Vancouver course - August 2010 Linear Models - Contrasts

Jean-Baptiste Poline

Neurospin, I2BM, CEA
Saclay, France

Plan

D REPEAT: model and fitting the data with a Linear Model

D Make sure we understand the testing procedures : t- and F-tests
D But what do we test exactly?
D Examples - almost real

One voxel = One test ($\mathbf{t}, \mathrm{F}, \ldots)$

Regression example...

Regression example...

Box car regression: design matrix...

Fact: model parameters depend on regressors scaling

Q: When do I care ?

A: ONLY when comparing manually entered regressors (say you would like to compare two scores)

What if two conditions A and B are not of the same duration before convolution HRF?

What if we believe that there are drifts?

Add more reference functions / covariates ...

...design matrix

...design matrix

Fitting the model $=$ finding some estimate of the betas

fitted drift

How do we find the betas estimates? By minimizing the residual variance

Fitting the model = finding some estimate of the betas

$$
: 1 / \mathrm{Cl}
$$

$$
Y=X \beta+\varepsilon
$$

finding the betas = minimising the sum of square of the residuals

$$
\begin{aligned}
& / / Y-X[y] / /{ }^{2}=\Sigma_{i}\left[y_{i}-x\right] X \\
& \text { when } \bar{\beta} \text { tire estimated: let's call them } b \text { (or } \hat{\beta}) \\
& \text { when } \varepsilon \text { is estimated : let's call it e } \\
& \text { estimated SD of } \varepsilon \text { : let's call it s }
\end{aligned}
$$

Take home ...

D We put in our model regressors (or covariates) that represent how we think the signal is varying (of interest and of no interest alike)

D WHICH ONE TO INCLUDE?
D What if we have too many? Too few?
D Coefficients (= parameters) are estimated by minimizing the fluctuations, - variability - variance - of estimated noise - the residuals.

D Because the parameters depend on the scaling of the regressors included in the model, one should be careful in comparing manually entered regressors, or conditions of different durations

Plan

D Make sure we all know about the estimation (fitting) part
D Make sure we understand t and F tests

D But what do we test exactly?
D An example - almost real

T test - one dimensional contrasts - SPM $\{\mathfrak{\}}\}$

$$
c^{\prime}=10000000
$$

From one time series to an image

spm_ResMS

spm_con??? images

N

F-test : a reduced model

H_{0} : True model is X_{0}

$$
\mathrm{H}_{0}: \underline{\beta}_{1}=0
$$

This (full) model ? Or this one?
$F \sim\left(\mathrm{~S}_{0}{ }^{2}-\mathrm{S}^{2}\right) / \mathrm{S}^{2}$
T values become
F values. $\mathrm{F}=\mathrm{T}^{2}$
Both "activation" and
"deactivations" are tested. Voxel wise p-values are halved.

F-test : a reduced model or ...

Tests multiple linear hypotheses : Does X1 model anything?
H_{0} : True (reduced) model is X_{0}

This (full) model ?

Or this one?

$F \sim\left(\mathbf{S}_{0}{ }^{2}-\mathbf{S}^{2}\right) / \mathbf{S}^{2}$

F-test : a reduced model or ... multi-dimensional contrasts?

tests multiple linear hypotheses. Ex : does drift functions model anything?
H_{0} : True model is X_{0}

This (full) model ? Or this one?

T and F test: take home ...

D T tests are simple combinations of the betas; they are either positive or negative ($b 1-b 2$ is different from $b 2-b 1$)

D F tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler model, or

D F tests the sum of the squares of one or several combinations of the betas

D in testing "single contrast" with an F test, for ex. b1 - b2, the result will be the same as testing $b 2-b 1$. It will be exactly the square of the t-test, testing for both positive and negative effects.

Plan

D Make sure we all know about the estimation (fitting) part
D Make sure we understand t and F tests
D But what do we test exactly? Correlation between regressors

D An example - almost real

«Additional variance » : Again

No correlation between green red and yellow

Testing for the green

correlated regressors, for example
green: subject age yellow: subject score

correlated contrasts

Testing for the green

 Very correlated regressors ?

Dangerous !

Testing for the green and yellow

If significant? Could be G or Y !

Completely correlated regressors ?
Impossible to test ! (not estimable)

An example: real

Testing for first regressor: $\mathrm{T} \max =9.8$

Including the movement parameters in the model

Testing for first regressor: activation is gone ! Right or Wrong?

