Inference on SPMs: Random Field Theory & Alternatives

> Thomas Nichols, Ph.D. Department of Statistics & Warwick Manufacturing Group University of Warwick

> > Vancouver SPM Course August 2010

Assessing Statistic Images...

Assessing Statistic Images

Where's the signal?

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

...but why threshold?!

Blue-sky inference: What we'd like

- Don't threshold, model the signal!
 - Signal location?
 - Estimates and CI's on (x,y,z) location
 - Signal magnitude?
 - CI's on % change
 - Spatial extent?
 - Estimates and CI's on activation volume

space

- Robust to choice of cluster definition
- ...but this requires an explicit spatial model ₅

Blue-sky inference: What we need

- Need an explicit spatial model
- No routine spatial modeling methods exist - High-dimensional mixture modeling problem
 - Activations don't look like Gaussian blobs
 - Need realistic shapes, sparse representation
 - Some work by Hartvig et al., Penny et al.

Real-life inference: What we get

- Signal location
 - Local maximum *no inference*
 - Center-of-mass no inference
 - Sensitive to blob-defining-threshold
- Signal magnitude
 - Local maximum intensity P-values (& CI's)
- Spatial extent
 - Cluster volume P-value, no CI's
 - Sensitive to blob-defining-threshold

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity

 <u>The null hyp. at a single voxel can be rejected</u>

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold u_{clus}
 - Retain clusters larger than α -level threshold k_{α}

Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected
 - Only means that *one or more* of voxels in cluster active

Set-level Inference

- Count number of blobs *c*Minimum blob size *k*
- Worst spatial specificity
 - Only can reject global null hypothesis

11

Multiple comparisons...

Hypothesis Testing

- Null Hypothesis H_0
- Test statistic *T*
 - -t observed realization of T
- α level
 - Acceptable false positive rate
 - Level $\alpha = P(T > u_{\alpha} | H_0)$

- Threshold u_{α} controls false positive rate at level α
- P-value
 - Assessment of t assuming H_0
 - $P(T > t | H_0)$
 - Prob. of obtaining stat. as large or larger in a new experiment
 - P(Data|Null) <u>not</u> P(Null|Data)

Multiple Comparisons Problem

• Which of 100,000 voxels are sig.? $-\alpha=0.05 \Rightarrow 5,000$ false positive voxels

• Which of (random number, say) 100 clusters significant? $-\alpha = 0.05 \Rightarrow 5$ false positives clusters

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - -FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - -FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

FWE Multiple comparisons terminology... activation

- *Family* of hypotheses •
 - $H^k \ k \in \Omega = \{1, \dots, K\}$
 - $H^{\Omega} = \cap H^k$
- *Familywise* Type I error
 - weak control omnibus test
 - $Pr("reject" H^{\Omega} \mid H^{\Omega}) \leq \alpha$
 - *"anything, anywhere"*?
 - *strong* control *localising test*
 - $Pr("reject" H^W | H^W) \le \alpha$ \forall W: W $\subseteq \Omega$ & H^W
 - *"anything, & where" ?*
- Adjusted *p*-values ightarrow
 - test level at which reject H^k

Statistics: volume summary (p-values corrected for entire volume

set-level		cluster-level			voxel-level				v u z (rom)	
P		P corrected	k	P uncorrected	P corrected	7	(Z_)	P uncorrected	رايانيان کر ور ۸	
0.964	11	0.000	1285	0.000	0.109	12.51	(5.01)	0.000	-8 -82 -12	
					0.269	10.43	(4.71)	0.000	20 -86 8	
					0.272	10.40	(4.70)	0.000	-14 -80 16	
		0.411	17	0.030	0.168	11.51	(4.87)	0.000	-38 -64 0	
		0.000	125	0.000	0.465	9.16	(4.48)	0.000	36 -66 -4	
					0.997	5.74	(3.63)	0.000	28 -52 -4	
		0.155	26	0.010	0.969	6.46	(3.85)	0.000	20 - 58 48	
		0.173	25	0.011	0.993	5.98	(3.71)	0.000	26 - 38 36	
					0.997	5.73	(3.63)	0.000	28 - 42 28	
		0.976	5	0.212	0.999	5.59	(3.59)	0.000	18 -14 52	
		0.990	4	0.263	1.000	4.82	(3.30)	0.000	-40 -70 -8	
		1.000	2	0.431	1.000	4.81	(3.30)	0.000	44 -56 16	
		1.000	2	0.431	1.000	4.71	(3.26)	0.001	-20 -46 44	
		1.000	1	0.588	1.000	4.57	(3.20)	0.001	40 -52 20	
		1.000	2	0.431	1.000	4.38	(3.13)	0.001	22 - 48 40	

table shows at most 3 subsidiary maxima > 8.0mm apart per cluster Height threshold; T = 4.30, p = 0.001 (1.000 corrected) Extent threshold: k = 0 voxels, p = 1.000 (1.000 corrected) Expected voxels per cluster <k> = 3 443 Expected number of clusters, <c> = 17.64

