Vancouver course – August 2010 Linear Models – Contrasts

Jean-Baptiste Poline

Neurospin, I2BM, CEA Saclay, France

REPEAT: model and fitting the data with a Linear Model

Make sure we understand the testing procedures : t- and F-tests
But what do we test exactly ?
Examples – almost real

One voxel = One test (t, F, ...)

amplitude

General Linear Model →fitting statistical image

Statistical image (SPM)

Regression example...

voxel time series box-car reference function Mean value

Regression example...

voxel time series **box-car reference function** Mean value

...revisited : matrix form

 $Y = \beta_1 \times f(t) + \beta_2 \times 1 + \varepsilon$

Box car regression: design matrix...

Fact: model parameters depend on regressors scaling

Q: When do I care ?

A: ONLY when comparing manually entered regressors (say you would like to compare two scores)

What if two conditions A and B are not of the same duration before convolution HRF?

What if we believe that there are drifts?

Add more reference functions / covariates ...

Discrete cosine transform basis functions

Fitting the model = finding some estimate of the betas

How do we find the betas estimates? By minimizing the residual variance

Fitting the model = finding some estimate of the betas

$$Y = X \beta + \varepsilon$$

finding the betas = minimising the sum of square of the residuals

 $// Y - X \bigotimes //^{2} = \sum_{i} [y_{i} - \bigotimes X]$ when β are estimated: let's call them b (or $\hat{\beta}$) when ε is estimated : let's call it e estimated SD of ε : let's call it s

Take home ...

• We put in our model regressors (or covariates) that represent how we think the signal is varying (of interest and of no interest alike)

WHICH ONE TO INCLUDE ?

What if we have too many? Too few?

Coefficients (= parameters) are estimated by minimizing the fluctuations, - variability – variance – of estimated noise – the residuals.

• Because the parameters depend on the scaling of the regressors included in the model, one should be careful in comparing manually entered regressors, or conditions of different durations

Make sure we all know about the estimation (fitting) part

Make sure we understand t and F tests

But what do we test exactly ?

An example – almost real

T test - one dimensional contrasts - SPM{*t*}

A contrast = a weighted sum of parameters: c' × b $b_1 > 0$? **Compute** $1xb_1 + 0xb_2 + 0xb_3 + 0xb_4 + 0xb_5 + ... = c'b$ $c' = [1 \ 0 \ 0 \ 0 \ 0 \]$

divide by estimated standard deviation of **b**₁

c '*b*

T =

From one time series to an image

spm_ResMS

F-test : a reduced model

H₀: True model is X_0

H₀: $\underline{\beta}_1 = 0$

This (full) model? Or this one?

 $F \sim (S_0^2 - S^2) / S^2$ **T** values become F values. $F = T^2$ **Both "activation"** and "deactivations" are tested. Voxel wise p-values are halved.

F-test : a reduced model or ...

Tests multiple linear hypotheses : Does X1 model anything ? H_0 : True (reduced) model is X_0

F-test : a reduced model or ... multi-dimensional contrasts ?

tests multiple linear hypotheses. Ex : does drift functions model anything?

H₀: True model is X_0

corona

T and F test: take home ...

T tests are simple combinations of the betas; they are either positive or negative (b1 - b2) is different from b2 - b1

F tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler model, or

F tests the sum of the squares of one or several combinations of the betas

In testing "single contrast" with an F test, for ex. b1 - b2, the result will be the same as testing b2 - b1. It will be exactly the square of the t-test, testing for both positive and negative effects.

Make sure we all know about the estimation (fitting) part

Make sure we understand t and F tests

But what do we test exactly ? Correlation between regressors

An example – almost real

« Additional variance » : Again

correlated regressors, for example green: subject age yellow: subject score

Testing for the red

correlated contrasts

Very correlated regressors ?

Dangerous !

Testing for the green and yellow

If significant ? Could be G or Y !