Implicit or explicit (\perp) decorrelation (or orthogonalisation)

This generalises when testing several regressors (F tests)

| $\mathrm{L}_{\mathrm{C} 2}: \quad$test of C 2 in the

 implicit \perp model

 test of C 1 in the
 explicit model |
| :--- | :--- |

Correlation between regressors: take home ...

D Do we care about correlation in the design ? Yes, always

D Start with the experimental design : conditions should be as uncorrelated as possible

D use F tests to test for the overall variance explained by several (correlated) regressors

Plan

D Make sure we all know about the estimation (fitting) part
D Make sure we understand t and F tests
D But what do we test exactly? Correlation between regressors

D An example - almost real

A real example (almost)

Experimental Design \longrightarrow Design Matrix
Factorial design with 2 factors : modality and category
2 levels for modality (eg Visual/Auditory)
3 levels for category (eg 3 categories of words)

$$
\mathrm{VAC}_{1} \mathrm{C}_{2} \mathrm{C}_{3}
$$

Asking ourselves some questions ...

$$
\left.\begin{array}{ll}
\text { Test } \mathrm{C} 1>\mathrm{C} 2
\end{array} \quad \begin{array}{rl}
\text { Test } \mathrm{V}>\mathrm{A}
\end{array} \quad \begin{array}{lllllll}
0 & 0 & 1 & -1 & 0 & 0
\end{array}\right],\left[\begin{array}{lllllll}
1 & -1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Test the interaction MxC?

- Design Matrix not orthogonal
- Many contrasts are non estimable
- Interactions MxC are not modelled

Modelling the interactions

$$
\begin{array}{lll}
\text { Test } \mathrm{C} 1>\mathrm{C} 2 & : & \mathrm{c}=\left[\begin{array}{lllllll}
1 & 1 & -1 & -1 & 0 & 0 & 0
\end{array}\right] \\
\text { Test } \mathrm{V}>\mathrm{A} & : & \mathrm{c}=\left[\begin{array}{lllllll}
1 & -1 & 1 & -1 & 1 & -1 & 0
\end{array}\right]
\end{array}
$$

Test the category effect :

$$
\mathrm{c}=\left[\begin{array}{ccccccc}
{\left[\begin{array}{cccccc}
1 & 1 & -1 & -1 & 0 & 0
\end{array}\right]} \\
0 & 0 & 1 & 1 & -1 & -1 & 0
\end{array}\right]
$$

Test the interaction MxC :

$$
\left.\begin{array}{ccccccc}
{\left[\begin{array}{cccccc}
1 & -1 & -1 & 1 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccccc}
0 & 0 & 1 & -1 & -1 & 1
\end{array} 0\right.} \\
1 & -1 & 0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

- Design Matrix orthogonal
- All contrasts are estimable
- Interactions MxC modelled
- If no interaction ... ? Model is too "big" !

With a more flexible model

Test C1 > C2 ?
Test C 1 different from C 2 ?
from

$$
\mathrm{c}=\left[\begin{array}{lllllll}
{[1} & 1 & -1 & -1 & 0 & 0 & 0
\end{array}\right]
$$

to

$$
c=\left[\begin{array}{cccccccccccc}
1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

becomes an F test!
What if we use only:

$$
\left.\mathrm{c}=\left[\begin{array}{lllllllllll}
1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0
\end{array}\right) 00\right]
$$

OK only if the regressors coding for the delay are all equal

Toy example: take home ...

Duse F tests when

- Test for >0 and <0 effects
- Test for more than 2 levels in factorial designs
- Conditions are modelled with more than one regressor

D Check post hoc

Thank you for your attention!

jbpoline@cea.fr

Design Matrix
 Parameters
 Contrasts

(1) $X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& (1,0) \cdot \hat{\beta}=\overline{y_{1}} \\
& (0,1) \cdot \hat{\beta}=\overline{y_{2}} \\
& (1,-1) \cdot \bar{\beta}=\overline{y_{1}}-\overline{y_{2}} \\
& (.5, .5) \cdot \hat{\beta}=\operatorname{mean}\left(\overline{y_{1}}, \overline{y_{2}}\right)
\end{aligned}
$$