Degrees of freedom = [1.0, 9.0] Smoothness FWHM = 10.9 12.1 9.2 (mm) = 5.5 6.0 2.3 (voxels) Search volume: S = 971856 mm^3 = 60741 voxels = 803.8 resels Voxel size: [2.0, 2.0, 4.0] mm (1 resel = 75.57 voxels)

FWE MCP Solutions: Bonferroni

- For a statistic image *T*...
 - $-T_i$ *i*th voxel of statistic image T
- ... use $\alpha = \alpha_0 / V$
 - α_0 FWER level (e.g. 0.05)
 - -V number of voxels
 - $-u_{\alpha}$ α -level statistic threshold, $P(T_i \ge u_{\alpha}) = \alpha$
- By Bonferroni inequality...

FWER = P(FWE) = P($\cup_i \{T_i \ge u_\alpha\} \mid H_0$) $\le \sum_i P(T_i \ge u_\alpha \mid H_0)$ = $\sum_i \alpha$ = $\sum_i \alpha_0 / V = \alpha_0$

Conservative	under correlation
Independent:	V tests
Some dep.:	? tests
Total dep.:	1 test

Random field theory...

SPM approach: Random fields...

- Consider statistic image as lattice representation of a continuous random field
- Use results from continuous random field theory

FWER MCP Solutions: Controlling FWER w/ Max

• FWER & distribution of maximum

FWER = P(FWE) = P($\bigcup_i \{T_i \ge u\} | H_o$) = P($\max_i T_i \ge u | H_o$)

• $100(1-\alpha)$ % ile of max distⁿ controls FWER FWER = P(max_i $T_i \ge u_\alpha | H_o) = \alpha$

– where

21

FWER MCP Solutions: Random Field Theory

• Euler Characteristic χ_{μ} - Topological Measure • #blobs - #holes - At high thresholds, Threshold just counts blobs Random Field $-FWER = P(Max voxel \ge u \mid H_o)$ No holes = P(One or more blobs $| H_o$) $\approx P(\chi_u \ge 1 \mid H_o)$ Never more $\approx \mathrm{E}(\chi_u \mid H_o)$ than 1 blob

Suprathreshold Sets

RFT Details: Expected Euler Characteristic

E(χ_u) ≈ $\lambda(\Omega) |\Lambda|^{1/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$

- $\Omega \quad \rightarrow \text{Search region } \Omega \subset \mathbb{R}^3$
- $-\lambda(\Omega) \rightarrow$ volume
- $|\Lambda|^{1/2} \rightarrow \text{roughness}$
- Assumptions
 - Multivariate Normal
 - Stationary*
 - ACF twice differentiable at 0
- * Stationary
 - Results valid w/out stationary
 - More accurate when stat. holds

Random Field Theory Smoothness Parameterization

• $E(\chi_u)$ depends on $|\Lambda|^{1/2}$ - Λ roughness matrix:

$$\begin{split} \Lambda &= \mathbf{Var} \left(\frac{\partial G}{\partial (x, y, z)} \right) \\ &= \begin{pmatrix} \mathbf{Var} \left(\frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\ \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\ \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial z} \right) \end{pmatrix} \\ &= \begin{pmatrix} \lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\ \lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\ \lambda_{zx} & \lambda_{zy} & \lambda_{zz} \end{pmatrix} \end{split}$$

- Smoothness
 parameterized as
 Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness Λ

$$|\Lambda|^{1/2} = \frac{(4\log 2)^{3/2}}{\text{FWHM}_x \text{FWHM}_y \text{FWHM}_z}$$

Random Field Theory Smoothness Parameterization

• RESELS

- Resolution Elements
- -1 RESEL = FWHM_x × FWHM_y × FWHM_z
- RESEL Count *R*
 - $R = \lambda(\Omega) \sqrt{|\Lambda|} = (4\log 2)^{3/2} \lambda(\Omega) / (FWHM_x \times FWHM_y \times FWHM_z)$
 - Volume of search region in units of smoothness
 - Eg: 10 voxels, 2.5 FWHM 4 RESELS

- Beware RESEL misinterpretation
 - RESEL *are not* "number of independent 'things' in the image"
 - See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.