Testing for the green design orthogonality **Completely correlated** regressors? **Impossible to test ! (not** . estimable)

An example: real

Testing for first regressor: T max = 9.8

Including the movement parameters in the model

Testing for first regressor: activation is gone ! Right or Wrong?

Implicit or explicit (1) decorrelation (or orthogonalisation)

This generalises when testing several regressors (F tests)

cf Andrade et al., NeuroImage, 1999

L_{C2}: test of C2 in the implicit ⊥ model

test of C1 in the explicit \perp model

Correlation between regressors: take home ...

Do we care about correlation in the design ? Yes, always

Start with the experimental design : conditions should be as uncorrelated as possible

• use F tests to test for the overall variance explained by several (correlated) regressors

Make sure we all know about the estimation (fitting) part

Make sure we understand t and F tests

But what do we test exactly ? Correlation between regressors

An example – almost real

A real example (almost !)

Experimental Design

Design Matrix

Factorial design with 2 factors : modality and category

- 2 levels for modality (eg Visual/Auditory)
- 3 levels for category (eg 3 categories of words)

$VAC_1C_2C_3$

Asking ourselves some questions ...

 $VAC_1C_2C_3$

Test C1 > C2Test V > A : c = [001 - 100]: c = [1 - 10000]

Test C1,C2,C3 ? (F)

 $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Test the interaction MxC?

- Design Matrix not orthogonal
- Many contrasts are non estimable
- Interactions MxC are not modelled

Modelling the interactions

Test $C1 > C2$		$c = [1 \ 1 \ -1 \ -1 \ 0 \ 0 \ 0]$
Test V>A		c = [1 - 1 1 - 1 1 - 1 0]
Test the category effect :	c =	$\begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 & 1 & -1 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$
Test the interaction MxC		$\begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 & 0 \\ \begin{bmatrix} 0 & 0 & 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}$
Design Matrix orthogona All contrasts are estimable		design o

• Interactions MxC modelled

۲

• If no interaction ... ? Model is too "big" !

With a more flexible model

4 6

Test C1 > C2 ? Test C1 different from C2 ? from $c = [1 \ 1 \ -1 \ -1 \ 0 \ 0 \ 0]$ to $c = [10 \ 1 \ 0 \ -1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0]$ $[01 \ 0 \ 1 \ 0 \ -1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0]$ becomes an F test! What if we use only:

 $\mathbf{c} = \begin{bmatrix} 1 \ 0 \ 1 \ 0 \ -1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$

OK only if the regressors coding for the delay are all equal

Toy example: take home ...

Use F tests when

- Test for >0 and <0 effects
- Test for more than 2 levels in factorial designs
- Conditions are modelled with more than one regressor

Check post hoc

Thank you for your attention!

jbpoline@cea.fr

$$P_{x} Y = X \beta$$

Projector onto X

$$X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
$$P_X Y = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \end{bmatrix} . Y = X\beta = \begin{bmatrix} \bar{y_1} \\ \bar{y_1} \\ \bar{y_2} \\ \bar{y_2} \\ \bar{y_2} \\ \bar{y_2} \end{bmatrix}$$

$$(2) \quad X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \left\{ \begin{array}{cc} \hat{\beta}_1 + \hat{\beta}_2 = \bar{y_1} & (1, 1).\hat{\beta} = \bar{y_1} \\ (0, 1).\hat{\beta} = \bar{y_2} \\ (1, 0).\hat{\beta} = \bar{y_1} - \bar{y_2} \\ (.5, 1).\hat{\beta} = \operatorname{mean}(\bar{y_1}, \bar{y_2}) \end{array} \right. \\ (3) \quad X = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad \left\{ \begin{array}{c} \hat{\beta}_1 + \hat{\beta}_3 = \bar{y_1} \\ \hat{\beta}_2 + \hat{\beta}_3 = \bar{y_2} \\ (.5, 1).\hat{\beta} = \operatorname{mean}(\bar{y_1}, \bar{y_2}) \end{array} \right. \\ \left\{ \begin{array}{c} \hat{\beta}_1 + \hat{\beta}_3 = \bar{y_1} \\ \hat{\beta}_2 + \hat{\beta}_3 = \bar{y_2} \\ (.5, .5, 1).\hat{\beta} = \operatorname{mean}(\bar{y_1}, \bar{y_2}) \end{array} \right. \right.$$

