Event-related fMRI

With thanks to:
Rik Henson - Karl Friston, Oliver Josephs

Overview

1. Advantages of efMRI
2. BOLD impulse response
3. General Linear Model
4. Temporal Basis Functions
5. Timing Issues
6. Design Optimisation
7. Nonlinear Models
8. Example Applications

Advantages of Event-related fMRI

1. Randomised trial order
c.f. confounds of blocked designs (Johnson et al 1997)
2. Post hoc / subjective classification of trials e.g, according to subsequent memory (Wagner et al 1998)
3. Some events can only be indicated by subject (in time)
e.g, spontaneous perceptual changes (Kleinschmidt et al 1998)
4. Some trials cannot be blocked
e.g, "oddball" designs (Clark et al., 2000)
5. More accurate models even for blocked designs? e.g, "state-item" interactions (Chawla et al, 1999)

(Disadvantages of Randomised Designs)

1. Less efficient for detecting effects than are blocked designs (see later ...)
2. Some psychological processes may be better blocked (eg task-switching, attentional instructions)

Overview

1. Advantages of efMRI
2. BOLD impulse response
3. General Linear Model
4. Temporal Basis Functions
5. Timing Issues
6. Design Optimisation
7. Nonlinear Models
8. Example Applications

BOLD Impulse Response

- Function of blood oxygenation, flow, volume (Buxton et al, 1998)
- Peak (max. oxygenation) 4-6s poststimulus; baseline after 20-30s
- Initial undershoot can be observed (Malonek \& Grinvald, 1996)
- Similar across V1, A1, S1...
- ... but differences across: other regions (Schacter et al 1997) individuals (Aguirre et al, 1998)

BOLD Impulse Response

- Early event-related fMRI studies used a long Stimulus Onset Asynchrony (SOA) to allow BOLD response to return to baseline
- However, if the BOLD response is explicitly modelled, overlap between successive responses at short SOAs can be accommodated...
- ... particularly if responses are assumed to superpose linearly
- Short SOAs are more sensitive...

Overview

1. Advantages of efMRI
2. BOLD impulse response
3. General Linear Model
4. Temporal Basis Functions
5. Timing Issues
6. Design Optimisation
7. Nonlinear Models
8. Example Applications

General Linear (Convolution) Model

GLM for a single voxel:

$$
y(t)=u(t) \otimes h(\tau)+\varepsilon(t)
$$

$u(t)=$ neural causes (stimulus train)

$$
u(t)=\sum \delta(t-n T)
$$

$h(\tau)=$ hemodynamic (BOLD) response

$$
h(\tau)=\sum \beta_{i} f_{i}(\tau)
$$

$f_{i}(\tau)=$ temporal basis functions

$$
\begin{aligned}
& y(t)=\sum \sum \beta_{i} f_{i}(t-n T)+\varepsilon(t) \\
& y=X \beta+\varepsilon
\end{aligned}
$$

sampled each scan

Design Matrix

General Linear Model (in SPM)

Auditory words every 20s

Gamma functions $f_{\mathrm{i}}(\tau)$ of peristimulus time τ (Orthogonalised)

Sampled every TR $=1.7 \mathrm{~s}$
Design matrix, \mathbf{X}
$\left[\mathrm{x}(\mathrm{t}) \otimes f_{1}(\tau)\left|\mathrm{x}(\mathrm{t}) \otimes f_{2}(\tau)\right| \ldots\right]$

A word about down-sampling

Overview

1. Advantages of efMRI
2. BOLD impulse response
3. General Linear Model
4. Temporal Basis Functions
5. Timing Issues
6. Design Optimisation
7. Nonlinear Models
8. Example Applications

Temporal Basis Functions

- Fourier Set

Windowed sines \& cosines
Any shape (up to frequency limit) Inference via F-test

Temporal Basis Functions

- Finite Impulse Response

Mini "timebins" (selective averaging)
Any shape (up to bin-width) Inference via F-test

Temporal Basis Functions

- Fourier Set

Windowed sines \& cosines
Any shape (up to frequency limit) Inference via F-test

- Gamma Functions

Bounded, asymmetrical (like BOLD) Set of different lags
Inference via F-test

Temporal Basis Functions

- Fourier Set

Windowed sines \& cosines
Any shape (up to frequency limit)
Inference via F-test

- Gamma Functions

Bounded, asymmetrical (like BOLD)
Set of different lags
Inference via F-test

- "Informed" Basis Set

Best guess of canonical BOLD response
Variability captured by Taylor expansion
"Magnitude" inferences via t-test...?

Temporal Basis Functions

Temporal Basis Functions

"Informed" Basis Set (Friston et al. 1998)

- Canonical HRF (2 gamma functions)

Temporal Basis Functions

"Informed" Basis Set (Friston et al. 1998)

- Canonical HRF (2 gamma functions) plus Multivariate Taylor expansion in: time (Temporal Derivative)

Temporal Basis Functions

"Informed" Basis Set (Friston et al. 1998)

- Canonical HRF (2 gamma functions) plus Multivariate Taylor expansion in: time (Temporal Derivative) width (Dispersion Derivative)

Temporal Basis Functions

"Informed" Basis Set (Friston et al. 1998)

- Canonical HRF (2 gamma functions) plus Multivariate Taylor expansion in: time (Temporal Derivative) width (Dispersion Derivative)
- F-tests allow for any "canonical-like" responses

Temporal Basis Functions

"Informed" Basis Set (Friston et al. 1998)

- Canonical HRF (2 gamma functions) plus Multivariate Taylor expansion in: time (Temporal Derivative) width (Dispersion Derivative)
- F-tests allow for any "canonical-like" responses
- T-tests on canonical HRF alone (at $1^{\text {st }}$ level) can be improved by derivatives reducing residual error, and can be interpreted as "amplitude" differences, assuming canonical HRF is good fit...