Random Field Theory Smoothness Estimation

- Smoothness est'd from standardized residuals
 - Variance of gradients
 - Yields resels per voxel (RPV)
- RPV image
 - Local roughness est.
 - Can transform in to local smoothness est.
 - FWHM Img = (RPV Img)^{-1/D}
 - Dimension *D*, e.g. *D*=2 or 3

Random Field Intuition

• Corrected P-value for voxel value t

 $P^{c} = P(\max T > t)$ $\approx E(\chi_{t})$ $\approx \lambda(\Omega) |\Lambda|^{1/2} t^{2} \exp(-t^{2}/2)$

- Statistic value *t* increases
 - P^c decreases (but only for large *t*)
- Search volume increases
 - *P^c* increases (more severe MCP)
- Roughness increases (Smoothness decreases)
 P^c increases (more severe MCP)

RFT Details: Unified Formula

• General form for expected Euler characteristic

• χ^2 , *F*, & *t* fields • restricted search regions • *D* dimensions •

 $\mathsf{E}[\chi_u(\Omega)] = \sum_d \mathsf{R}_d(\Omega) \,\rho_d(u)$

$R_d(\Omega)$: *d*-dimensional Minkowski functional of Ω

- function of dimension, space Ω and smoothness:

- $R_0(\Omega) = \chi(\Omega)$ Euler characteristic of Ω
- $R_1(\Omega)$ = resel diameter
- $R_2(\Omega)$ = resel surface area
- $R_3(\Omega) = resel volume$

 $\rho_d(\Omega)$: *d*-dimensional EC density of $Z(\underline{x})$

-function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

 $\overline{\rho_0(u)} = 1 - \Phi(u)$

- $\rho_1(u) = (4 \ln 2)^{1/2} \exp(-u^2/2) / (2\pi)$
- $\rho_2(u) = (4 \ln 2) \exp(-u^2/2) / (2\pi)^{3/2}$
- $\rho_3(u) = (4 \ln 2)^{3/2} (u^2 1) \exp(-u^2/2) / (2\pi)^2$
- $\rho_4(u) = (4 \ln 2)^2 (u^3 3u) \exp(-u^2/2) / (2\pi)^{5/2}$

Random Field Theory Cluster Size Tests

- Expected Cluster Size
 - E(S) = E(N)/E(L)
 - S cluster size
 - N suprathreshold volume $\lambda(\{T > u_{clus}\})$
 - L number of clusters
- $E(N) = \lambda(\Omega) P(T > u_{clus})$
- $E(L) \approx E(\chi_u)$ - Assuming no holes

Random Field Theory Cluster Size Distribution

- Gaussian Random Fields (Nosko, 1969) $S^{2/D} \sim Exp\left[\frac{E(N)}{\Gamma(D/2+1)E(L)} \right]^{-2/D}$
 - D: Dimension of RF
- t Random Fields (Cao, 1999)
 - -B: Beta distⁿ
 - $-U's:\chi^{2}s$ $S\sim c$
 - -c chosen s.t. E(S) = E(N) / E(L)

$$B^{1/2} \left[\frac{U_0^D}{\prod_{b=0}^D U_b} \right]^{2/D}$$

Random Field Theory Cluster Size Corrected P-Values

- Previous results give uncorrected P-value
- Corrected P-value
 - Bonferroni
 - Correct for expected number of clusters
 - Corrected $P^c = E(L) P^{uncorr}$
 - Poisson Clumping Heuristic (Adler, 1980)
 - Corrected $P^c = 1 \exp(-E(L) P^{\text{uncorr}})$

Review: Levels of inference & power

Random Field Theory Limitations

- Sufficient smoothness
 - FWHM smoothness $3-4 \times \text{voxel size}(Z)$
 - More like $\sim 10 \times$ for low-df T images
- Smoothness estimation
 - Estimate is biased when images not sufficiently Continuous Random smooth
- Multivariate normality
 - Virtually impossible to check
- Several layers of approximations
- Stationary required for cluster size results

Lattice Image

Real Data

- fMRI Study of Working Memory - 12 subjects, block design Marshuetz et al (2000) - Item Recognition • Active: View five letters, 2s pause, view probe letter, respond • Baseline: View XXXXX, 2s pause, view Y or N, respond • Second Level RFX
 - Difference image, A-B constructed for each subject
 - One sample *t* test

Real Data: RFT Result

- Threshold
 - -S = 110,776
 - $-2 \times 2 \times 2 \text{ voxels}$ 5.1 × 5.8 × 6.9 mm FWHM
 - u = 9.870
- Result
 - 5 voxels above the threshold
 - 0.0063 minimum
 FWE-corrected
 p-value

Real Data: SnPM Promotional

 t_{11} Statistic, RF & Bonf. Threshold

t₁₁ Statistic, Nonparametric Threshold

- Nonparametric method more powerful than RFT for low DF
- "Variance Smoothing" even more sensitive
- FWE controlled all the while!

Smoothed Variance *t* Statistic, ³⁶ Nonparametric Threshold False Discovery Rate...