Main Effects and Interaction:

- 1. Main effect: 2 (A)
- 2. Main effect: 3 (B)
- 3. Interaction: 2 3 $(\mathbf{A} \times \mathbf{B})$

Contrast Weights

- 2. Main effect of B: 0 0 -1 0 1 [-1 0 1] * [1/2] [-1 0 1] * [1/2]
- 3. Interaction $\mathbf{A} \times \mathbf{B}$: 0 0 0 0 0 -1 0 1 1 0 -1

4. Test for a single regressor in main effect of A (e.g. A1)

```
1 0 ones(1,3)/3 ones(1,3)/3 zeros(1,3)
```

5. Test for a single regressor in main effect of **B** (e.g. B2)

```
0.5 0.5 0 1 0 0 0.5 0 0 0.5 0
```

6. Test for a single regressor in interaction A x B (e.g. A1B3)

```
1 0 0 0 1 0 0 1 0 0 0
```

$$\begin{split} y_1 &= \beta_1 + \beta_3 + \beta_6 + \varepsilon^{(1)} \\ y_2 &= \beta_1 + \beta_4 + \beta_7 + \varepsilon^{(2)} \\ y_3 &= \beta_1 + \beta_5 + \beta_8 + \varepsilon^{(3)} \\ y_4 &= \beta_2 + \beta_3 + \beta_9 + \varepsilon^{(4)} \\ y_5 &= \beta_2 + \beta_4 + \beta_{10} + \varepsilon^{(5)} \\ y_6 &= \beta_2 + \beta_5 + \beta_{11} + \varepsilon^{(6)} \end{split}$$

$$\begin{aligned} y_1 + y_2 + y_3 &= 3\beta_1 + \beta_3 + \beta_4 + \beta_5 + \beta_6 + \beta_7 + \beta_8 + \varepsilon^{1+2+3} \\ y_4 + y_5 + y_6 &= 3\beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_9 + \beta_{10} + \beta_{11} + \varepsilon^{4+5+6} \end{aligned}$$

How is this computed ? (t-test)

Estimation [Y, X] [b, s] $Y = X\beta + \varepsilon$

- $b = (X'X)^+ X'Y$
- e = Y Xb
- $s^{2} = (e'e/(n p))$

 $\epsilon \sim \sigma^2 N(0,I)$ (Y: at one position)

(b: estimate of β) -> beta??? images

(e: estimate of ε)

(s: estimate of σ , n: time points, p: parameters) -> 1 image ResMS

Test [*b*, *s*², *c*] [*c* '*b*, *t*] $Var(c'b) = s^2 c'(X'X)^+ c$ $t = c'b / sqrt(s^2c'(X'X)^+c)$

(compute for each contrast c, proportional to S^2)

 $c'b \rightarrow images spm_con???$ compute the t images -> images spm_t???

under the null hypothesis H_0 : $t \sim Student-t(df)$ df = n - p

additional variance accounted for by tested effects

> Error variance estimate

How is this computed ? (F-test)

Estimation [Y, X] [b, s] $Y = X \beta + \varepsilon$ $Y = X_0 \beta_0 + \varepsilon_0$

 $\begin{aligned} & \epsilon \sim N(0, \, \sigma^2 \, I) \\ & \epsilon_0 \sim N(0, \, \sigma_0^{\ 2} \, I) \quad X_0 : X \, Reduced \end{aligned}$

Test [b, s, c] [ess, F] $F \sim (s_0 - s) / s^2$

-> image spm_ess???
-> image of F : spm_F???

under the null hypothesis : $F \sim F(p - p0, n-p)$