(Other Approaches)

- Long Stimulus Onset Asychrony (SOA)

Can ignore overlap between responses (Cohen et al 1997)
... but long SOAs are less sensitive

- Fully counterbalanced designs

Assume response overlap cancels (Saykin et al 1999)
Include fixation trials to "selectively average" response even at short SOA (Dale \& Buckner, 1997)
... but unbalanced when events defined by subject

- Define HRF from pilot scan on each subject

May capture intersubject variability (Zarahn et al, 1997)
... but not interregional variability

- Numerical fitting of highly parametrised response functions

Separate estimate of magnitude, latency, duration (Kruggel et al 1999)
... but computationally expensive for every voxel

Temporal Basis Sets: Which One?

In this example (rapid motor response to faces, Henson et al, 2001)...

...canonical + temporal + dispersion derivatives appear sufficient
...may not be for more complex trials (eg stimulus-delay-response)
...but then such trials better modelled with separate neural components (ie activity no longer delta function) + constrained HRF (Zarahn, 1999)

Overview

1. Advantages of efMRI
2. BOLD impulse response
3. General Linear Model
4. Temporal Basis Functions
5. Timing Issues
6. Design Optimisation
7. Nonlinear Models
8. Example Applications

Timing Issues : Practical

- Typical TR for 48 slice EPI at 3 mm spacing is $\sim 4 \mathrm{~s}$

Scans

Timing Issues : Practical

- Typical TR for 48 slice EPI at 3 mm spacing is $\sim 4 \mathrm{~s}$
- Sampling at $[0,4,8,12 \ldots]$ poststimulus may miss peak signal

Timing Issues : Practical

- Typical TR for 48 slice EPI at 3 mm spacing is $\sim 4 \mathrm{~s}$
- Sampling at $[0,4,8,12 \ldots]$ poststimulus may miss peak signal
- Higher effective sampling by: 1. Asynchrony

$$
e g S O A=1.5 T R
$$

Timing Issues : Practical

- Typical TR for 48 slice EPI at 3 mm spacing is $\sim 4 \mathrm{~s}$
- Sampling at $[0,4,8,12 \ldots]$ poststimulus may miss peak signal
- Higher effective sampling by: 1. Asynchrony

$$
e g S O A=1.5 T R
$$

2. Random Jitter

$$
\operatorname{eg} S O A=(2 \pm 0.5) T R
$$

Stimulus (random jitter)

Timing Issues : Practical

- Typical TR for 48 slice EPI at 3 mm spacing is $\sim 4 \mathrm{~s}$
- Sampling at $[0,4,8,12 \ldots]$ poststimulus may miss peak signal
- Higher effective sampling by: 1. Asynchrony

$$
e g S O A=1.5 T R
$$

2. Random Jitter

$$
\operatorname{eg} S O A=(2 \pm 0.5) T R
$$

- Better response characterisation (Miezin et al, 2000)

Stimulus (random jitter)

Timing Issues : Practical

- ...but "Slice-timing Problem"
(Henson et al, 1999)
Slices acquired at different times, yet model is the same for all slices

Timing Issues : Practical

- ...but "Slice-timing Problem" (Henson et al, 1999) Slices acquired at different times, yet model is the same for all slices

=> different results (using canonical HRF) for different reference slices

Timing Issues : Practical

- ...but "Slice-timing Problem"
(Henson et al, 1999)
Slices acquired at different times, yet model is the same for all slices => different results (using canonical HRF) for different reference slices
- Solutions:

1. Temporal interpolation of data

... but less good for longer TRs

Timing Issues : Practical

- ...but "Slice-timing Problem"
(Henson et al, 1999)
Slices acquired at different times, yet model is the same for all slices

=> different results (using canonical HRF) for different reference slices
- Solutions:

1. Temporal interpolation of data ... but less good for longer TRs
2. More general basis set (e.g., with temporal derivatives)
... but inferences via F-test

Overview

1. Advantages of efMRI
2. BOLD impulse response
3. General Linear Model
4. Temporal Basis Functions
5. Timing Issues
6. Design Optimisation
7. Nonlinear Models
8. Example Applications

Example 1: Intermixed Trials (Henson et al 2000)

- Short SOA, fully randomised, with $1 / 3$ null events
- Faces presented for 0.5 s against chequerboard baseline, $\quad \mathrm{SOA}=$ (2 ± 0.5)s, $\mathrm{TR}=1.4 \mathrm{~s}$
- Factorial event-types:

1. Famous/Nonfamous (F/N)
2. 1st/2nd Presentation (1/2)

Example 1: Intermixed Trials (Henson et al 2000)

- Short SOA, fully randomised, with $1 / 3$ null events
- Faces presented for 0.5 s against chequerboard baseline, $\mathrm{SOA}=$ (2 ± 0.5)s, TR=1.4s
- Factorial event-types:

1. Famous/Nonfamous (F/N)
2. 1st/2nd Presentation (1/2)

- Interaction (F1-F2)-(N1-N2) masked by main effect ($\mathrm{F}+\mathrm{N}$)
- Right fusiform interaction of repetition priming and familiarity

Example 2: Post hoc classification (Henson et al 1999)

- Subjects indicate whether studied (Old) words:
i) evoke recollection of prior occurrence (R)
ii) feeling of familiarity without recollection (K) iii) no memory (N)
- Random Effects analysis on canonical parameter estimate for event-types
- Fixed SOA of $8 \mathrm{~s}=>$ sensitive to differential but not main effect (de/ activations arbitrary)

THE END