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - -FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

False Discovery Rate

• For any threshold, all voxels can be cross-classified:

	Accept Null	Reject Null	_
Null True	V _{0A}	V _{0R}	m ₀
Null False	V _{1A}	V _{1R}	m ₁
	N _A	N _R	V

• Realized FDR

 $rFDR = V_{0R} / (V_{1R} + V_{0R}) = V_{0R} / N_R$

- If $N_R = 0$, rFDR = 0

• But only can observe N_R , don't know $V_{1R} \& V_{0R}$ – We control the *expected* rFDR FDR = E(rFDR)

False Discovery Rate Illustration:

Noise

Signal+Noise

Control of Per Comparison Rate at 10%

11.3% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 11.3% 12.5% Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

FWE

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7% 10.5% 12.2% 8.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% Percentage of Activated Pixels that are False Positives

41

Benjamini & Hochberg Procedure

- Select desired limit *q* on FDR
- Order p-values, $p_{(1)} \leq p_{(2)} \leq \dots \leq p_{(V)}$
- Let *r* be largest *i* such that

JRSS-B (1995) 57:289-300

 $p_{(i)} \leq i/V \times q$

 Reject all hypotheses corresponding to *p*₍₁₎, ..., *p*_(r).

Adaptiveness of Benjamini & Hochberg FDR

P-value threshold when no signal: α/V P-value threshold when all signal: α

Real Data: FDR Example

- Threshold
 - Indep/PosDep u = 3.83
 - $\operatorname{Arb} \operatorname{Cov}_{u} = 13.15$
- Result
 - 3,073 voxels above
 Indep/PosDep u
 - <0.0001 minimum
 FDR-corrected
 p-value

FDR Threshold = 3.83 3,073 voxels FWER Perm. Thresh. = 9.87 7 voxels

FDR Changes

- Before SPM8
 - Only voxel-wise FDR
- SPM8
 - Cluster-wise FDR
 - Peak-wise FDR
- Item Recognition data

Cluster-forming threshold P=0.001 Cluster-wise FDR: 40 voxel cluster, PFDR 0.07 Peak-wise FDR: t=4.84, PFDR 0.836 Cluster-forming threshold P=0.01 Cluster-wise FDR: 1250 - 4380 voxel clusters, PFDR <0.001 Cluster-wise FDR: 80 voxel cluster, PFDR 0.516 Peak-wise FDR: t=4.84, PFDR 0.027

Benjamini & Hochberg Procedure Details

- Standard Result
 - Positive Regression Dependency on Subsets

 $P(X_1 \ge c_1, X_2 \ge c_2, ..., X_k \ge c_k | X_i = x_i)$ is non-decreasing in x_i

- Only required of null x_i 's
 - Positive correlation between null voxels
 - Positive correlation between null and signal voxels
- Special cases include
 - Independence
 - Multivariate Normal with all positive correlations
- Arbitrary covariance structure

- Replace q by q/c(V), $c(V) = \sum_{i=1,...,V} 1/i \approx \log(V) + 0.5772$ - Much more stringent Benjamini & Yekutieli (2001). *Ann. Stat.* 29:1165-1188

Benjamini & Hochberg: Key Properties

• FDR is controlled $E(rFDR) \le q m_0/V$

- Conservative, if large fraction of nulls false

- Adaptive
 - Threshold depends on amount of signal
 - More signal, More small p-values, More $p_{(i)}$ less than $i/V \times q/c(V)$

p

Z =

Signal Intensity 3.0 Signal Extent 1.0 Noise Smoothness⁴⁸3.0

p

Z =

Signal Intensity 3.0 Signal Extent 2.0 Noise Smoothness⁴⁹3.0

p

Z =

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness⁵⁰3.0

p = 0.000252 z = 3.48

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness⁵¹3.0

p = 0.001628 z = 2.94

Signal Intensity 3.0 Signal Extent 9.5 Noise Smoothness⁵²3.0

p = 0.007157 z = 2.45

Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness⁵³3.0

p = 0.019274 z = 2.07

Signal Intensity 3.0 Signal Extent 25.0 Noise Smoothness⁵⁴3.0

Controlling FDR: Benjamini & Hochberg

- Illustrating BH under dependence
 - Extreme example of positive dependence

Conclusions

- Must account for multiplicity
 - Otherwise have a fishing expedition
- FWER
 - Very specific, not very sensitive
- FDR
 - Less specific, more sensitive
 - Sociological calibration still underway

References

• Most of this talk covered in these papers

TE Nichols & S Hayasaka, Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Statistical Methods in Medical Research, 12(5): 419-446, 2003.

TE Nichols & AP Holmes, Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. *Human Brain Mapping*, 15:1-25, 2001.

CR Genovese, N Lazar & TE Nichols, Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. *NeuroImage*, 15:870-878, 2002.

57