$\mathrm{P}_{\mathrm{x}} \mathrm{Y}=\mathrm{X} \beta$

Projector onto X

$$
X=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

$$
P_{X} Y=\left[\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] . Y=X \beta=\left[\begin{array}{c}
\overline{y_{1}} \\
\overline{y_{1}} \\
\overline{y_{2}} \\
\overline{y_{2}} \\
\overline{y_{2}}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { (2) } X=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right] \quad \begin{cases} & \hat{\beta}_{1}+\hat{\beta}_{2}=\overline{y_{1}} \\
\hat{\beta}_{2}=\overline{y_{2}} & (1,1) \cdot \hat{\beta}=\overline{y_{1}} \\
& (0,1) \cdot \hat{\beta}=\overline{y_{2}} \\
(1,0) \cdot \hat{\beta}=\overline{y_{1}}-\overline{y_{2}} \\
& (.5,1) \cdot \hat{\beta}=\operatorname{mean}\left(\overline{y_{1}}, \overline{y_{2}}\right)\end{cases}
\end{aligned}
$$

Main Effects and Interaction:

1. Main effect: 2 (A)
2. Main effect: 3 (B)
3. Interaction: $23(\mathbf{A} \times \mathbf{B})$

Contrast Weights

1. Main effect of $\mathbf{A}: \quad 1-1 \quad 0 \quad 0 \quad$ ones $(1,3) / 3$-ones $(1,3) / 3$

2. Test for a single regressor in main effect of \mathbf{A} (e.g. A1)

10 ones $(1,3) / 3$ ones $(1,3) / 3$ zeros $(1,3)$
5. Test for a single regressor in main effect of \mathbf{B} (e.g. B2)

$$
\begin{array}{lllllllllll}
0.5 & 0.5 & 0 & 1 & 0 & 0 & 0.5 & 0 & 0 & 0.5 & 0
\end{array}
$$

6. Test for a single regressor in interaction $\mathbf{A} \times \mathbf{B}$ (e.g. A1B3)

10001001000

$$
\begin{array}{ll}
y_{1}-\beta_{1}+\beta_{3}+\beta_{6}+\varepsilon^{(1)} & \\
y_{2}=\beta_{1}+\beta_{4}+\beta_{2}+\varepsilon^{(21)} & == \\
y_{3}-\beta_{1}+\beta_{3}+\beta_{8}+\varepsilon^{(3)} & === \\
y_{4}-\beta_{2}+\beta_{3}+\beta_{0}+\varepsilon^{(4)} & ==0 \\
y_{5}=\beta_{2}+\beta_{4}+\beta_{10}+\varepsilon^{(5)} & == \\
y_{6}=\beta_{2}+\beta_{5}+\beta_{11}+\varepsilon^{(6)} & ==
\end{array}
$$

How is this computed ? (t-test)

Estimation [Y, X] [b, s]
$Y=X \beta+\varepsilon$
$b=\left(X^{\prime} X\right)^{+} X^{\prime} Y$
$e=Y-X b$
$s^{2}=\left(e^{\prime} e /(n-p)\right)$
$\varepsilon \sim \sigma^{2} \mathrm{~N}(0, \mathrm{I})$ (Y : at one position)
(b : estimate of β) $->$ beta??? images
(e: estimate of ε)
(s: estimate of σ, n : time points, $p:$ parameters)
-> I image ResMS

Test $\left[b, s^{2}, c\right]\left[c^{\prime} b, t\right]$
$\operatorname{Var}\left(c^{\prime} b\right)=s^{2} c^{\prime}\left(X^{\prime} X\right)^{+} c \quad$ (compute for each contrast c, proportional to $\left.S^{2}\right)$
$t=c^{\prime} b / \operatorname{sgrt}\left(s^{2} c^{\prime}\left(X^{\prime} X\right)^{+} c\right) \quad c^{\prime} b \rightarrow$ images spm_con???
compute the t images $->$ images spm_t???
under the null hypothesis $H_{0}: t \sim$ Student-t $(d f) \quad d f=n-p$

How is this computed? (F-test)

$$
\begin{aligned}
& Y=X \beta+\varepsilon \\
& Y=X_{0} \beta_{0}+\varepsilon_{0}
\end{aligned}
$$

$$
\varepsilon \sim N\left(0, \sigma^{2} I\right)
$$

$$
\varepsilon_{0} \sim \mathrm{~N}\left(0, \sigma_{0}^{2} \mathrm{I}\right) \quad X_{0}: X \text { Reduced }
$$

Test [b, s, c] [ess, F]

$$
F \sim\left(s_{0}-s\right) / s^{2}
$$

under the null hypothesis : $F \sim F(p-p 0, n-p)$

