exp(At) is the matrix exponential (written expm in matlab) (Moler and Van Loan, 2003).

Dynamical systems theory

eigendecomposition of the Jacobian

The equation

$$\dot{x} = Ax$$

can be understood by representing A with an eigendecomposition, with eigenvalues λ_k and eigenvectors q_k that satisfy (Strang, p. 255)

$$A = Q \Lambda Q^{-1}$$

We can then use the identity

$$\exp(A) = Q \exp(\Lambda) Q^{-1}$$

Because Λ is diagonal, the matrix exponential simplifies to a simple exponential function over each diagonal element.

Dynamical systems theory dynamical modes

This tells us that the original dynamics

$$\dot{x} = Ax$$

has a solution

$$x_t = \exp(At)$$

that can be represented as a linear sum of *k* independent dynamical modes

$$x_t = \sum_k q_k \exp(\lambda_k t)$$

where q_k and λ_k are the *k*th eigenvector and eigenvalue of *A*. For $\lambda_k > 0$ we have an unstable mode.

For $\lambda_k < 0$ we have a stable mode, and the magnitude of λ_k determines the time constant of decay to the fixed point.

The eigenvalues can also be complex. This gives rise to oscillations.

Dynamical systems theory spirals

A spiral occurs in a two-dimensional system when both eigenvalues are a complex conjugate pair. For example (Wilson, 1999)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & -16 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

has

$$\lambda_1 = -2 + 8i$$
$$\lambda_2 = -2 - 8i$$

giving solutions (for initial conditions $x = [1, 1]^T$)

$$x_1(t) = \exp(-2t) \left[\cos(8t) - 2\sin(8t)\right]$$

$$x_2(t) = \exp(-2t) \left[\cos(8t) + 0.5\sin(8t)\right]$$

Dynamical systems theory spirals

We plot time series solutions

$$\begin{array}{rcl} x_1(t) &=& \exp(-2t)\left(\cos(8t) - 2\sin(8t)\right) \\ x_2(t) &=& \exp(-2t)\left(\cos(8t) + 0.5\sin(8t)\right) \end{array}$$

for x_1 (black) and x_2 (red).

Dynamical systems theory spiral state-space

Plotting x_2 against x_1 gives the state-space representation.

Dynamical systems theory embedding

Univariate higher order differential equations can be represented as multivariate first order DEs.

For example

$$\ddot{v} = \frac{H}{\tau}u_t - \frac{2}{\tau}\dot{v} - \frac{1}{\tau^2}v$$

can be written as

$$\dot{v} = c$$

$$\dot{c} = \frac{H}{\tau}u_t - \frac{2}{\tau}c - \frac{1}{\tau^2}v$$

Dynamical systems theory kernels and convolution

The previous differential equation has a solution given by the integral

$$v(t) = \int u(t)h(t-t')dt'$$

where

$$h(t) = \frac{H}{\tau} t \exp(-t/\tau)$$

is a kernel. In this case it is an alpha function synapse with magnitude H and time constant τ

The previous integral can be written as

$$v = u \otimes h$$

Dynamical systems theory summary

- Motivation: modelling reciprocal influences
- Link between the integral (convolution) and differential (ODE) forms
- System stability and dynamical modes can be derived from the system's Jacobian:
 D>0: fixed points
 - D>1: spirals
 - D>1: limit cycles (e.g., action potentials)
 - D>2: metastability (e.g., winnerless competition)

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Neural ensembles dynamics DCM for M/EEG: systems of neural populations

Neural ensembles dynamics DCM for M/EEG: from micro- to meso-scale

 $x_{j}(t)$: post-synaptic potential of j^{th} neuron within its ensemble

$$\frac{1}{N-1}\sum_{j'\neq j}H\left(x_{j'}(t)-\theta\right) \xrightarrow{N\to\infty} \int H\left(x(t)-\theta\right)p\left(x(t)\right)dx$$

 $\approx S(\mu)$ mean-field firing rate

Neural ensembles dynamics DCM for M/EEG: synaptic dynamics

Neural ensembles dynamics

DCM for M/EEG: intrinsic connections within the cortical column

Neural ensembles dynamics DCM for M/EEG: from meso- to macro-scale

0th-order approximation: standing wave

Neural ensembles dynamics

DCM for M/EEG: extrinsic connections between brain regions

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

forward and inverse problems

inverse problem

the electromagnetic forward problem

$$\mathbf{y}(t) = \sum_{i} \mathbf{L}^{(i)} \mathbf{w}_{0}^{(i)} \sum_{j} \beta_{j} \mu^{(ij)}(t) + \varepsilon(t)$$

Bayesian paradigm deriving the likelihood function

 θ fy M

Bayesian paradigm likelihood, priors and the model evidence

Likelihood:

 $p(y|\theta,m)$

Prior:

 $p(\theta|m)$

Bayes rule:

 $p(\theta|y,m) = \frac{p(y|\theta,m) p(\theta|m)}{p(y|m)}$

Bayesian inference model comparison

Principle of parsimony : « plurality should not be assumed without necessity »

Model evidence:

$$p(y|m) = \int p(y|\vartheta,m) p(\vartheta|m) d\vartheta$$

"Occam's razor" :

the variational Bayesian approach

$$\ln p(y|m) = \left\langle \ln p(\vartheta, y|m) \right\rangle_{q} + S(q) + D_{KL}(q(\vartheta); p(\vartheta|y,m))$$

free energy : functional of q

mean-field: approximate marginal posterior distributions: $\{q(artheta_1), q(artheta_2)\}$

DCM: key model parameters

 $\left(heta_{21}, heta_{32}, heta_{13}
ight)$ state-state coupling

- θ_3^u input-state coupling
- θ_{13}^{μ} input-dependent modulatory effect

model comparison for group studies

assume all subjects correspond to the same model

random effect

assume different subjects might correspond to different models

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Conclusion

back to the auditory mismatch negativity

t~ 200 ms

Conclusion DCM for EEG/MEG: variants

Conclusion

planning a compatible DCM study

- Suitable experimental design:
 - any design that is suitable for a GLM
 - preferably multi-factorial (e.g. 2 x 2)
 - e.g. one factor that varies the driving (sensory) input
 - and one factor that varies the modulatory input
- Hypothesis and model:
 - define specific *a priori* hypothesis
 - which models are relevant to test this hypothesis?
 - check existence of effect on data features of interest
 - there exists formal methods for optimizing the experimental design for the ensuing bayesian model comparison
 [Daunizeau et al., PLoS Comp. Biol., 2011]

Many thanks to:

Karl J. Friston (UCL, London, UK) Will D. Penny (UCL, London, UK) Klaas E. Stephan (UZH, Zurich, Switzerland) Stefan Kiebel (MPI, Leipzig, Germany)